Transcendent Memory and Linux

Dan Magenheimer, Chris Mason, Dave McCracken, Kurt Hackel
Oracle Corp.

first.last@oracle.com

Abstract

Managing a fixed amount of memory (RAM) optimally
is a long-solved problem in the Linux kernel. Man-
aging RAM optimally in a virtual environment, how-
ever, is still a challenging problem because: (1) each
guest kernel focuses solely on optimizing its entire
fixed RAM allocation oblivious to the needs of other
guests, and (2) very little information is exposed to the
virtual machine manager (VMM) to enable it to de-
cide if one guest needs RAM more than another guest.
Mechanisms such as ballooning and hot-plug memory
(Schopp, OLS’2006) allow RAM to be taken from a
selfish guest and given to a needy guest, but these have
significant known issues and, in any case, don’t solve
the hard problem: Which guests are selfish and which
are needy? IBM’s Collaborative Memory Management
(Schwidefsky, OLS’2006) attempts to collect informa-
tion from each guest and provide it to the VMM, but
was deemed far too complex and attempts to upstream
it have been mostly stymied.

Transcendent Memory (tmem for short) is a new ap-
proach to optimize RAM utilization in a virtual envi-
ronment. Underutilized RAM from each guest, plus
RAM unassigned to any guest (fallow memory), is col-
lected into a central pool. Indirect access to that RAM is
then provided by the VMM through a carefully crafted,
page-copy-based interface. Linux kernel changes are
required but are relatively small and not only provide
valuable information to the VMM, but also furnish ad-
ditional “magic” memory to the kernel, provide perfor-
mance benefits in the form of reduced I/O, and mitigate
some of the issues that arise from ballooning/hotplug.

1 Introduction

RAM is cheap. So, if a Linux system is running a work-
load that sometimes runs out of memory, common wis-
dom says to add more RAM. As a result, in any given

system at any given time, a large percentage of RAM is
sitting unused or idle. But this RAM is not really empty;
Linux—and any modern operating system—uses other-
wise idle RAM as a page cache, to store pages from
disk that might be used at some point in the future. But
the choice of which pages to retain in the page cache is
a guess as to what the future holds—a guess which is
often wrong. So even though this RAM is holding real
data from the disk, much of it is essentially still idle. But
that’s OK; in a physical system, there’s nothing else to
do with that memory anyway, so if the guess is wrong,
no big loss, and if the guess is right, the data need not
be read from the disk, saving an 1/O.

The whole point of virtualization is to improve utiliza-
tion of resources. The CPUs and I/O bandwidth on
many physical servers are lightly utilized and so virtu-
alization promises to consolidate these physical servers
as virtual servers on the same physical machine, to bet-
ter utilize these precious CPUs and I/O devices. Sta-
tistically, these virtual servers rarely all simultaneously
assert demand for the same resources, so the physical
resources can be multiplexed, thus allowing even more
virtual machines to share the same physical machine.

But what about RAM? RAM is harder to statistically
multiplex and so is becoming a bottleneck in many vir-
tualized systems. One solution is always to just add
more RAM, but as CPUs and I/O devices are more effi-
ciently utilized, RAM is becoming a significant percent-
age of the cost of a data center, both at time-of-purchase
and as a sink for energy. As a result, RAM is increas-
ingly not cheap, and so we would like to improve the
utilization of RAM as a first-class resource.

Why can’t we apply the same techniques for sharing
CPUs and I/O devices to memory? In short, it is be-
cause memory is a non-renewable resource. Every sec-
ond there is a fresh new second of CPU time to divide
between virtual machines. But memory is assumed to
be persistent; memory containing important data for one
virtual machine during one second cannot be randomly

192 e Transcendent Memory and Linux

given to another virtual machine at the next second. This
is complicated in all modern operating systems by RAM
utilization techniques such as page caching. Linux has
a reason to hoard RAM, because the more RAM it has,
the more likely its page cache will contain pages it needs
in the future, thus saving costly I/Os.

