
Porting to Linux the Right Way
Migrating data between kernel and user space

Neil Horman
Red Hat

nhorman@redhat.com

Abstract

Linux has grown to be a major development platform
over the last decade, often becoming the primary target
for many new applications and appliances. Of course,
businesses always wanting to stay current; the rate at
which software has been ported to Linux has also gone
on the rise. Often this is a trivial matter, especially in
environments in which the development model is sim-
ilar (AIX to Linux, Solaris to Linux, even Windows to
Linux). However, there are environments (particularly
in the embedded space) in which porting often becomes
difficult. A stronger coupling of application and driver,
coupled with a “just get it working fast” mentality, in-
variably leads to substandard porting efforts which re-
sult in products with degraded performance that leave
developers and consumers alike with a bad taste in their
mouths. This paper seeks to ease some of that porting
effort by focusing on what has been one of the most of-
ten mis-ported areas of code: the user space / kernel
space boundary, specifically the movement of data be-
tween these domains. This paper will discuss in gen-
eral terms: the common monolithic application model
most often associated with embedded systems develop-
ment; its refactoring when porting to Linux; the model-
ing and description of data that must be passed between
the refactored components when porting to Linux; and
the selection of an appropriate mechanism for moving
that data back and forth between user and kernel space.
In so doing, the reader will be exposed to several mech-
anisms which can be leveraged to achieve a superiorly
ported software product that provides both a better cus-
tomer experience and a greater confidence in Linux as a
future development platform.

1 Introduction

Linux has seen an almost meteoric rise in popularity
over the past several years. Rather by definition, this

increase in popularity has drawn developers to consider
Linux as a target platform in many market segments,
from servers to appliances, to small embedded solutions.
Of course, along with the interest in new development
on Linux comes the desire to bring older software to
Linux, in an effort to leverage already existing products
in potential new market spaces at reduced costs. This
paper focuses on some of the pitfalls that befall devel-
opers seeking to port applications to Linux from alterna-
tive operating systems. In particular, it seeks to address
the difficulties faced by embedded developers seeking to
formalize the user space / kernel space split in applica-
tions which formerly were more tightly coupled in that
respect. It seeks to do this by providing an overview
of how the user / kernel space boundary is defined, and
how to move data safely and efficiently between the two
domains.

2 Defining the user / kernel space boundary

Prior to discussing the mintuae of moving data back and
forth across the user / kernel space boundary, it is useful
to better understand what the user / kernel space bound-
ary is. Nominally, when discussing this particular sepa-
ration, many people encounter this high level diagram:

User Space

Kernel Space

Figure 1: The most seen & worst overview of user /
kernel separation

This is the sort of visual aid that is understood best
by people who already understand how this separation

• 131 •



132 • Porting to Linux the Right Way

works, and consequently have no need for a visual aid.
For everyone else, however, this is a rather lackluster
description of how the two execution domains are sep-
arated. The separation of user and kernel space can be
best described as having the following characteristics:

• A separation of accessible address spaces, except
where granted by appropriate system calls.

• A mechanism which allows access to the func-
tionality of kernel space code, preferably without
granting the user space context direct access to the
memory holding the code for that functionality.

Different architectures provide various mechanisms for
enforcing the above points to various degrees, but the
end result remains the same: the user / kernel space
boundary enforces the isolation of an application from
operating system services, forcing applications to make
use of those services only in the ways defined by the
operating system. This provides both stability and con-
sistency of use.

3 Mapping strongly coupled applications to
user / kernel space

Often, especially in the embedded space, the operating
system is treated as a convenience library, rather than a
environment to target. The application is paramount, en-
joying complete or near complete control over the sys-
tem’s resources. In such designs, the software architec-
ture can often be characterized as such:

return

call

return

call

return

call

return

call

Application Code

Hardware Access Code

Figure 2: A common design approach to a tightly cou-
pled embedded application

Strongly coupled applications, to whatever degree
they manage to separate true application code from
hardware-specific access code, interface the two with an

API that can be difficult to separate. The API is often
characterized by some of the following aspects:

• Customized for use by an application;

• Assumes shared memory space with application;

• Assumes common system behavioral characteris-
tics on both sides of the API.

