
Increasing memory density by using KSM

Andrea Arcangeli, Izik Eidus, Chris Wright
Red Hat, Inc.

aarcange@redhat.com, ieidus@redhat.com, chrisw@redhat.com

Abstract

With virtualization usage growing, the amount of RAM
duplication in the same host across different virtual ma-
chines possibly running the same software or handling
the same data is growing at a fast pace too. KSM is a
Linux Kernel module that allows to share equal anony-
mous memory across different processes and in turn also
across different KVM virtual machines. Thanks to the
KVM design and the mmu notifier feature, the KVM
virtual machines aren’t any different from any other pro-
cess from the Linux Virtual Memory subsystem POV.
And incidentally all Guest physical memory is allocated
as regular Linux anonymous memory mappings. But
KSM isn’t just for virtual machines.

The KSM main task is to find equal pages in the system.
To do that it uses two trees, one is the stable tree the
other is the unstable tree. The stable tree contains only
already shared and not changing KSM generated pages.
The unstable tree contains only pages that aren’t shared
yet but that are tracked by KSM.

The content of the pages inserted into the two trees is
the index of the tree, but we don’t want to write-protect
all the pagetables that points to the pages in the unstable
tree. So we allow the content of the pages (so the tree
index) to change under KSM and without knowledge of
the tree balancing code. Thanks to the property of the
red black trees that can keep a tree balanced without
checking the node index value, even if the tree becomes
unusable, the tree still remains balanced and the worst
case insertion/deletion remains O(log(N)), to guarantee
the ksm-tree algorithm not to degenerate in corner cases.

To reduce the number of false negative from the unsta-
ble tree lookups, a checksum is used to insert into the
unstable tree only pages whose checksum didn’t change
recently, but in the future the checksum can be replaced
by checking the dirty bit of the pagetables and shadow
pagetables (not with current EPT though). After a full

scan of all pages tracked by KSM, the unstable tree is
rebuilt from scratch to reset all lookup errors introduced
by the pages changing content during the scan.

Whenever KSM finds a match in the stable or unstable
tree, it proceeds to write-protecting the pagetables that
mapped to the old not shared anonymous page, and it
makes them map the new shared KSM page as read-
only. If any KVM shadow pagetable was mapping the
page, it is updated and write-protected through the mmu
notifier mechanism with a newly introduced change_pte
method.

1 Nomenclature

The name of this Linux Kernel feature might change.
For the scope of this document, the term KSM (as in
Kernel Shared Memory or Kernel Samepage Merging if
you wish) will be used, even if it may be renamed to
Memory Merging in the future.

2 KSM objective

The objective of KSM is to increase memory den-
sity. KSM is generating shared pages by merging equal
pages, and in turn it is making free memory available
allowing to run more virtual machines or applications
on the same system, than otherwise would be possible
without KSM.

3 KSM API

The API to use in KSM has been one of the most dis-
cussed parts of the feature on mailing lists, but it’s also
the least interesting part for the scope of this document
and will be only covered briefly here.

While it would be possible for KSM to scan every single
anonymous page in the system, it would be wasteful to

• 19 •



20 • Increasing memory density by using KSM

scan virtual areas where we don’t expect to find any sig-
nificant amount of equal pages. It would be wasteful not
only in CPU terms but in RAM terms too; to keep track
of the pages, KSM has to make some slab allocation.
The amount of slab allocations increases linearly with
the size of the virtual areas registered. Usually Linux
applications try to be intelligent in sharing memory ei-
ther with shared librarians or through fork. Not all ap-
plications are generating memory regions with lots of
equal anonymous pages in a way that cannot be shared
without the KSM feature, so it’s worth scanning only the
virtual areas that are likely to contain lots of equal pages
that cannot be shared by other means.

Processes (through the KSM API) shall simply have the
option to register which virtual memory areas should be
scanned by the kernel thread that has the task of merging
equal physical pages of memory.

