
Building a Robust Linux kernel piggybacking The Linux Test Project

Subrata Modak
Linux Technology Centre, IBM, India
subrata@linux.vnet.ibm.com

Balbir Singh
Linux Technology Centre, IBM, India

balbir@linux.vnet.ibm.com

Abstract

The LinuxTM kernel is growing at a rapid rate and runs
across many architectures and platforms; ensuring that
the kernel is reliable, robust, and stable is very critical.
The Linux Test Project (LTP) was established to meet
the very goals stated above. Testing is often ignored
in major development, and we pay the cost through fre-
quent updates, frequent crashes and unhappy users. LTP
is now breathing a new life; we want to add more test
cases, cover more code, test new features, update exist-
ing test cases, and improve the framework.

In this paper, we explore the effectiveness of testing via
LTP, and look at coverage statistics and number of new
test cases added. We look at where LTP development
and kernel testing via LTP stands with regard to kernel
development. This paper also demonstrates how to write
a simple LTP test case, and enjoy the benefits of using it
over and over again.

1 Introduction

The Linux Test Project, created by SGI1, was one of
the first to bring organized testing to Linux. No formal
testing methodology was available to Linux developers
prior to the arrival of LTP. Systematic integration test-
ing was a distant dream, though most developers unit-
tested their own enhancements and patches. LTP’s pri-
mary goal continues to be to provide a test suite to the
Linux community that helps to validate the reliability,
robustness, and stability of the Linux kernel. It provides
functional and regression testing with or without stress,
utilizing its own execution harness to allow for test au-
tomation.

At the time when the 2.3 kernel was released, LTP
had around 100 tests [6]. As Linux grew and matured
through the 2.4, 2.5 & 2.6 kernels, the LTP test suite also

1Silicon Graphics Inc.

grew and matured as well. Today, the Linux Test Project
contains well over 3000 tests, and the number of tests is
still growing. It has evolved over the years to become
very comprehensive, capable of testing various features
of the kernel including system calls, memory manage-
ment, inter-process communication, device drivers, I/O,
file systems, and networking. With 95% of the test code
written in C, the Linux Test Project has become one
of the de-facto verification suites used by developers,
testers, and Linux distributors who contribute enhance-
ments, bug fixes, and new tests back to the project.

2 Breathing a new life into LTP

LTP is now breathing a new life. New test cases have
been added; many more test cases have been fixed be-
tween early 2007 and April, 2008. Table 12 provides
details of test cases that have been added in the men-
tioned period, and as of the date of writing of this pa-
per. Kdump test cases, by their very own nature, test
the Kdump kernel; similarly, the Real Time Linux test
cases are meant for the RT kernel. These additions show
that LTP is a part of the daily testing activity of several
people involved with kernel testing. It also shows the
flexibility that LTP provides to test case writers and ex-
ecutors.

LTP [2] also saw a massive cleanup of the existing test
cases. Around 350 patches were applied and 1000 new
sources added, ending up modifying 1000 and removing
247 source files. The broken issues in LTP, one of the
limitations preventing further adoption and expansion of
the project, were also addressed effectively.

Some of the issues that were addressed as part of the
LTP refresh are:

• The release pattern of file packages were revived to
include results on various architectures. With that,

2Data as on 15th April 2008, from initial addition to subsequent
patching

• 91 •



92 • Building a Robust Linux kernel piggybacking The Linux Test Project

Name/Type Total
Sources

Avg.
Code
Size
(bytes)

Kdump, Kdump for Network
Partition dumps

26 2312

Uts, Sysvipc, & Pid Namespace 27 2614
Inotify 4 5894
Writev 7 7712
Swapon 4 8975
Numa 6 6986
Remap_file_pages 3 6465
Nfs Check Tests 1 1834
Posix_Fadvise & Fadvise64 5 4003
Madvise 4 6572
Sendfile64 7 5625
Arm Specific Test Cases 1 1091
Real Time Linux Test Cases 101 3400
Fallocate 5 7071
Filescaps 11 2579
Cpu Controllers 17 5134
Msgctl 12 7985
Ti-rpc 588 3218

Table 1: Specific List of Test Cases Added to LTP [4]

LTP achieved the release of 169 packages (total-
ing 265 MB of code), with 31458 packages down-
loaded overall, making an average of 65 downloads
per day [1].

• Gcov-kernel patches for kernels 2.6.18, 2.6.19,
2.6.20, 2.6.21, 2.6.22, 2.6.23, 2.6.24 & 2.6.25 were
also made available to the community through LTP.

• Addition of RHEL5 LSPP Test suite Release
(EAL4 + Certification Test Suite).

• Addition of SGI Common Criteria EAL4 certifi-
cation test suite for RHEL5.1 on SGI Altix 4700
(ia64) and Altix XE (x86_64) Systems.

While LTP worked hard to retain the confidence of the
Linux community, it also saw a revamp of the testing
infrastructure by providing:

• Output logs in a more attractive/decipherable
HTML format. Figure 1 depicts the new HTML
output format for LTP with clear distinction be-
tween FAILED, PASSED, WARNED, and BRO-
KEN testcases. It is expected that HTML format
can be used to show overall test status, and help to
interactively explore failures. It is also envisioned
that using XML in the future will allow the results
to be validated and converted to attractive formats
using style sheets; other such advantages of XML
can be similarly exploited.