While some designs attempt to adhere to some level of
compliance to a standard API, many do not, and the re-
sulting temptation to speed the design cycle by taking
various shortcuts invariably leads to porting difficulties
when an operating system more strictly enforces the use
of a pre-defined API. This leads to the inevitable ques-
tion: How does one convert a system with application
code and hardware access code that is tightly coupled
into a system that is capable of operating in separate
memory contexts using an enforced set of access meth-
ods? The answer is less difficult than many think. Gen-
erally speaking, one can accomplish this goal by:

1. Selecting/creating an API to use as a user / kernel
shuttle;

2. Modeling the data that needs to cross that bound-
ary;

3. Selecting the appropriate kernel APIs to implement
that transport.

Note this will not provide the most efficient interface
possible, but it will provide the most stable interface
possible for the system being ported, which is really the
goal here. With the time saved on avoidance of future
bugs, one can focus on efficiency improvements later
on.

3.1 Selecting/creating an API to use as a user / ker-
nel shuttle

The first step in adapting an application from an strongly
coupled environment is to select a good location within
the system to segment it. There are many factors which
can affect this decision, and will vary largely depen-
dent on the system in question. Systems which honor
their defined APIs will be more conducive to separation



2009 Linux Symposium • 133

than those which do not. “Thinner” APIs will make for
quicker work than those with larger sets of functions.
There are many facets to selecting an appropriate API
for splitting an application during a porting effort, but
the items below should be focused on first and foremost:

1. Cleanliness. Above all else, a candidate API
should provide a boundary through which data can
pass only in narrowly defined channels, and at ap-
proved times. APIs which provide or use informa-
tion that exists external to the API implementation
should not be considered unless such uses may be
corrected. For instance, the use of a global variable
or resource within an API’s implementation is bad,
simply because external access to such a variable
will no longer be possible from outside the API af-
ter the port.

2. Complexity. The simpler an API is, the better, as
migrating its implementation to one which exists
across memory domains will become much easier.
APIs which embody a significant amount of state-
ful information are difficult to manage, as that state
may potentially need to be tracked, replicated, and
kept in sync in both kernel and user space. Con-
versely, APIs which are simple, pass less data, and
have fewer return codes will make for an easier
split.

3. Functional Requirements. Be careful to closely
examine an API’s implementation when select-
ing it for use as the point where an application
is separated from its hardware-dependent compo-
nents. Sections within an API (and its dependen-
cies) may require behaviors or resources that may
not be available in either kernel or user space with-
out additional work. Selecting an API that leaves
a bit of code in the application that blocks while
waiting for an interrupt to fire will require ad-
ditional retrofitting to function properly after the
port. Likewise, consider an API implementation
which creates a thread that spins, polling for data.
Moving it into kernel space will result in horrible
inefficiencies resulting from differing scheduling
behavior down in the kernel under various condi-
tions.

4. Size. The more functions an API implements, the
more difficult it will be to port. Quite simply, there
is a quanta of work to be done for each function

call implemented in an API; therefore there is a
corresponding increase in the porting effort when
a larger API is selected for this split. Hence, while
not always possible, “thinner” APIs typically result
in easier porting efforts.

5. Volume. Keep in mind how heavily a given API
is used by an application, and under what circum-
stances. APIs containing very few and simple func-
tion calls are tempting to select as a candidates for
a split point, but if the application must call func-
tions in this API thousands of times to complete
a given task, there will be a performance impact.
Bear in mind that transitions between user and ker-
nel space have a cost in terms of pipeline flushes,
TLB and L2 cache flushes, etc. (which varies from
architecture to architecture). The number of times
you need to make that transition will have a signif-
icant impact on your system’s performance.

While clearly one will have to make compromises when
selecting a point at which to separate a software sys-
tem, the above are the most important aspects to keep in
mind. Neglecting any one of these aspects, while per-
haps further minimizing your time to complete a port,
will result in a system with stability and performance
which will be at best an approximation of the original
system on the original OS.

3.2 Modeling data transfers across the user / kernel
space boundary

Having selected a point at which to segment the soft-
ware system into a user space component and kernel
space component, a developer must now re-implement
the internals of that API such that data is transparently
sent from user space to kernel space and back at appro-
priate times, and with previously provided guarantees
on the data’s integrity, format, etc. In most use cases,
understanding the data transfers profile is fairly straight-
forward, but modeling data transfers in some cases can
be non-obvious. All data transfers can be described in
three aspects: Timing, Quantization, and Access.

3.2.1 Timing

The timing of a data transfer here refers to when data
transferred across an API is acted upon by either a user
of the data or the implementation of the API.



