
GeoDNS—Geographically-aware, protocol-agnostic load balancing at
the DNS level

John Hawley
Linux Foundation / Kernel.org
warthog9@eaglescrag.net

Abstract

The Open Source community has grown from a series
of small projects hosted from anywhere that was con-
venient, to a globally distributed set of mirrors provid-
ing content to every region of the planet. While there
has been an outpouring of support in providing mirrors
to every possible facet of the Open Source community
by independent entities, a problem has arisen in how to
efficiently load-balance across this global infrastructure,
not only for the benefit of the mirrors, but for the users as
well. There are a multitude of solutions currently avail-
able to try and cope with the issues of load-balancing
including physical load-balancers like squid, protocol-
specific redirection like mod_geoip in Apache, and full-
scale commercial content distribution like Akamai. For
most situations, the commercial solutions are far out-
side of reach and may necessitate the removal of exist-
ing infrastructure. Things like squid require, for prac-
ticality, all of the machines to be in a single location
or for a single location to provide the sum total of the
bandwidth available. Lastly, the protocol-specific solu-
tions like mod_geoip work well for their own protocol,
but leave other services like rsync, ftp, git, and svn to
fend for themselves—assuming that the protocol even
supports redirection. Most do not.

GeoDNS is the idea of taking an incoming DNS request,
doing the geographic look-up at the request time, and
returning different results based on the incoming IP ad-
dress. This particular approach, taken by several DNS
servers including bind-geodns, powerdns, and tinydns
(with patches), allows geographically diverse mirror-
ing infrastructures like Kernel.org, Wikipedia, and
many other sites to direct users seamlessly to an ap-
propriate server. This helps distribute the system loads
across the entirety of their mirroring infrastructure. This
protocol-agnostic approach is more universal and sim-
pler for end users to handle by making seemingly hard
choices transparent to them.

1 Internet—20th Century tech solving 21st
Century problems

The Internet has existed for four decades. It has evolved,
grown, changed, and adapted from its humble begin-
nings as Arpanet to what it looks like today, with
TCP/IP, IPv4, and IPv6. Though it has changed rad-
ically from where it started, the Internet’s fundamen-
tal building blocks, TCP/IP and DNS, have changed
very little and they continue to serve the Internet well.
Though while they are the bedrock of the Internet, and
are serving the needs of billions, small changes can be
made to them to greatly extend their usefulness and con-
tinue to serve the Internet for several more decades.

1.1 International Growth

The Internet started as a small research project out of
the Advanced Research Projects Agency (ARPA) of
the United States Department of Defense. It initially
spanned two nodes on the California Seaboard, and has
grown to include on the order of 1.596 billion users1

worldwide. The United States boasted, for a number
of years after the inception of the Internet, the largest
amount of capacity to host sites and projects connected
to the Internet. This meant that a great deal of the con-
tent of the Internet was accessed by going to a single
point, likely in the US, where the servers would be the
best connected and provide the most good to all.

However, this single-point-of-connectivity model was
unsustainable with the amount of growth outside of the
United States. This growth far outstripped the capacity
of intercontinental links, including satellite relays and
undersea cables, as well as having significant cost and
performance considerations. A growing pressure exter-
nally from a growing Internet population drove the need

1http://www.internetworldstats.com/stats.
htm

• 123 •



124 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

for content to move from a centralized single provider
to a more distributed localized content distribution, with
mirrors of data forming all over the world and content
distribution companies such as Akamai2 stepping up to
help fill this demand.

1.2 Mirrors, Mirrors everywhere, but not a drop to
drink

As with many solutions to a problem, you may solve
what is immediately needed, but it in turn creates a new
problem that needs to be solved. This new-found infras-
tructure for mirroring and content distribution provided
one such situation. Originally the Internet was intended
to provide a good means of dealing with content as it
existed in its centralized locations. When you went in
search of content based on a URL, it was expected that
the look-up would only involve a single unique system,
whether this was a individual server or a group of them
within close proximity to each other, providing the con-
tent. However with both the explosion of the Internet
and the subsequent need for mirrors to become more lo-
calized to the users seeking the data, the need for chang-
ing this philosophy became apparent.