To be sure, mechanisms exist to take memory away
from one virtual machine and give it to another. Bal-
looning, for example, cleverly does this by creating
a dynamically-loadable pseudo-driver which resides in
each virtual machine and requests pages of memory
from the kernel, secretly passing them to the virtual ma-
chine manager (VMM) where they can be reassigned to
another virtual machine, and later returned if needed.
And hot-plug memory techniques can similarly be used
to surrender and reclaim memory, albeit at a much
coarser granularity. Both of these mechanisms have
known weaknesses, not the least of which is they don’t
solve the thorniest problem: How can it be determined
how much memory each virtual machine really needs?
That is, which ones are truly “needy” and which ones
are selfishly hoarding memory?

IBM’s Collaborative Memory Management deeply in-
trudes into the Linux memory management code and
maintains a sophisticated state machine to track pages
of memory and communicate status to the VMM. But if
changes are being made to the kernel anyway, why not
create a true collaboration between the kernel and the
VMM?

This is the goal of Transcendent Memory, or tmem. Un-
derutilized and unassigned (fallow) RAM is collected
by the VMM into a central pool. Indirect access to
that RAM is then provided by the VMM through a
carefully- crafted, page-copy-based interface. Linux
kernel changes are required but are relatively small and
not only provide valuable information to the VMM, but
also furnish additional “magic” memory to the kernel,
provide performance benefits in the form of reduced /O,
and mitigate some of the issues that arise from balloon-
ing/hotplug.

In the remaining sections, we will first provide an
overview of how tmem works. We will then describe
some Linux changes necessary to utilize some of the
capabilities of tmem, implementing useful features that
we call precache and preswap. Finally, we will suggest
some future directions and conclude.

2 Transcendent Memory Overview

We refer to a tmem-modified kernel as a tmem client
and to the underlying tmem code as a tmem implemen-
tation or just as tmem. The well-specified interface be-
tween the two is the frmem API. Xen provides a tmem
implementation, and the code is structured to be easily
portable. A Linux client patch is available for 2.6.30 and
we will discuss that shortly. But first, we will describe
the operational basics of tmem.

2.1 Tmem pool creation

In order to access tmem memory, the kernel must first
create a tmem pool using the tmem_new_pool call.
The tmem_new_pool call has a number of parameters
which will be described in more detail later, but an im-
portant one is whether the memory in the pool is needed
to be persistent or non-persistent (ephemeral). While
it might seem a no-brainer to always request persistent
memory, we shall see that, due to certain restrictions im-
posed by tmem, this is not the case.

If tmem successfully creates the pool, it returns a small
non-negative integer, called a pool_id. Tmem may limit
the number of pools that can be created by a tmem
client—the Xen implementation uses a limit of 16—so
pool creation may fail, in which case tmem_new_pool
returns a negative errno.

Once a tmem pool is successfully created, the kernel can
use the pool_id to perform operations on the pool. These
operations are page-based and the individual pages are
identified using a three-element tuple called a handle.
The handle consists of a pool_id, a 64-bit object iden-
tifier (obj_id), and a 32-bit page identifier (index). The
tmem client is responsible for choosing the handle and
ensuring a one-to-one mapping between handles and
pages of data.

Though they need not be used as such, the three handle
components can be considered analogous to a filesys-
tem, a file (or inode number) within the filesystem, and
a page offset within the file. More generically, the han-
dle can be thought of as a non-linear address referring
to a page of data.

A created pool may be shared between clients and
shared pools may be either ephemeral or persistent.
Clients need only share a 128-bit secret and provide it

2009 Linux Symposium e 193

at pool creation. This is useful, for example, when mul-
tiple virtual nodes of a cluster reside on the same phys-
ical machine, or as an inter-VM shared memory mech-
anism. For the purposes of this paper, we will assume
that created pools are private, not shared, unless other-
wise noted.

2.2 Tmem basic operations

The two primary operations performed on a tmem pool
are tmem_put_page (or pur) and tmem_get_page (or
get). The parameters to tmem_put_page consist of a
handle and a physical page frame, and the call indicates
a request from the kernel for tmem to copy that page
into a tmem pool. Similarly, the parameters to tmem_
get_page consist of an empty physical page frame and
a handle, and the call indicates a request to find a page
matching that handle and copy it into the kernel’s empty
page frame.

If tmem elects to perform the copy, it returns the integer
value 1. If it elects to NOT perform the copy, it returns
the integer value O. If it is unable to perform the copy for
a reason that might be useful information to the client,
it returns a negative errno.