134 • Porting to Linux the Right Way

1. Asynchronous application to driver. These are
message-based transactions. Data is accumulated
into a discrete bundle of arbitrary size and passed
to the driver. The return code to the submission
of this transaction typically provides status of the
submission effort, but not the result of the action
which the data submitted embodies. Any action
which the driver may take on the submitted data
is deferred to an arbitrary later time, and results of
those operations may or may not reported back to
the application via a separate data transfer.

2. Asynchronous driver to application. These are
the inverse of the the previous transfers. They send
similarly formatted messages, only in the reverse
direction. Messages generated by the driver code
are queued for reception by the application through
various APIs. It is interesting to note that the vari-
ous APIs available for these transactions have var-
ious restrictions which do not exist in their coun-
terparts. Those limitations will be noted in the
next section. Such transactions may be driven by
the previous transaction type, or may be gener-
ated independently by any number of conditions or
events.

3. Synchronous. These are transfers which are, as
the name implies, synchronous. Data passed via
this profile is handed to the driver, operated on, and
released at the conclusion of the API call. Return
codes typically embody the result of whatever op-
erations the driver performed on the passed data.

3.2.2 Quantization

The quantization of a data transfer refers to how the
data is viewed by the API user or the API implementa-
tion. Some APIs handle data transfers as distinct units,
atomic in their transfers, while others treat data as an ar-
bitrarily sized sequence of bytes, re-segmenting the data
in whatever manner is convenient.

1. Stream data. Stream data is unbounded. While it
may contain a begin, end or other control marker,
it does not normally distinguish data record bound-
aries. A transfer of data may contain an arbitrary
number of bytes; users of the API or the implemen-
tation are not guaranteed to receive any particular

amount of data during any typical transfer. Nom-
inally, however, stream-type data is guaranteed to
maintain its order (all bytes transferred in a stream
are handled in the same order they are sent).

2. Packet data. Packet data is bounded and quan-
tized. While the size may not remain constant from
one API call to the next, packet-style data is always
treated as an atomic unit. Packet data may or may
not guarantee ordering of data.

3.2.3 Access

Access describes how an API makes data transfers avail-
able to either its implementation or its users. These
methods are well known and well understood by all de-
velopers, but it is useful to provide a reference here so
that the different methods are kept in mind when model-
ing your data transfers and selecting an API to use dur-
ing your porting effort.

1. Value. Data is passed into the API and a copy is
made for use internal to the API. Changes to the
data made internal to the API are not visible to the
user of the API.

2. Reference. Data itself is not passed into the API
directly, but rather by a memory reference to the
data’s location. The user of the API and its imple-
mentation share access to the data and may need to
co-ordinate that access to avoid corruption.

Using these three aspects in all their combinations, it
is possible to completely model how data is moved be-
tween a user of API and its implementation. Once that
is determined, the task of selecting an pre-defined kernel
interface API to act as a transport for splitting a legacy
software project into kernel and user space segments be-
comes much easier.

3.3 Selecting the appropriate kernel APIs for data
transport

Now that we have described how data can be passed
through APIs in general terms, we can describe the vari-
ous available kernel interface in those same terms so that
we can select an appropriate interface to better adapt to
our existing model to optimize our porting effort. There



2009 Linux Symposium • 135

are several kernel interfaces to choose from, each of
which offers a different set of data transfer character-
istics. Each kernel interface is documented here. There
are only three major interfaces from kernel space to user
space: the character driver interface, the socket inter-
face, and the signal interface. Each provides an API that
allows a developer to implement various different data
transfer models. Note that there are other APIs which
allow for various types of data transfer (the file system
interface, the block driver interface, etc.); however, the
three aforementioned interfaces cover completely the
types of data transfer listed in Section 3.2. While the
other interfaces provide excellent mechanisms to design
various types of systems, the above listed interfaces pro-
vide generic data transfer resources that allow for any
application to be relatively easily split between user and
kernel space.

3.3.1 Character Driver Interface

The character driver interface is seemly the de-facto in-
terface that developers select—a transport API when
segmenting a monolithic application during a porting ef-
fort. It offers several data transfer models, and as such
is reasonably flexible, is fairly well understood when
coming from other operating environments, and is fairly
easy to implement. The user space API consists of the
following elements:

1. open
int open(const char *pathname, int flags)
This is the well known and understood call to es-
tablish access to a filesystem object. Nominally,
this call is used to open a regular file. However,
under the Linux design model, this function can
also be used to obtain access to a device through
a device special file (created with the mknod util-
ity or through the udev system). Special device
files contain a major and minor number, which are
used to resolve which device driver will handle op-
erations issued to the device. Open accepts a path
(nominally for the porting purposes here) to a de-
vice special file, and a set of flags which define var-
ious characteristics of the communication to the de-
vice (read/write permissions, auto close properties,
etc.). It returns a descriptor to the opening process;
this descriptor is used in later calls below.