A simple approach initially was, and predominantly still
is, employed by providing a user with a listing of the
mirrors available, usually grouped by the server’s coun-
try of origin. While this works, it makes the user inter-
faces difficult and requires that the user make an edu-
cated guess as to which mirror is likely closest to them
and will provide the fastest service. These decisions can
be quite difficult; it has been found for many Canadian
users that it is faster to go to a mirror based in the United
States as opposed to a Canadian one due to the existing
backbone and routing infrastructure present in much of
Canada.

Additionally, load-balancers are available to help act as
a director to content. Typically, however, load-balancers
act as a man in the middle (so to speak), providing a sin-
gle point of entry and exit for a cluster of machines. This
cluster typically resides in a single geographic location,
and the load-balancer itself is a limiting factor in how
much content can be distributed from these machines, as
the load-balancer acts as a bottleneck to the cluster. This
works particularly well for single sites, but it does not
work when the machines that need to be load-balanced

2http://www.akami.com

are geographically disjoint, though this provides high-
availability with its load-balancing.

To help both high-availability and physically disjoint
systems, things like round-robining in DNS can be used.
This helps—in particular this alleviates a need for a user
to make an explicit choice in server; however, it has a
downside in that it is highly dependent on the imple-
mentation of the DNS look-up engine at the client. This
dependency, unfortunately, is known to have some seri-
ous flaws in certain implementations—in extreme cases,
even going so far as to sort the list of returned IP ad-
dresses in numeric order and to always use the lowest
numerical address, instead of randomly cycling the list.
Despite these issues and dependencies, there are a num-
ber of implementations that do the correct procedure and
this particular approach does indeed help with load dis-
tribution.

With the issues inherent in round-robin DNS and the
lack of geographic diversity in normal load-balancers,
an additional approach is protocol-specific extensions.
Protocols like HTTP have the ability to respond to
clients with a redirect, pointing the client to a new server
to acquire the content it is seeking. While this works,
each implementation is inherently tied to a specific pro-
tocol and requires both client- and server-side support.
If the option of redirection is not already available in a
protocol, adding it would be difficult and would leave
many clients unable to take advantage of the new fea-
ture. So while HTTP supports this option of redirec-
tion, many other protocols do not. This includes ftp and
rsync, which are both heavily used in content distribu-
tion.

None of these solutions solves the problem of geograph-
ically diverse load-distribution universally; at best, these
solve the problem for a particular niche. A global dis-
tribution system made up of independent entities needs
to be transparent to the end users, as it’s difficult for
them to make good decisions as they lack information
needed to make them. It needs to be versatile, able to
expand and contract, resilient to changes, and most of
all be protocol-agnostic so that existing and any future
protocols can be easily or trivially supported.

2 GeoDNS—Knight in Dingy Armor

GeoDNS is an attempt to solve the shortcomings in-
herent in the predominant and existing load-balancing



2009 Linux Symposium • 125

schemes. It targets this by making a small, server-side-
only change to a DNS server to allow it to respond to
requests in a slightly different way, depending on the
origin of the DNS request. This particular approach
solves many of the issues inherent in round-robin DNS,
centralized load-balancers, and protocol-specific redi-
rection; however, it comes with its own set of quirks and
issues that are equally inherent in its implementation.

2.1 Basic ideas

GeoDNS itself is a rather innocuous change to the way
DNS handles requests, but gives the basic ability to
do wide-scale, simple load-balancing without the need
for changes to clients or custom protocols. DNS is
a fundamental building block of the Internet. Every
client that is attached to this global network already has
a the ability to make a DNS query, converting a tex-
tual string like example.com into a numeric address,
208.77.188.166. GeoDNS, like DNS views, differs
slightly from a normal DNS query in that the response
is altered based on additional criteria.