The kernel thread that scans the registered virtual ranges
can be controlled through sysfs at /sys/kernel/mm/ksm
(but if the KSM name changes, supposedly the location
is subject to change too). Writing 1 or 0 in run respec-
tively starts and stop the kernel thread. pages_to_scan
and sleep control how CPU intensive the scan of the
memory will be. The more pages scanned per wakeup
and the more frequent the wakeups, the more CPU the
kernel thread will take, and the faster the equal virtual
memory will be shared. sleep is in usec units, pages is
in PAGE_SIZE units. pages_shared is a read only statis-
tic field showing how many KSM pages are allocated in
the system at any given time. max_kernel_pages can
limit the number of KSM pages, this can be useful es-
pecially in the short term because in its first version the
KSM pages aren’t swappable yet (swapping KSM pages
is possible similarly to how tmpfs swaps and it will be
addressed shortly).

At time of this writing, it seems likely the final mem-
ory merging API that applications can use will be im-
plemented through the madvise syscall with a new
MADV_(UN)MERGEABLE advice parameter.

In the current implementation, only anonymous pages
(like the ones generated by malloc) can be merged with
KSM, but perhaps in the future this could be extended
to other kind of pages.

There will likely be an option to avoid compiling the
KSM code into the kernel to save kernel .text for those
embedded systems where the KSM feature won’t be re-

quired, in which case madvise will fail if passed the rel-
evant memory merging advice parameter.

4 KSM and KVM

One of the primary users of KSM is the Linux Kernel
Virtual Machine. When the same guest OS and guest
applications are running in different virtual machines,
lots of equal anonymous memory will be generated on
the host/hypervisor system. So it is ideal to always
keep KSM enabled with parameters like sleep = 5000
pages_to_scan = 60, so that around 12000 virtual pages
are scanned each second, allowing a max memory merg-
ing rate of 46.87MB/sec (the max rate would materialize
only if all virtual pages scanned during a second of time,
are found to be equal to some other page tracked by
KSM). With this setting the KVM kernel thread should
use around 10% of one CPU core. On very large sys-
tems, however, more aggressive settings can be used, up
to dedicating a CPU core to the KSM kernel thread.

Although at present KSM is only capable of merging
equal anonymous memory on the host system, KVM
virtualization allows KSM running on the host to share
pagecache, tmpfs, or any other type of memory allo-
cated in the guest, because all guest memory is backed
by host anonymous memory.

5 KSM at CERN

We had great feedback from CERN and Lawrence
Berkeley National Laboratory related to the compu-
tations they’re running to crunch the LHC generated
data. Their scientific reconstruction jobs generate lots
of equal pages while they run. With KSM enabled they
achieve memory sharing rates up to 750MB if they run
two similar 2GB jobs (without KSM the sharing is lim-
ited to 250MB). They conclude they are able to run 3
jobs in parallel on a 4GB machine, instead of only 2 be-
fore. This cumulatively saves a very significant amount
of memory, given the number of nodes involved in the
computations.

They’re not yet using virtualization on top of Linux, so
to use KSM, their application has to call into the KVM
API directly (by using a malloc wrapper). If they were
to use KVM as a hypervisor (instead of proprietary hy-
pervisor solutions running underneath of Linux) they
wouldn’t need to change their application at all, and all
memory would be merged transparently at the host ker-
nel level.



2009 Linux Symposium • 21

Figure 1: 2 LHC reconstruction jobs without KSM

Figure 2: 2 LHC reconstruction jobs with KSM

6 KSM and embedded

KSM is suitable to be run on embedded systems too;
the important thing is not to register in KSM regions
that won’t likely have equal pages. For each virtual
page scanned, KSM has to allocate some rmap_item and
tree_item, so while these allocations are fairly small,
they can be noticeable if lots of virtual areas are scanned
for no good.

Furthermore, these KSM internal rmap/tree data struc-
tures are not allocated in high memory. To avoid early
out of memory conditions, it is especially important
to limit the amount of lowmem allocated on highmem
32bit systems that might have more than 4GB of mem-
ory, but these shouldn’t fit in the embedded category in
the first place.