2. read
ssize_t read(int fd, void *buf, size_t count)
The read call provides a synchronous, stream-
oriented byte sequence passed by value to the
user. Kernel modules that implement the charac-
ter driver interface are notified immediately when
a user space process issues a read request, and is
required to return either an error code, or a data
buffer (which will be copied into the process con-
text) of a size equal to or less than the size passed
in during the request.

3. write
ssize_t write(int fd, const void *buf, size_t
count)
The write call provides the converse operation
of the read call. It similarly provides an syn-
chronous interface for passing stream-oriented byte
sequences by value. The difference of course is that
write calls allow a user process to pass data from a
process to a kernel module. Unlike read, however,
a return code is the only thing returned to the user.
The conditions for success or failure in this call are
dependent on the kernel module implementing the
driver the data is passed to, as it what is done with
the data when it arrives at the driver.

4. ioctl
int ioctl(int d, int request, ...)
Ioctl is the Swiss army knife of the character
driver interface. It allows an arbitrary-length list
of data items to be passed by value down to the
driver associated with the descriptor passed in as
the first argument. The flexibility and open format
in the amount of data that can be transferred in this
API call makes this a very attractive interface to
implement the segmentation of application during
porting, but it should in fact be used sparingly. Be-
cause the remaining arguments on the function are
variable, only weak or non-existent type checking
abilities ensue; the only way to properly interpret
the arguments is via the request argument, which
shares name space with every other driver layer be-
tween the application and the driver itself. While
this call can be very useful, it can also introduce
subtle and difficult to detect errors, and as such
should be used carefully.

5. mmap
void *mmap(void *start, size_t length, int prot,
int flags, inf fd, off_t offset)



136 • Porting to Linux the Right Way

The mmap call is far more useful than developers
normally give it credit for. The mmap call allows
a user-space process to specify an address space
‘hint’ along with an open file descriptor and off-
set from that descriptor. In response, the object
associated with that descriptor will map the speci-
fied length of data into the requested address range.
This allows the mmap call to be categorized as
an asynchronous kernel-to-user-space data trans-
fer, passing packet data by reference. This call is
nominally associated with regular files, in which
the files contained data is mapped into process ad-
dress space, allowing for direct access. What is
not nominally recognized, however, is that mmap
can be used equally well for any arbitrary device.
The offset argument is passed directly to a driver,
and used as an arbitrary handle, in which the driver
passes back whatever data is required. For exam-
ple, a character driver can be implemented to pass
a stream of handles to a process via the read call,
which can then be used in a sequence of mmap
calls to access other out-of-band data. This pro-
vides a more efficient transfer mechanism for large
volumes of data by only passing handles by value
(which are much smaller than the requisite data
they reference).

6. munmap
int munmap(void *start, sizei_t length)
This is of course the inverse of the previous call.
It allows a block of data previously passed by ref-
erence to be released by an application. The mem-
ory referenced becomes inaccessible to the process,
and the driver is informed of the release operation
so that any needed clean up can be performed.

7. close
int close(int fd)
This ends a connection to a device driver/kernel
module, and provides the driver the opportunity to
clean up any remaining resources associated with
that process connection.

The kernel space API consists of a registration and
de-registration function, and several ancillary functions
which map one-to-one to the user space API, each called
directly in response to a user space call of the same type:

1. register_chrdev
int register_chrdev(unsigned int major, const

char *name, const struct file_operations *fops)
This is the major kernel hook which allows you to
register a special character device file to the ker-
nel. The major parameter allows you to specify
a major value that is matched against any special
character mode device file opened in user space.
A file opened containing a matching major num-
ber will be directed to this module via the function
pointers passed in to the registration routine via the
file_operations structure.

2. unregister_chrdev
void unregister_chrdev(unsigned int major,
const char *name)
This is of course the converse of the above func-
tion. It allows kernel code to disconnect an associ-
ation between a driver module and a major device
number.