In general, a put to an ephemeral pool will rarely fail but
a get to an ephemeral pool will often fail. For a persis-
tent pool, a put may frequently fail but, once success-
fully put, a get will always succeed. Success vs failure
may appear random to the kernel because it is governed
by factors that are not visible to the kernel.

Note that both get and put perform a true copy of the
data. Some memory utilization techniques manipulate
virtual mappings to achieve a similar result with pre-
sumably less cost. Such techniques often create aliasing
issues and suffer significant overhead in TLB flushes.
Also, true copy avoids certain corner cases as we shall
see.

2.3 Tmem coherency

The kernel is responsible for ensuring coherency be-
tween its own internal data structures, the disk, and any
data put to a tmem pool. Two tmem operations are
provided to assist in ensuring this consistency: tmem_
flush_page takes a handle and the call ensures that a
subsequent get with that handle will fail; tmem_flush_
object takes a pool_id and an obj_id and ensures that a

get to ANY page matching that pool_id and obj_id will
fail.

In addition, tmem provides certain coherency guaran-
tees that apply to sequences of operations using the same
handle: First, put-put-get coherency promises that a du-
plicate put may never silently fail; that is in a put-put-get
sequence, the get will never return the stale data from
the first put. Second, get-get coherency promises that if
the first get fails, the second one will fail also.

Note also that a get to a private ephemeral pool is de-
fined to be destructive, that is, if a get is successful, a
subsequent get will fail, as if the successful get were
immediately followed by a flush. This implements ex-
clusive cache semantics.

2.4 Tmem concurrency

In an SMP environment, tmem provides concurrent ac-
cess to tmem pools but provides no ordering guarantees,
so the kernel must provide its own synchronization to
avoid races. However, a tmem implementation may op-
tionally serialize operations within the same object. So
to maximize concurrency, it is unwise to restrict usage
of tmem handles to a single object or a very small set of
objects.

2.5 Tmem miscellaneous

Tmem has additional capabilities that are beyond the
scope of this paper, but we mention several briefly here:

e A tmem implementation may transparently com-
press pages, trading off cpu time spent compress-
ing and decompressing data to provide more appar-
ent memory space to a client.

e Extensive instrumentation records frequency and
performance (cycle count) data for the various
tmem operations for each pool and each client; and
a tool is available to obtain, parse, and display the
data.

e A pagesize other than 4KB can be specified to en-
sure portability to non-x86 architectures.

e Pool creation provides versioning to allow for-
wards and backwards compatibility as the tmem
API evolves over time.

194 e Transcendent Memory and Linux

e Subpage reads, writes and exchange operations are
provided.

e Pools can be explicitly destroyed, if necessary, to
allow reuse of the limited number of pool_ids.

More information on tmem can be found at http://
oss.oracle.com/projects/tmem

3 Linux and tmem

From the perspective of the Linux kernel, tmem can
be thought of as somewhere between a somewhat slow
memory device and a very fast disk device. In either
case, some quirks must be accommodated. The tmem
“device”:

e has an unknown and constantly varying size
e may be synchronously and concurrently accessed

e uses object-oriented addressing, where each object
is a page of data

e can be configured as persistent or non-persistent

Although these quirks may seem strange to kernel de-
velopers, they provide a great deal of flexibility, essen-
tially turning large portions of RAM into a renewable
resource. And although a kernel design for using tmem
that properly accommodates these quirks might seem
mind-boggling, tmem actually maps very nicely to as-
sist Linux memory management code with two thorny
problems: page cache refaults [vanRiel, OLS’2006] and
RAM-based swapping. We call these new tmem-based
features precache and preswap. We will describe both,
but first, to illustrate that they are not very intrusive, Fig-
ure 1 shows the diffstat for a well-commented example
patch against Linux 2.6.30.

This patch not only supports both precache and preswap
but:
e can be configured on or off at compile-time

e if configured off, all code added to existing Linux
routines compiles into no-ops

e if configured on but Linux is running native, has
very low overhead

o if configured on and running on Xen, has very low
overhead if tmem is not present (e.g. an older ver-
sion of Xen) or not enabled

e is nicely-layered for retargeting to other possible
future (non-Xen) tmem implementations

3.1 Precache

Precache essentially provides a layer in the memory hi-
erarchy between RAM and disk. In tmem terminology,
it is a private-ephemeral pool. Private means that data
placed into precache can only be accessed by the ker-
nel that puts it there; ephemeral means that data placed
there is non-persistent and may disappear at any time.
This non-persistence means that only data that can be re-
generated should be placed into it which makes it well-
suited to be a “second-chance” cache for clean page
cache pages.