7 KSM and swap size

When KSM merges pages, it frees memory. However, it
must be clear that the shared KSM pages remains shared
only as the virtual machines using them are only read-
ing from and not writing to those pages. So there is no
actual guarantee that the memory freed by KSM as re-
sult of creating shared KSM pages will remain free. To
obviate this problem administrators must tune the swap
size appropriately, to ensure that even if the amount
of shared memory would decrease significantly (if the
workload of the virtual machines suddenly changes) the
host Linux Kernel will not run out of physical memory.

8 KSM tree algorithm

The KSM tree algorithm is built around the concept that
to find equal pages we add each page in the registered
virtual memory areas to a Red Black Tree. The index
of the tree is the content of the page itself. The function
that searches the tree to find an equal page, will check
the memcmp() return value to decide if to go left, right,
or if we already found an equal page indexed into the
tree.

9 KSM pass

A KSM pass for the scope of this document is in-
tended as a entire full scan of all virtual areas marked
VM_MERGEABLE by madvise, so registered in KSM.



22 • Increasing memory density by using KSM

10 Computational complexity

The usual page size for x86 architectures (and most
other architectures) is 4096 bytes. But on average the
memcmp() function will break out of its inner loop be-
fore processing all 4096 bytes. This is because the pages
are unlikely to be all equal except for the last bits. The
cost of finding an equal page, will be the cost of mem-
cmp() multiplied by the number of levels in the tree.
Thanks to the rbtree, the computation complexity of all
insert/search/delete functions is O(log(N)) (where N is
the total number of pages scanned by KSM). So even if
we hit the absolute worst case where the first 4092 bytes
of all pages scanned by KSM are equal, and only the last
4 bytes differs, the KSM tree algorithm will not degrade
too much.

11 Stable and unstable trees

The KSM tree algorithm uses two rbtrees, one called
stable tree (as in Figure 3) and one called unstable tree.
Using two trees is an optimization and also increases
the probability of quickly sharing the pages that are the
most likely to be good candidates for sharing as well as
reducing the instability of the unstable tree. The algo-
rithm flow chart is visible in Figure 4.

For each anonymous page scanned, the kernel thread
proceeds searching a match first in the stable tree that
only contains already shared pages (shared so in turn
write protected, hence their content is stable). If a
match is found in the stable tree, the anonymous page
is merged with the KSM page found in the stable tree.

If no match is found in the stable tree, KSM checks if
the anonymous page has changed content recently using
a checksum.

If the checksum changed since the last KSM pass, KSM
updates the checksum and will defer the search of the
unstable tree to the next KSM pass (assuming that the
checksum won’t change again). This is to avoid merging
or adding to the unstable tree pages that changes content
frequently.

If instead the checksum didn’t change KSM proceeds
searching the unstable tree that only contains anony-
mous pages scanned previously but not merged by KSM
yet. If a match is found in the unstable tree KSM merges
the anonymous page under scan, with the anonymous

Figure 3: KSM stable tree

page in the unstable tree, and the resulting KSM merged
page is added to the stable tree (the anonymous page
found in the unstable tree is removed from the unstable
tree and freed). If a match is not found in the unstable
tree KSM adds the page to the unstable tree.

In the future, instead of the checksum, a dirty bit in the
pte (and spte) can signal KSM if a page is worth adding
to the unstable tree or not, or special instructions can
be used if provided by the CPU to compute a checksum
faster than jhash2.

This ’checksum’ here has really nothing to do with the
KSM Tree algorithm itself. The ’checksum’ is not used
to find equal pages to share; rather, it’s only an heuristic
to try to keep the unstable tree more stable and to avoid
wasting time with bad sharing candidates. Even if we
eliminate the checksum, the algorithm would still work.

If a page changes content frequently, besides risking
the generation of false negatives from the unstable tree
lookups, we’ll likely only waste CPU by sharing it, be-
cause a copy-on-write page fault will likely happen soon
enough, breaking the sharing.