3.3.2 Socket Interface

The socket interface is far less often considered for use
as an API with which to shuttle data between kernel
and user space, but it should be. Highly flexible, and
fairly well understood from an application standpoint,
the socket API allows a developer to move data between
user and kernel space in a variety of ways and formats,
using both custom built protocols, and (perhaps more
notably) using already existing protocols. While not of-
ten suggested, the infrastructure to create and manage
sockets with the kernel has been in place for some time,
making it possible to write a kernel module which can
simply open a TCP, UDP, or other protocol socket, and
accept incoming data from user space by sending to the
opened port via the localhost address. Likewise, the
Netlink protocol family has existed for some time (ar-
guably in relative obscurity), for the sole purpose of con-
necting user space processes with kernel space services.
Netlink also provides the added capability of dynamic
sub-protocol registration (via the generic Netlink infras-
tructure), which allows for dynamic service discovery,
making porting efforts even easier.

The API for working with sockets in user space is very
mature and well known. While this list is not exhaustive,
it enumerates the core functionality of the API:

1. socket
int socket(int domain, int type, int protocol)



2009 Linux Symposium • 137

The socket call, like the open call, allocates a
communication channel to a peer. Depending on
the use of the subsequent calls, the peer could be
a remote host, another process on the local host,
or a service in the kernel. The domain argument
specifies the address family (which specifies the
format in which the peer to which you will con-
nect is addressed). The type generally specifies
whether the connection to the peer will be pass-
ing stream-oriented data or packet-oriented data,
and the protocol specifies the transport layer pro-
tocol that the connection will use. While it is pos-
sible to create your own protocol (which this call
can then provide access to user space to), given
that the effort here is to simply migrate data be-
tween user and kernel space, it is far more efficient
to simply use IPv4 (The AF_INET family), IPv6
(the AF_INET6 family), or the netlink protocol
(AF_NETLINK). Any one of these protocols will
allow a user-space application to take full advan-
tage of all the features of this API for the purpose
of data transfer to kernel space.

The socket call either returns a negative error mes-
sage, or a positive value that represents a handle to
use in subsequent socket API calls.

2. bind
int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen)
The bind call operation is somewhat specific to
the address family, type, and protocol specified in
the socket call. Generally speaking, the bind
call associates a socket with an input filter. The
format of the filter is specific to the protocol se-
lected. For example, the AF_INET family allows
you to bind your socket to an input address and
port, so that you will only receive frames on a cer-
tain interface. AF_NETLINK, in contrast, allows
you to specify a bitmask of multicast groups that
you might receive frames on, in addition to mes-
sages directed at your specific process ID. This fil-
ter is passed in via the addr pointer.

3. connect
int connect(int sockfd, const struct sockaddr
*serv_addr, socklen_t addrlen)
The connect call associates a socket with a peer
address. Like bind associates a socket with a lo-
cal endpoint, connect establishes the peer that
the socket communicates with. This operation is

specific to the address family and protocol which
were specified in the call to socket above. Some
protocols, like TCP, communicate with the remote
endpoint to establish a connection, while others
simply record the address of the remote endpoint.

4. send/sendmsg/sendto
ssize_t send(int s, const void *buf, size_t len, int
flags)
ssize_t sendto(int s, const void *buf, size_t len,
int flags, const struct sockaddr *to, socklen_t
tolen)
ssize_t sendmsg(int s, const struct msghdr *msg,
int flags)
These functions provide various methods for the
asynchronous transfer of data from user space to
kernel space, passed by value, in either a stream-
or packet-oriented format. There are three variants
of the send routine, as different connections find
different implementations more useful than others.
Note that the send routine omits a remote address,
which means the remote peer was specified with a
prior call to connect. Conversely, the sendto
operation allows for data to be sent on an uncon-
nected socket, with each call specifying the recipi-
ent address (allowing one socket to communicate
with multiple peers). Sendmsg is a variant of
sendto, but uses a msghdr structure, which al-
lows for a series of non-contiguous data pointers to
be sent at once. Interestingly, all three calls may be
used to send either packet data or stream data. The
ability to re-segment data to split or merge data as it
was sent from user space is encoded in the specific
protocol as selected in the socket call.