When Linux is under memory pressure, pages in the
page cache must be replaced by more urgently needed
data. If the page is dirty, it must first be written to disk.
Once written to disk—or if the page was clean to start
with—the pageframe is taken from the page cache to be
used for another purpose. We call this an eviction. Af-
ter a page is evicted, if the kernel decides that it needs
the page after all (and in certain workloads, it frequently
does), it must fetch the page from disk, an unfortunate
occurrence which is sometimes referred to as a refault.
With precache, when a page is evicted, the contents of
the page are copied, or put, to tmem. If the page must be
refaulted, a get is issued to tmem, and if successful, the
contents of the page has been recovered. If unsuccess-
ful, it must be fetched from disk and we are no worse
off than before.

Let’s now go over the precache mechanism in more de-
tail.

When a tmem-capable filesystem! is mounted, a
precache_init is issued with a pointer to the filesys-
tem’s superblock as a parameter. The precache_init
performs a tmem_new_pool call. If pool creation is
successful, the returned pool_id is saved in a (new) field
of the filesystem superblock.

When the filesystem is accessed to fetch a page
from disk, it first issues a precache_get, providing

I Currently, ext3 is supported; ocfs2 and btrfs are in progress.

Changed files:

fs/buffer.c

fs/ext3/super.c

fs/mpage.c

fs/ocfs2/super.c

fs/super.c
include/linux/fs.h
include/linux/swap.h
include/linux/sysctl.h
kernel/sysctl.c

mm/Kconfig

mm/Makefile

mm/filemap.c

mm/page_io.c

mm/swapfile.c

mm/truncate.c
drivers/xen/Makefile
include/xen/interface/xen.h
arch/x86/include/asm/xen/hypercall.h

Newly added files:

mm/tmem. c |
include/linux/tmem.h |
include/linux/precache.h |
mm/precache.c |
mm/preswap.c |
drivers/xen/tmem.c |
include/xen/interface/tmem.h |

) [N T N - &
ONRFR OONRFE WONRE JJ0 NN O

62
88
55
145
273
97
43

FHt+++++

+++

+H+t+

++

+H+++++
e+t

++++++

e+

R R R R R I A A A A o S o S e
4+

+H+++

Figure 1: Diffstat for linux-2.6.30 tmem patch, supporting both precache and preswap
(From http://oss.oracle.com/projects/tmem/files/linux-2.6.30)

an empty struct page, a struct address_space
mapping pointer, and a page index. The precache_
get extracts from the mapping pointer the pool_id
from the superblock and the inode number, combines
these with the page index to build a handle, performs a
tmem_get_page call, passing the handle and the phys-
ical frame number of the empty pageframe, and returns
the result of the tmem_get_page call. Clearly, the first
time each page is needed, the get will fail and the filesys-
tem continues as normal, reading the page from the disk
(using the same empty pageframe, inode number, and
page index). On subsequent calls, however, the get may
succeed, thus eliminating a disk read.

When a page is about to be evicted from page
cache, a call to precache_put is first performed,
passing the struct page containing the data, a
struct address_space mapping pointer, and a page

2009 Linux Symposium e 195

index. The precache_put extracts from the mapping
pointer the pool_id from the superblock and the inode
number, combines these with the page index to build a
handle, performs a tmem_put_page call, passing the
handle and the physical frame number of the data page,
and returns the result of the tmem_put_page call. In
all but the most unusual cases, the put will be success-
ful. However, since the data is ephemeral, there’s no
guarantee that the data will be available to even an im-
mediately subsequent get, so success or failure, the re-
turn value can be ignored.

Now, regardless of guarantee (but depending on the de-
lay and the volume of pages put to the precache), there’s
a high probability that if the filesystem needs to refault
the page, a precache_get will be successful. Every
successful precache_get eliminates a disk read!