In the case of DNS views, it checks the incoming IP
address, looking for matches in a range, and returns a
different address based on each defined range. This is
typically done to deal with the proliferation of Network
Address Translation (NAT), where the IP address exter-
nally may be a routable IP, but is inaccessible to internal
NATed machines. The DNS server returns the routable
IP externally, and a non-routable IP internally based on
the view criteria.

Strictly speaking, returning different data based to any
query, according to RFC, would be the result of an over-
lapping tree and thus a “non-fatal error.” However, since
a client is unlikely to ever get into a situation where it
would get multiple incompatible responses to an indi-
vidual query, this doesn’t actually cause any unexpected
behavior to the client.

It does, however, break the idea of transparency across
the Internet, where everything on the Internet is globally
viewable and a DNS query will return the same result
set no matter where you are. But this is no more broken
than the idea of NAT, which currently has a huge prolif-
eration and is arguably the reason that the IPv4 address
space has not yet been completely exhausted. However,
while this lack of transparency and consistency is not
ideal from a DNS perspective, it is an effective means of

solving a distribution problem and should be used on an
as-needed basis and not be considered a standard prac-
tice for all queries.

2.2 GeoDNS: DNS View with a twist

GeoDNS comes into play to solve the same fundamental
problem that a DNS view was introduced for: to return
a more local resource for usage. Though where a DNS
view is more likely to be solving the problem of routable
vs. non-routable IP addresses, GeoDNS is more targeted
at giving a user a more appropriate resource based on
physical location.

GeoDNS functions very similar to a DNS view, whether
it’s implemented as one or not. The requesting client’s
IP is checked against a database, which determines a
general geographic location for the requesting IP. Using
this geographic identifier, a response is generated that is
specific for that location, and sent back to the requesting
client.

2.3 So it seems to work, but who uses it?

GeoDNS has a limited set of interested parties, which is
one of the reasons that GeoDNS has not become stan-
dard in most DNS servers. Most users have their ma-
chines in a single location, on a single subnet, and not
scattered across the globe. There are, however, installa-
tions that are making use of GeoDNS successfully.

For instance, this paper is focused on kernel.org
and its usage of GeoDNS and that it works for the
specific setup that kernel.org has. Kernel.org
makes use of a modified set of patches that origi-
nate from caraytech. This patch set has been up-
dated a couple of times, with the last being in 2008
by kernel.org.3 However, despite kernel.org’s
popularity within the Linux community, it is a relatively
small distribution system, with only 4 locations in three
countries serving the worldwide populace. Larger in-
stallations of GeoDNS servers that affect far more users
exist. In particular, the largest known user of GeoDNS
is Wikipedia.

Wikipedia and Wikimedia, for instance, moved to using
a combination of Bind and PowerDNS4 for their DNS

3It should be noted that this patch series makes use of MaxMind’s
GeoCountry look-up database.

4PowerDNS first introduced its geobackend in 2004.



126 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

servers in 2005.5 Bind handles the primary zones them-
selves, while PowerDNS with the geobackend powers
the distribution of users to a local Wikipedia server. A
more complete description and an implementation that
mirrors the Wikimedia setup can be found on the Blitzed
IRC (Internet Relay Chat) network.6

A similar system using pgeodns (perl geo DNS server)
serves cpan.org and perl.org, and has done so
since 2001. CPAN is the primary locus of the Perl
module development community. The pgeodns server
is specifically attached to search.cpan.org to give
to give a user a transparent local mirror for searching the
CPAN archive, thus distributing the search load across
multiple machines worldwide.