12 When the unstable tree becomes unstable

We must avoid write protecting pages that aren’t shared
yet, or the whole virtual memory scanned by KSM
would be write protected most of the time, in turn lead-
ing to a flood of copy-on-write page faults. The sta-
ble tree only contains shared KSM pages, and we know
all pages inside it aren’t going to change content be-
cause they have to be write protected in the pagetables
and shadow pagetables in the first place in order to be
shared. So a lookup in the stable tree is fully reliable
and can’t return false negatives. It’s just like a lookup of
any other regular rbtree in the kernel, where the index
doesn’t change under the tree after the node is indexed



2009 Linux Symposium • 23

Figure 4: KSM Tree algorithm flowchart



24 • Increasing memory density by using KSM

into the tree. The problem is the lookup of the unsta-
ble tree because the unstable tree only contains regular
anonymous pages not shared yet, that can be still written
to by applications.

Because the rb_insert()/rb_erase() functions that bal-
ance the rbtree while inserting and deleting an element
from the tree are unaware of the index value, we’re guar-
anteed the rbtree will remain well-balanced regardless
of where we insert any new node in the tree. We are also
guaranteed that all insert, search, and delete operations
will not degrade in terms of computational complexity,
even after the unstable tree becomes really unstable.

An example of the unstable tree while it’s still stable
can be seen in Figure 5. If an application writes to a
page indexed in the unstable tree that had the first byte
set to 0x03 when it was inserted in the stable tree, and
it changes it to 0x07 afterwards, the unstable tree might
become unstable as in Figure 6 and lookups might start
to generate false negatives.

To avoid the instability and the resulting false negatives
to be permanent, KSM re-initializes the unstable tree
root node to an empty tree, at every KSM pass (i.e. af-
ter completing a full scan of all virtual areas registered
in KSM). This way, a new unstable tree is rebuilt from
scratch at every KSM pass and the false negatives won’t
be sticky.

To further decrease the probability of false negatives
from the unstable tree lookups, we could also remove
pages from the unstable tree if we find a dirty bit set
or the checksum being not uptodate anymore during the
tree walk, even though we’re not doing it in the current
implementation as it’d make the search in the unstable
tree slower than just a memcmp() for each level of the
tree.

Because all long-term important sharable pages are go-
ing in the stable tree over time, the stable tree guaran-
tees us that the important sharable pages are going to be
merged without any risk of false negatives, regardless of
any temporary instability of the unstable tree.

If all goes well and there are no false negatives, while
inserting an anonymous page in the unstable tree, KSM
will find a page with equal content already indexed in
the unstable tree, so KSM will merge them together, it
will create a new KSM page with equal content added
to the stable tree and remove the indexed anonymous

Figure 5: KSM unstable tree while still stable

Figure 6: KSM unstable tree gone unstable after appli-
cation write

page from the unstable tree, and finally will free both
anonymous pages.

13 Page merging

The procedure used for page merging involves two func-
tions: page_wrprotect() and replace_page(). The for-
mer write protects all pagetables mapping the page
passed as parameter (and sptes too through change_pte()
mmu notifier discussed below) method; the latter
merges two pages by updating the pagetables accord-
ingly (and sptes too through change_pte() mmu noti-
fier), and then by freeing the merged anonymous page
that no pagetable (or spte) maps anymore.

One final memcmp() is required after page_wrprotect()
returns to be sure both pages being compared cannot
change while memcmp() runs. Only if the final mem-
cmp() succeeds (returning zero) replace_page() is called
to merge the two pages.

If there is a match in the stable tree, the KSM page al-
ready in the stable tree is merged with the anonymous
page under scan.

If there is a match in the unstable tree, a new KSM page
is allocated and the content of one of the anonymous
pages is copied to it, and both anonymous pages are
merged with it.



2009 Linux Symposium • 25

Figure 7: rmap_item and tree_item relation

The merge path is a fairly slow path: if it would run
all the time, it would mean that all virtual addresses
scanned by KSM are sharable all the time which cer-
tainly isn’t the case most of the time. In the future we
could however optimize the unstable tree merge path to
transform an anonymous page into a KSM page in place
to avoid one page copy and to optimize away some mi-
nor pte/spte mangling for one of the two anonymous
pages being merged together.