196 e Transcendent Memory and Linux

One of the challenges for precache is providing co-
herency. Like any cache, cached data may become
stale and must be eliminated. Files that are overwritten,
removed, or truncated must be ensured consistent be-
tween the page cache, the precache, and the disk. This
must be accomplished via careful placement of calls
to precache_flush and precache_flush_inode,
the placement of which may differ from filesystem to
filesystem. Inadequate placement can lead to data cor-
ruption; overzealous placement results in not only a po-
tentially large quantity of unnecessary calls to tmem_
flush_page and tmem_flush_object, but also the
removal of pages from precache that might have been
the target of a successful get in the near future. Since
the flushes are relatively inexpensive and corruption is
very costly, better safe than sorry! Optimal placement
is not an objective of the initial patch and will require
more careful analysis.

Note that one of the unique advantages of precache is
that the memory utilized is not directly addressible. This
has several useful consequences for the kernel: First,
memory that doesn’t belong to this kernel can still be
used by this kernel. If, for example, a tmem-modified
VM has been assigned a maximum of 4GB of RAM,
but it is running on a physical machine with 64GB of
RAM, precache can use part of the remaining, otherwise
invisible, 60GB to cache pages (assuming of course that
the memory is fallow, meaning other VMs on the phys-
ical machine are not presently using it). This “magic”
memory greatly extends the kernel’s page cache. Sec-
ond, memory space that belongs to the kernel but has
been temporarily surrendered through ballooning or hot-
plug activity may be re-acquired synchronously, with-
out waiting for the balloon driver to asynchronously re-
cover it from the VMM (which may require the mem-
ory to be obtained, in turn, from a balloon driver of an-
other VM). Third, no struct page is required to map
precache pages. In the previous 4GB-64GB example,
a VM that might periodically need to balloon upwards
to 64GB might simply be initially configured with that
much memory (e.g. using the “maxmem” parameter to
xen). But if that is the case, all pages in the 64GB must
have a struct page, absorbing a significant fraction
of 1GB just for kernel data structures that will almost
never be used.

The benefits for the virtualized environment may not be
as obvious but are significant: Every page placed in pre-
cache is now a renewable resource! If a balloon driver in

VM A requests a page, it can be synchronously delivered
simply by removing the page from the precache of VM
B without waiting for the kernel and/or balloon driver
in VM B to decide what page can be surrendered. And
if a new VM C is to be created, the memory needed to
provision it can be obtained by draining the precache of
VM A and VM B. Further, pages placed in precache may
be transparently compressed, thus magically expanding
the memory available for precached pages by approxi-
mately a factor of two vs if the same memory were ex-
plicitly assigned to individual VMs.

Of course precache has costs too. Pages will be put to
precache that are never used again; and every disk read
is now preceded by a get that will often fail; and the
flush calls necessary for coherency are also a require-
ment. Precache is just another form of cache and caches
are not free; for any cache, a benchmark can be synthe-
sized that shows cache usage to be disadvantageous. But
caches generally prove to be a good thing. For precache,
the proof will be, er, in the put’ing.

3.2 Preswap

Preswap essentially provides a layer in the swap sub-
system between the swap cache and disk. In tmem ter-
minology, it is a private-persistent pool. Again, private
means that data placed into preswap can only be ac-
cessed by the kernel that put it there; persistent means
that data placed there is permanent and can be fetched at
will... but only for the life of the kernel that put it there.
This semi-permanence precludes the use of preswap as
a truly persistent device like a disk, but maps very nicely
to the requirements of a swap disk.

In a physical system, sometimes the memory require-
ments of the application load running on a Linux sys-
tem exceed available physical memory. To accommo-
date the possibility that this may occur, most Linux sys-
tems are configured with one or more swap devices; usu-
ally these are disks or partitions on disks. These swap
devices act as overflow for RAM. Since disk access is
orders of magnitude slower than RAM, a swap device
is used as a last resort; if heavy use is unavoidable, a
swapstorm may result, resulting in abysmal system per-
formance. The consequences are sufficiently dire that
system administrators will buy additional servers and/or
purchase enough RAM in an attempt to guarantee that a
swapstorm will never happen.

2009 Linux Symposium e 197

In a virtualized environment, however, a mechanism
such as ballooning is often employed to reduce the
amount of RAM available to a lightly-loaded VM in an
attempt to overcommit memory. But if the light load is
transient and the memory requirements of the workload
on the VM suddenly exceed the reduced RAM avail-
able, ballooning is insufficiently responsive to instan-
taneously increase RAM to the needed level. The un-
fortunate result is that swapping may become more fre-
quent in a virtualized environment. Worse, in a fully-
virtualized data center, the swap device may be on the
other end of a shared SAN/NAS rather than on a local
disk.