While kernel.org, Wikimedia, and CPAN are mak-
ing use of the GeoDNS servers to act as load balancers,
there are companies such as Server4Sale7 that use a
modified tinydns server, and are using it as a protec-
tion mechanism for their network and clients. Specif-
ically, Server4Sale has made it available under the name
Veridns, with the specific intention of using it to help
deal with the problems of Denial Of Service (DOS) and
Distributed Denial of Service (DDOS) attacks.

There are a number of other, primarily open source com-
munities using GeoDNS-based services, from Apache8,
to Mozilla9,10 to solve the same fundamental mirroring
and load-balancing problem that many worldwide distri-
bution systems are facing: how to get the data that users
are seeking to them using the fastest possible system,
and to load-balance these users across the world.

2.4 Where’s the catch?

The art of attaching a geographic location to an IP does
not come without some downsides. The databases are
guaranteed to be inaccurate, require constant updates

5http://en.wikipedia.org/wiki/PowerDNS#
PowerDNS_and_Wikimedia

6http://blitzed.org/DNS_balancing
7http://pub.mud.ro/wiki/Geoipdns
8http://mail-archives.apache.org/mod_

mbox/www-infrastructure-dev/200904.mbox/
<4239a4320904011536x5726d0eraae7065967ac1b77@
mail.gmail.com>

9http://blog.mozilla.org/mrz/2008/05/28/
geo-dns-getting-the-bits-closer-to-you/

10http://blog.mozilla.org/mrz/2008/06/11/
geodns-one-week-later/

due to a shifting reality, and currently they are anything
but future-proof.

Each database—whether it’s being maintained by a cor-
porate entity like MaxMind, which has a vested inter-
est in its accuracy, or being kept up by a small open
source project—faces the same challenge: the Internet
is constantly shifting, and no one is required to publish
geographically accurate information. So the collective
maintainers are forced to go and mine public sources
like Regional Internet Registries like RIPE, ARIN, and
APNIC for information, but at best that gets them a
broad brush-stroke of information. It does not, how-
ever, get the more subtle differences or weirdness that
are sometimes used on the Internet, such as a US-based
company using a subset of its IP addresses at a Euro-
pean facility. To become more accurate, further min-
ing based on more data is needed, but even the best
available databases are only claiming 99.8% accuracy,11

which means that out of a potential 4.2 billion addresses,
roughly 8.5 million addresses are incorrect.

These databases, while already trying to play catch-up
with the ever shifting sands of the Internet, are facing
another daunting and more complicated task ahead of
them: creating and maintaining an additional database
mapping IPv6 addresses to geographic locations. Cur-
rently all of the available databases only support IPv4,
the dominant address scheme for the Internet since its
first proposal in RFC 791 in September of 1981. IPv4
is running out of usable address space. (Though it has
been predicted repeatedly that it should be exhausted al-
ready, usage of NATed networks has kept IPv4 domi-
nant.) It will eventually run out of address space, and the
Internet will be forced to make the long, arduous, and
painful move over to IPv6—and in the process, go from
a possible 4.2 billion addresses to 340 undecillion ad-
dresses. Currently most users of IPv6 are going through
various tunnels and gateways, which will mask an ad-
dress’s actual location. Couple that with a low penetra-
tion of IPv6, and there is no current incentive to solve
this particular problem by the open source community,
and especially not by a for-profit entity.

So while things like GeoIP are working in their current
form, they are not a perfect solution: the databases are
inherently inaccurate and they currently lack support for

11MaxMind’s commercially available GeoIP Country Database
claims an accuracy of 99.8% – http://www.maxmind.com/
app/country



2009 Linux Symposium • 127

the next generation of the Internet. Despite these prob-
lems, GeoIP is quite useful. Even a database that is 80%
accurate will work for a majority of the world’s popula-
tion as they would expect.

3 What to expect from GeoDNS

GeoDNS on the whole is an incredibly powerful and
useful tool for administrators and world wide distribu-
tors. It can transparently deal with simple distribution
across the entire globe and provide a simple interface
for users to work with and use.