5. recv/recvmsg/recvfrom
ssize_t recv(int s, void *buf, size_t len, int flags)
ssize_t recvfrom(int s, void *buf, sizei_t len,
int flags, struct sockaddr *from, socklen_t
*fromlen)
ssize_t recvmsg(int s, struct msghdr *msg, int
flags)
These functions are the counterparts of the above
send routines. They allow an application to poll
a socket to see if any data is available from the
peer(s) which the socket might be communicating
with. Data transfer is asynchronous with its ar-
rival at the protocol implementation in the kernel,
is passed by value, and can be either stream- or
packet-oriented. Overall, the operation is identical



138 • Porting to Linux the Right Way

to the send counterparts.

6. setsockopt/getsockopt int getsockopt(int s, int
level, int optname, void *optval, socklen_t
*optlen);
int setsockopt(int s, int level, int optname, const
void *optval, socklen_t optlen);

These two calls allow for a user application to fine
tune the operation of the selected communication
protocol. As noted a socket can have behavior
tuned at various levels (generic socket, protocol-
specific, transport-specific, etc). If you are writing
a custom protocol, these settings can adjust any-
thing the developer would like (the level param-
eter name-space is global, but by defining a new
level, the optname parameter becomes unique, so
any number of options may be defined, unlike the
ioctl call). Any amount of data may be passed
by value via the optval pointer, but its interface
is limited and inefficient.

7. close int close(int fd)
Like the close call in the character driver, this
call simply disconnects the descriptor in the user
space application from its peer.

The kernel interface operates much like the character de-
vice kernel interface, with some enhanced abilities for
fine tuning. There are two main registration and dereg-
istration functions which allow one to add both an ad-
dress family and a protocol, allowing for a larger set of
communication methods. Nominally, however, the use
of sockets as a data transfer mechanism doesn’t require
the creation of a new protocol. Developers looking to
port applications to Linux and split their software into
a kernel and a user space component are highly encour-
aged, for the sake of simplicity, to simply utilize an ex-
iting protocol for communication, such as UDP, TCP, or
netlink.

3.3.3 Signal Interface

The signal interface rounds out our kernel / user space
data transfer methods. The signal interface provides a
data transfer model that provides one thing that the other
interfaces do not. The other interfaces may provide data
asynchronously or synchronously, but all require polling

to retrieve that data (via the read or recvmsg fam-
ily of calls). The signal interface provides true asyn-
chronous data delivery, requiring no additional action
to receive data beyond registering a reception function.
Also, the signal interface is normally not used alone, but
rather in conjunction with one of the other interfaces to
provide a complete data transfer system when splitting a
legacy application between user space and kernel space.

The signal interface is enumerated below:

1. signal/sigaction
sighandler_t signal(int signum, sighandler_t
handler)
int sigaction(int signum, const struct sigaction
*act, struct sigaction *oldact)
The sigaction and signal calls both asso-
ciate a signal value with an action, as defined by
the handler pointer. The handler pointer contains
a function pointer which is defined within the ap-
plication, which is called each time a signal is de-
livered to the application process. The two calls
are effectively identical; the sigaction call sim-
ply provides a few more options for fine-tuning
signal delivery behavior. The signum parameter
enumerates the signal value with which the action
is associated. Some signal values are predefined
(SIGINT, SIGSTOP, SIGKILL, etc.), and may have
actions which are pre-defined. Other signals are
generic and can have actions which are specific to
the application being run (SIGUSR, etc.). Some
signals have at-most-once semantics (multiple sig-
nal deliveries result in only one call to the action
handler between certain delimiting events. Others
ranges can queue their events creating a call-per-
event model.

2. sigpending
int sigpending(sigset_t *set)
This call allows a user to determine which sig-
nals may be pending for delivery to the application.
During periods when the application may block the
delivery of signals, this calls provides a window
to see what the application may be missing, so to
speak.

3. sigsuspend
int sigsuspend(const sigset_t *mask)
The sigsuspend call provides an interface for
the user-space application to temporarily block sig-
nals from being delivered.



2009 Linux Symposium • 139

4. kill
int kill(pid_t pid, int sig) This call completes the
signal API. It allows a user-space process to deliver
a signal to another process, as identified by the pid
parameter. The kernel also contains a variant of this
call which allows kernel code communicate via the
signal API to an application.

4 Conclusions

Legacy applications offer a mature stable code base
which should not be discarded lightly. Most, if not all,
applications can be ported to Linux with a minimum of
effort, if proper care is taken to both segment the ap-
plication properly to a kernel and a user space compo-
nent and appropriate APIs are used to efficiently and
correctly transfer data between the two.



140 • Porting to Linux the Right Way



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