Preswap reduces swapping by using a tmem pool to
store swap data in memory that would otherwise be writ-
ten to disk. Since tmem prioritizes a persistent pool
higher than an ephemeral pool, precache pages—from
this kernel or from another—can be instantly and trans-
parently reprovisioned as preswap pages. However, in
order to ensure that a malicious or defective kernel can’t
absorb all tmem memory for its own nefarious purposes,
tmem enforces a policy that the sum of RAM directly
available to a VM and the memory in the VM’s per-
sistent tmem pools may not exceed the maximum al-
location specified for the VM. In other words, a well-
behaved kernel that shares RAM when it is not needed
can use preswap; a selfish kernel that never surrenders
RAM will be unable to benefit from preswap. Even bet-
ter, preswap pages may be optionally and transparently
compressed, potentially doubling the data that can be
put into tmem.

Now that we understand some of preswap’s benefits,
let’s take a closer look at the mechanism.

When a swap device is first configured (via sys_
swapon, often at system initialization resulting from
an entry in /etc/fstab), preswap_init is called,
which in turn calls tmem_new_pool, specifying that a
persistent pool is to be created. The resulting pool_id is
saved in a global variable in the swap subsystem. (Only
one pool is created even if more than one swap device is
configured.) Part of the responsibility of sys_swapon
is to allocate a set of data structures to track swapped
pages, including a 16-bit-per-page array called swap_
map. Preswap pages also must be tracked, but a sin-
gle “present” bit is sufficient and so the tmem-modified
sys_swapon allocates a 1-bit-per-page preswap_map
array.

When a page must be swapped out, a block I/O write
request must be passed to the block I/O subsystem. The
routine that submits this request first makes a call to
preswap_put, passing only the struct page as a
parameter. The preswap_put call extracts the swap
device number and page index (called type and offset
in the language of Linux swap code), combines it with
the saved preswap_poolid to create a handle, and passes
the handle along with the physical frame number of the
page to tmem_put_page. If the put was successful,
preswap_put then records the fact by setting the cor-
responding bit in the preswap_map and returns suc-
cess (the integer 1). Otherwise, the integer O is re-
turned. If preswap_put returns success, the page has
been placed in preswap, the block I/O write is circum-
vented, and the st ruct page is marked to indicate that
the page has been successfully written.

A similar process occurs when a page is to be swapped
in, but two important points are worth noting. First,
if the bit in the preswap_map corresponding to the
page to be swapped in is set, the tmem_get_page
will always succeed—it is a bug in tmem if it does
not! Second, unlike an ephemeral pool, a get from a
persistent pool is non-destructive; thus, the bit in the
preswap_map is not cleared on a successful get. This
behavioral difference is required as a swapped page is
reference counted by the swap subsystem because mul-
tiple processes might have access to the page and, fur-
ther, might concurrently issue requests to read the same
page from disk!

However, this behavior leads to some complications in
the implementation of preswap. First, an explicit flush
is required to remove a page from preswap. Fortunately,
there is precisely one place in the swap code which de-
termines when the reference count to a swap page goes
to zero, and so a preswap_flush can be placed here.
Second, data from rarely used init-launched processes
may swap out pages and then never swap them back in.
This uses precious tmem pool space for rarely used data.

This latter point drives the need for a mechanism to
shrink pages out of preswap and back into main mem-
ory. This preswap_shrink mechanism needs to be in-
voked asynchronously when memory pressure has sub-
sided. To accomplish this, sys_swapof f-related rou-
tines have been modified to alternately try_to_unuse
preswap pages instead of swap pages. In the current
patch, the mechanism is invoked by writing a sysfs file,

198 e Transcendent Memory and Linux

/sys/proc/vm/preswap®. In the future, this should
be automated, perhaps by kswapd.

One interesting preswap corner case worth mentioning
is related to the tmem-enforced put-put-get coherency.
Since a preswap get is non-destructive, duplicate puts
are not uncommon. However, it is remotely possible
that the second put might fail. (This can only occur if
preswap pages are being compressed AND the data in
the second put does not compress as well as the first
put AND tmem memory is completely exhausted. But
it does happen!) If this occurs, an implicit preswap_
flush is executed, eliminating the data from the first
put from the tmem pool. Both preswap_put and the
routine that calls it must be able to recover from this,
e.g. by clearing the corresponding preswap_map bit
and by ensuring the page is successfully written to the
swap disk.