3.1 Production Zone Implementation

<Root Domain>

mirrors IN CNAME mirrors.geo

mirrors.US IN A 192.168.0.1
mirrors.EU IN A 192.168.1.0
mirrors.AS IN A 192.168.1.1
mirrors.ALL IN A 192.168.0.1
IN A 192.168.1.0
IN A 192.168.1.1

mirrors.geo
Views:

<USA mirrors>

mirrors.geo IN CNAME mirrors.US

<European mirrors>

mirrors.geo IN CNAME mirrors.EU

<Asian mirrors>

mirrors.geo IN CNAME mirrors.AS

<Default - All - Round Robin>

mirrors.geo IN CNAME mirrors.ALL

Remote Client / User DNS Server

Figure 1: Suggested Flow request for a GeoDNS DNS
request

GeoDNS is nothing more then a DNS answering system,
and as such has a huge amount of flexibility and infras-
tructure that can take advantage of it. However, there
are some implementation details that should be taken
into account.

Since a GeoDNS-based server does not respond in the
same manner as a normal DNS server, special care
should be taken in choosing slaves. Slave DNS servers
for your zone are going to need to be running the same
GeoDNS server that your master is running, assum-
ing that your GeoDNS server implementation supports
replication at all. The best option would be to run both
the master and the slaves. While this is a cumbersome
proposition to some, it does solve the problem of com-
patibility and simplifies the fact that that zone is unex-
pected for most DNS servers.

In the case of Bind + GeoIP, it has some simplifica-
tions that make it appealing. For instance it leverages
the existing view infrastructure, giving it the full ability
to replicate each view independently12 and all the other
advantages of views. PowerDNS with the geobackend
unfortunately does not have the ability to act as the mas-
ter or slave for DNS purposes,13 however, the basic im-
plementation of the zone structures are similar.

A basic and scalable configuration is two-fold. There
will be two different servers, one authoritative for the
actual IP addresses that you are using, and one that
is authoritative for your GeoIP zone. While Bind can
handle these both in a single instance, common pieces
that would be available in all zones (like the non-geoip
hosts) would need to be copied multiple times and
maintained independently. This copy-and-paste struc-
ture can lead to errors and make it difficult to main-
tain. For convention, example.com will be the pri-
mary static zone with all the IP addresses in it, while
geo.example.com will be the zone handling all of
the geographic look-ups.

The request for a domain that will be served via
GeoDNS should come in to a common disambigua-
tion point, something like mirrors.example.com,
which should be present in the primary static zone.
This would be a CNAME that that would point to
mirrors.geo.example.com, which is in the ge-
ographically aware zone. When the DNS client requests
the next hop for mirrors.geo.example.com,
GeoIP look-up would occur on the server. It would
match the incoming request’s IP address and select the
appropriate zone’s view to return. The response, as all

12How Can I Make A Server A Slave For Both An Internal And
An External View At The Same Time? When I Tried, Both Views
On The Slave Were Transferred From The Same View On The Mas-
ter. http://www.isc.org/node/282

13http://doc.powerdns.com/geo.html



128 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level

(a) mirrors1 (b) mirrors2

(c) mirrors3 (d) mirrors4

Figure 2: Load graphs of mirrors.kernel.org

entries in the geo.example.com zone, should likely
be CNAMEs that point back to the primary zone of
example.com. This final CNAME look-up would
point to an IP address, or a round robin of addresses
to further add distribution. Figure 1 illustrates the basic
request and response structure that this would entail.

Breaking the zones up into GeoIP vs. non-GeoIP zones
has several advantages. It allows you to trivially mi-
grate between GeoDNS solutions, as the zone handling
those look-ups is independent. Master and slave rela-
tionships are not limited to other GeoDNS servers in
the non-GeoIP address space, meaning you can use any
combination of DNS servers. Breaking this relationship
up also means that requests are only being performed
for only those items that require it, like a mirroring in-
frastructure as opposed to the mail (MX) records for a
domain.