14 KSM rmap_item and tree_item

A physical page is represented in the the stable and un-
stable trees by the tree_item structure. The tree_item is
a rmap structure that contains the head of a list that links
all virtual addresses that map each physical page. The
virtual addresses (the list elements) themself are repre-
sented by a rmap_item structure. Their relation is shown
in Figure 7.

So during the stable and unstable tree lookups KSM,
walks the tree_item list to find the virtual address (in
the rmap_item) to call get_user_pages and to obtain the
physical page address to run memcmp() against.

15 KSM rmap_item and tree_item out of sync
with the Linux VM

The reason get_user_pages() is called during the tree
walk is that we’re tracking virtual addresses instead of

page frame numbers in the tree_item. This is because
the tree_item and the rmap_item are maintained out of
sync with the Linux VM. This means that if an anony-
mous page is swapped out or unmapped, we’ll find out
only during the tree lookups or during the KSM scan on
the virtual areas registered. Whenever we find a virtual
address not mapped in the pagetables, we drop the re-
spective rmap_item and if that was the last rmap_item
in the tree_item linked list, we also drop the tree_item.

16 KSM rmap_item and tree_item in sync if
KSM would register its mmu notifier meth-
ods

We considered to change KSM to avoid the
get_user_pages() call during the tree walk by stor-
ing a pointer to the physical page directly in the
tree_item by using mmu notifiers that would notify us
whenever a rmap_item should be dropped. However,
in addition to making the code more complicated, that
would require global spinlocks that would serialize
the rbtrees lookups against mmu_notifier invalidate
methods, and it might lead to applications to scale
worse because every time a virtual area is unmapped
that global lock would be taken. We want KSM to run
in the background without affecting the regular runtime
of applications as much as possible. Furthermore,
replace_page() used by KSM to merge the pages
would then re-enter KSM again through a mmu notifier
invocation in replace_page() after it mangles the pte,
a case that would require some special handling and
perhaps rmap_item refcounting. Because keeping
the rmap_item and tree_item fully synchronized isn’t
required to efficiently find equal pages, we think it’s
simpler to maintain them out of sync, with the main
disadvantage of the tree walk requiring get_user_pages
calls, but we prefer KSM itself to be a bit slower in
merging memory and not to risk slowing down the
actual applications with global locks.

Strictly speaking for the unstable tree a per-mm unstable
tree protected by a per-mm lock would be feasible but
the stable tree spinlock would need to be global if we
want to share memory system-wide.

There are various implementations but likely the way
KSM will implement the rmap_item scan over the vmas
with the madvise API is to keep an list ordered by
address of rmap_item for each mm with vmas with
VM_MERGEABLE set, and to resync the rmap_item



26 • Increasing memory density by using KSM

list in a inner loop, with the outer loop being the vma-
>vm_next loop. Any rmap_item instantiated in a pre-
vious KSM pass but found not anymore in the range of
any VM_MERGEABLE vma will be dropped, and new
rmap_item will be created for each new virtual address
that has a pagetable pointing to an anonymous page in a
VM_MERGEABLE vma. This way the madvise syscall
will not have to call KSM, and it will only have to split
vmas if needed and set or clear the VM_MERGEABLE
flag in the virtual areas passed as parameter to madvise
MADV_MERGEABLE.

17 MMU notifier change_pte() method

When KSM merge pages, we don’t want to teardown all
secondary pagetables (e.g. the VT shadow pagetables
instantiated by KVM). To avoid that a new change_pte()
method is used by replace_page that will update all
sptes that pointed to the old anonymous page to point
to the location of the new KSM page.

If we used the invalidate_page() method instead of intro-
ducing a new change_pte() mmu notifier method, KSM
would have destroyed the sptes in turn requiring KSM
to take minor faults to recreate them later as the guest
returns to access those guest virtual addresses, by re-
reading the kernel pagetables.