4 Future directions

Tmem is a brand new approach to physical memory
management in a virtualized environment. As such, we
believe we are only beginning to see its potential.

We have done some investigation into shared tmem
pools. A shared-ephemeral pool can serve nicely as a
server-side cache for a cluster filesystem, or perhaps for
a network-based filesystem. Like precache, this shared
precache would reduce the cost of refaults but, in the
case of virtual cluster nodes co-residing on the same
physical node, a page evicted by one node might be
found by a get performed by another node. A prototype
of this has been implemented targeting the ocfs2 filesys-
tem, using the 128-bit ocfs2 UUID as the shared secret
that must be specified by both nodes when the shared
pool is created.

With three quadrants of the private vs shared / persistent
vs ephemeral matrix implemented, the fourth, a shared-
persistent pool falls out easily. A shared-persistent pool
looks like a fine foundation for inter-VM shared mem-
ory, and shared memory can be used as a basis for inter-
VM communication or other capabilities. Several re-
search projects implementing inter-VM messaging have
been published. To our knowledge, none is yet available
commercially.

ZReading this same sysfs file provides the number of pages writ-
ten to preswap instead of to disk

Benchmarking is needed. But since nearly all virtualiza-
tion deployments are implemented around assumptions
and constraints that tmem intends to shatter, using yes-
terday’s static benchmarks to approximate tomorrow’s
highly-dynamic utility data center workloads does a dis-
service to everyone.

With a well-defined API in place, additional implemen-
tations both above and below the API boundary are fea-
sible. A native Linux implementation has been pro-
posed, using standard kernel memory allocation to pro-
vision tmem pools. This might seem silly, but could
serve as an effective API for compressing otherwise
evicted or swapped pages to improve memory utiliza-
tion when memory pressure increases—something like
the compcache in the linux-mm project list, but with
the capability of compressing page cache pages as well
as swap pages. The API might also prove useful for lim-
iting persistence requirements on or restricting access to
new memory technologies, such as solid-state disks or
blocks of memory marked for hot-delete.

Should tmem prove sufficiently advantageous in opti-
mizing memory utilization across a data center, new
tmem clients might be implemented to ensure that, for
example, BSD VM’s can play nice with Linux VMs.
Or proprietary Unix versions in virtual appliance stacks.
Or even Windows might be “enlightened” (or binary-
patched).

Some argue that tmem-like features are redundant on
KVM. Some believe otherwise. It will take a full KVM
tmem implementation to decide.

Elevating memory to a full first-class resource opens
new avenues for new research and new tools. VMM
schedulers are smart enough to take into account CPU-
bound VM’s vs I/O-bound VMs. But how much of that
1/0O is refaulting/swapping due to insufficient memory?
And can metrics obtained from tracking tmem put/get
successes and failures be fed back to improve native
Linux page replacement algorithms? Or to help Linux
directly self-manage its own memory size without the
obfuscations of a balloon driver?

Even further out, might ephemeral memory influence
future system design? Does a memory node or memory
blade make more sense for memory that is a renewable
resource?

5 Acknowledgements

The authors thank Jeremy Fitzhardinge, Keir Fraser, Ian
Pratt, Jan Beulich, Sunil Mushran, and Joel Becker for
valuable feedback and Zhigang Wang for assistance in
implementing the Xen control plane tools for the Xen
tmem implementation.

6 References

R. van Riel, Measuring Resource Demand on Linux
Proceedings of the Ottawa Linux Symposium 2006.

M. Schwidefsky et al., Collaborative Memory
Management in Hosted Linux Environments
Proceedings of the Ottawa Linux Symposium 2006.

J. Schopp, K Fraser, and M. Silbermann, Resizing
Memory with Balloons and Hotplug

Transcendent Memory home page,
http://oss.oracle.com/projects/tmem

2009 Linux Symposium e 199

200 e Transcendent Memory and Linux

Proceedings of the
Linux Symposium

July 13th—17th, 2009
Montreal, Quebec
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP

Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron

Chris Dukes, workfrog.com
Jonas Fonseca

John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