3.2 GeoDNS: Case study—kernel.org

To give some basis for a real-world example,
kernel.org is a worldwide distribution system with
equipment in three countries and five separate data cen-
ters. Its content includes the primary download location
for the Linux kernel source code, and it acts as a tier-
1 mirror for many of the distributions based on Linux.
It boasts a user community that spans the globe, with
users accessing its content on every continent, including
Antarctica. With such a large user base, and a historical

issue of only having servers based in the United States,
kernel.org was looking to simplify the problem of
mirror distribution without causing undue confusion to
its user base.

A simple solution was first implemented using a
country- or region-specific domain. New equipment
was brought online in Europe, the Netherlands, and
Sweden respectively, so mirrors.eu.kernel.org
and www.eu.kernel.org were set up. This solved
the basic problem of getting user-recognizable con-
nectivity to the European mirrors. However, because
mirrors.kernel.org and www.kernel.org
have been more or less ingrained in the mindsets of
users, the machines did not see quite the pick-up in us-
age we had hoped for, and it was clear that users in Eu-
rope were still coming back to the US mirrors to get
their content.

Several different solutions were considered to
more transparently direct users to a closer mirror.
Kernel.org had a simple set of requirements:

1. The need to deal with a geographically diverse set
of machines. This generally rules out things like
normal load balancers.

2. Be protocol agnostic, as kernel.org serves data
over ftp, HTTP, rsync, and git. It could not be
subject to protocol-specific load balancing, so this
rules out things like mod_geoip for Apache.



2009 Linux Symposium • 129

3. Be transparent to end users. Many of
kernel.org’s users are automated scripts
and programs, so having a disambiguation page to
direct users to the closest mirror is not a solution
that would work.

A DNS server based on the BGP (Border Gateway Pro-
tocol) as its determination mechanism was considered.
BGP is, however, notoriously difficult to gain access to
with the need to acquire an autonomous system (AS) ID
from ICANN. Coupled with the difficulty in getting an
AS, many larger backbone providers are uninterested in
peering and sharing their routing table information with
smaller entities sometimes having requirements to con-
trol upwards of seven hundred unique and routable IP
addresses. Once peered, the problem becomes one of
completeness of the routing table provided, with many
instances of partial views of the entire routing table
which would be difficult to make good decisions based
on. This particular approach was abandoned for these
reasons.

A GeoIP approach was then investigated, with specific
emphasis on GeoIP coupled to a DNS server. It was
decided to work with the Bind-based patches and to
go with an organization similar to what is described
in Section 3.1. The entire setup was flipped over on
September 19th, 2008. Figure 2 shows the loads of the
kernel.org machines before and after the switch to
using GeoDNS. Prior to the middle of September, the
two US machines, mirrors1 and mirrors2, had a
high and periodic load with long and consistently high
loads. This is particularly evident in the summer months
of 2008, with loads consistently above 50 and easily
peaking above 200 in instances. It is also clear that dur-
ing this same timeframe, the loads on mirrors3 and
mirrors4, the European machines, was virtually non-
existent. The loads were barely even high enough to
register on the graphs. After September 19th, the graphs
take on a much different outlook, and in fact the change
was noticeable within hours of the DNS change.

Saying that the GeoDNS server’s activation was a suc-
cess would be an understatement. After the September
19th switchover, the graphs for the two US-based ma-
chines drop dramatically. Over the course of 7 months,
they’ve maintained a relatively consistent load well be-
low 100, with occasional spikes above 100. The loads
on the European based machines have risen as a result
of the higher traffic. Though the change is a noticeable,

the machines are still coping with the new load without
issue. So, in this specific circumstance, GeoDNS has
been an unequivocal success and has helped to extend
and better the services that kernel.org offers.



130 • GeoDNS—Geographically-aware, protocol-agnostic load balancing at the DNS level



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