Side note: due to some short term limitation right now
KVM will always trigger write faults as far as the Linux
VM is concerned even if the guest issued a read mem-
ory operation, so lack of change_pte() method would
have prevented the shared KSM pages to be mapped
by any shadow pagetable at all. This limitation in the
KVM page fault will however be addressed in the future,
but change_pte() will still remain an useful optimization
even then, by preventing KVM to vmexit to rebuild in-
validate sptes (even if the sptes in the future could be
rebuilt by KVM with readonly permissions without trig-
gering copy-on-write faults in the Linux VM if the guest
issued a read access on a KSM page).

change_pte() takes the Linux pte as parameter and it
makes sure the sptes are marked readonly if the pte
passed as parameter is readonly.

change_pte() is also used in the Linux VM write protect
page faults triggering on KSM pages as an optimization
to avoid tearing down sptes (do_wp_page()).

Not all MMU notifier users are required to implement
the new change_pte() method; if not implemented, it

will simply fallback to the invalidate_page() backwards
compatible behavior, which is safe but less efficient for
users like KVM. For the MMU notifier users that don’t
manage real secondary pagetables, but only a secondary
tlb (like GRU), implementing the change_pte() method
is unnecessary.

18 KSM not working on pages under GUP

It is interesting to note that page_wrprotect() has
to fail for any page that is temporarily pinned by
get_user_pages() users (to avoid generating I/O corrup-
tion on the drivers that accesses the pinned pages di-
rectly) and it will only function on drivers that uses
MMU notifier and that can unpin the pages immedi-
ately after get_user_pages() returns. So to allow KSM
to work on KVM guest physical memory, we had to re-
move the page pinning on the shadow pagetable map-
pings (in short that means calling put_page() imme-
diately after get_user_pages() returns, and entirely re-
laying on mmu notifiers methods to teardown shadow
pagetables before the corresponding virtual address is
teardown by the Linux VM, either because of VM pres-
sure or userland action).

All get_user_pages() pins shall be temporary; if not, the
pinned pages cannot be paged out by the VM in case
of memory pressure. So if the pins are temporary as
they’ve to be, KSM will simply be able to write protect
those pages (and then possibly to merge them) in one the
next KVM passes. Drivers that use the pages returned by
get_user_pages() in a persistent way like KVM must use
MMU notifiers and release the page pins to be transpar-
ent to the Linux VM and in turn to allow KSM to merge
pages on those memory regions too.

19 KSM multi threading

In the future it will be possible to add more than one
KSM kernel thread by adding a read-write mutex or
spinlock that protects each tree. Starting more than one
KSM kernel thread will be helpful if somebody wants to
dedicate more than 100% of one CPU core at merging
pages.

20 KSM swapping

KSM pages cannot be swapped at this time; KSM pages
are effectively nonlinear entities mapped in the middle



2009 Linux Symposium • 27

of linear anonymous vmas and the Linux VM swap logic
cannot cope with them at this point in time.

Because KSM to function requires its own internal rmap
logic and because we surely don’t want to hurt the Linux
Kernel VM memory footprint when KSM is not en-
abled, likely an external rmap functionality shall be im-
plemented to allow the Linux VM to call into KSM to
unmap all pagetables mapping the shared KSM pages.
The swapin path will also require some change because
the anonymous fault won’t be suitable for swapping-in
KSM pages if they’ve been swapped-out, similarly to
how tmpfs swaps out the tmpfs shared pages.

21 Reduce memcmp() length in tree lookup
maintaining rbtree cumulative info

It should be possible to add to the tree_item some rb-
tree related metadata information on the status of the
left and right nodes. This metadata information can tell
the tree lookup function the offset of the first byte that
differs between the current node physical page, and the
two physical pages in the right and left nodes. That will
require adding a callback to rb_insert() and rb_erase()
called with proper information during each tree balanc-
ing rotation of the nodes, so that this metadata can be
recalculated at every rebalance of the tree. With this in-
formation, we should be able to significantly reduce the
cumulative amount of memory compared by the mem-
cmp() function during a worst case of tree lookup.

If rb_insert() and rb_erase() will be extended like
above, the rebalancing callback could also be used by
get_unmapped_area() to allow it to work in O(log(N))
instead of the current O(N) (where N is the number of
vmas in the mm_struct).

22 KSM benchmark

We run all test cases using a Linux 2.6.30-rc6 kernel,
with a fairly recent KVM external module and the KSM
patchset posted on the Linux Kernel Mailing List on 20
April 2009 with Message-ID: 1240191366-10029-1-git-
send-email-ieidus@redhat.com (which still uses the old
ioctl API and not madvise yet). To merge memory at
the fastest possible peace, KSM clearly has been tuned
so that the single threaded kksmd kernel thread runs at
100% CPU load (sleep = 0, pages_to_scan = 1000000).
The hardware used is on a common and cheap Intel

Q9300 Core 2 Quad at 2.50GHz with 4 GigaByte of
800mhz DDR2 memory.

We intend to measure here the max speed of KSM in
merging pages under best, worst and real life cases. The
number of MegaBytes per sec of memory merged by
KSM when KSM runs at full CPU utilization is a rel-
evant parameter to measure, because it shows how fast
KSM is at merging pages. In real life environments it’s
unlikely KSM will be tuned to run at full CPU utiliza-
tion (with the exception of very large servers with many
CPUs and several dozen GigaBytes of RAM), but the
fastest KSM is at merging pages at full CPU utiliza-
tion, the lower CPU KSM will take when tuned for real
life environments. We could have statistically measured
the average CPU utilization instead, but measuring the
amount of RAM merged per second and maxing out the
CPU utilization allows for a much more reliable mea-
surement of the efficiency of the algorithm under dif-
ferent workloads. The forth column of the output from
’vmstat 1’ will be used to monitor the progress KSM
does in merging memory.

The worst case for KSM that should practically never
materialize in practice (unless of course malicious users
can run their own malicious applications) can be exer-
cised with an application that allocates one gigabyte of
memory and that makes all pages equal except for the
last 4 bytes of each page. The first copy of this appli-
cation called ksmpages will fully populate the unstable
tree. Running a second copy will merge all pages in the
unstable tree and it will create equal amounts of KSM
shared pages in the stable tree and free one gigabyte of
memory in the process. The stable and unstable trees
generated will have many levels and the memcmp() will
not break before at least 4092 bytes have been read for
each level of the tree.

The best case for KSM can be exercised with an appli-
cation that allocates one gigabyte of memory and initial-
izes all pages to the same value. KSM when started will
quickly free one gigabyte of memory minus one KSM
page that will be the only one indexed in the stable tree.
The unstable tree will not be empty only before the very
first merge. A single memcmp() and a single level of the
stable tree has to be walked in order to merge the pages.

The real life case for KSM can be measured by running
two copies of a popular proprietary guest OS in KVM
with 1G of memory each, wait both of the to finish boot-
ing, and finally start KSM and see how fast the memory



28 • Increasing memory density by using KSM

Figure 8: KSM benchmark

is merged (i.e. freed). Then we stop the kksmd thread,
we start a third VM of the same OS, and we start kksmd
again.

23 Conclusions

Considering that even the worst possible malicious case
on one of the cheapest workstation hardware configu-
rations with very cheap motherboard and northbridge,
definitely makes progress at 10.62 MegaBytes merged
per second (note that the only side effect of malicious
behavior is an higher CPU utilization), that the fixed
cost of the virtual address scanning and page merg-
ing is CPU bounded at 269.05 MegaBytes per second,
and that the real life KVM case merges pages at 80.70
MegaBytes per second, we’re comfortable this algo-
rithm (even without the future possible further optimiza-
tions) in the background will be able to merge pages effi-
ciently in virtualization and scientific environments and
in embedded systems as well.

24 References

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, Chapter 13—Red-Black
Trees Introduction to Algorithms, Second Edition. The
MIT Press, September, 2001.

Vincenzo Innocente, Summary of the evaluation of
KSM for sharing memory in a multiprocess
environment, https://twiki.cern.ch/
twiki/bin/view/LCG/EvaluationKSM0409,
20 May 2009.

Izik Eidus, KSM version used for benchmark,
http://kerneltrap.org/mailarchive/
linux-kvm/2009/4/20/5521504, 20 April
2009.

Andrea Arcangeli, ksmpages.c source and some
benchmark,
http://kerneltrap.org/mailarchive/
linux-kvm/2009/3/31/5349904, 31 March
2009.



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