Figure 1: A Sample new HTML format for LTP Output

• Adding discrete sequential run capability. LTP has
an existing option to run the suite for definite pe-
riod of time, say 24 hrs [7]. The drawback with
this approach is that the test run can terminate mid-
way without completing the last loop due to time
pre-emption. This new feature allows the test to
execute as many loops as specified by the user, irre-
spective of the time consumed. Particular test cases
executed in multiple loops are properly tagged to
distinguish outputs generated in multiple loops.

• Auto Mail Back option of reports. LTP now pro-



2008 Linux Symposium, Volume Two • 93

vides the option to collate all outputs and logs,
tar(1) them and finally mail them back to a
specified email address, after testing is complete.
This can be handy in situations where the tests are
run (in background) on remote servers for longer
duration of time. On completion, the user gets the
collated reports in his/her mailbox, a handy indica-
tion of the completion of the tests.

• Generating default file for failed tests. LTP now
generates a file containing a list of exclusive test
cases which failed during test run. This file is cre-
ated in a format which then can be directly used
to do a quick re-run of these failed tests. The user
now can collate the output of only failed tests, and
debug more efficiently.

• Integrating better stress generation capability.
LTP employs a parallel infrastructure to create
stress (I/O, memory, storage, network) on the sys-
tem, to verify test case behavior under extreme
condition(s). The full potential of this infrastruc-
ture was not exploited earlier. LTP now provides
expanded options to utilize the existing features of
stress generation.

In the recent past, there has been focus on running LTP
tests concurrently [3]. Several fixes have been provided
in this regard to allow tests to run concurrently.

The other area of focus has been to help developers write
unit test cases without the need to download the original
LTP-Suite. LTP development rpms for various architec-
tures (i386, x86_64, ia64, ppc64, s390x, etc.) are now
being regularly released to address this. This is to mo-
tivate developers to write unit test case(s) on their own,
build them with the LTP development rpms, test them,
and finally integrate them to mainstream LTP. Interme-
diate releases are now regular, which gives developers
time to fix any build breaks before the final month-end
release.

While we aim to increase the kernel code coverage, we
also took a holistic look into the source code that we
added to LTP suite during this transition period. The
results showed that the LTP code has increased 42%3

starting 1st January 2007 till 15th April 2008. Though
this is quite a small figure compared to what Linux ker-
nel has grown, the most important thing to note is that

3Data Generated from diffs of ltp-20061222 & ltp-20060415.

the same has been achieved by a very small group of
LTP developers.

3 Kernel Code Coverage Statistics

One of the metrics to measure the effectiveness of test-
ing is code coverage [10]. We’ve run coverage with the
gcov patch (linux-2.6.24-gcov.patch4) on a x86 system
and run different versions of LTP on the same kernel.
However, during code coverage we have not considered
Kdump tests, RT tests, DOTS, Open_Posix_Testsuite,
Open_HPI_Testsuite, Pounder21 & SElinux testcases.
Table 2 shows the code coverage for the top 10 items.

Directory Coverage
fs 49.8% 10135/20367 lines
include/asm 49.4% 595/1204 lines
include/linux 58.7% 2239/3812 lines
include/net 56.2% 990/1762 lines
ipc 52.8% 1442/2729 lines
kernel 38.2% 9880/25837 lines
lib 42.2% 2105/4992 lines
mm 51.5% 6899/13396 lines
net 65.4% 630/964 lines
security 51.9% 666/1283 lines

Table 2: 2.6.24 kernel code coverage using December
2006 LTP

Directory Coverage
fs 52.9% 10778/20367 lines
include/asm 50.9% 613/1204 lines
include/linux 60.0% 2283/3812 lines
include/net 57.6% 1015/1762 lines
ipc 56.4% 1539/2729 lines
kernel 39.1% 10097/25837 lines
lib 43.2% 2159/4992 lines
mm 52.7% 7066/13396 lines
net 65.7% 633/964 lines
security 51.9% 666/1283 lines

Table 3: 2.6.24 kernel code coverage using March 2008
LTP

The coverage was obtained by running December 2006
LTP against a gcov instrumented 2.6.24 release of the

4Available at http://ltp.cvs.sourceforge.net/
ltp/utils/analysis/gcov-kernel



94 • Building a Robust Linux kernel piggybacking The Linux Test Project

kernel. Table 3 also shows the code coverage for the top
10 items. This coverage was obtained by running March
2008 LTP against a gcov-instrumented 2.6.24 release of
the kernel.

Comparing Tables 2 and 3, we make the following ob-
servations:

• Between the two runs, the coverage of the recent
LTP is better. This is a good sign and is indicative
of the progress that LTP has made. Table 4 shows
the percentage increase in coverage between De-
cember, 2006 and March, 2008.

Subsystem % Increase
Filesystems 3.1
include/asm 1.5
include/linux 1.3
include/net 1.4

ipc 3.6
kernel 0.9

lib 1.0
mm 1.2
net 0.3

security 0

Table 4: Increased coverage due to LTP enhancements
between Dec 2006 & March 2008.

• Two subsystems, fs and include/asm, now have
coverage greater than 50 percent.

• The data also points us to some interesting facts,
such as:

– LTP needs to do a better job of covering the
error paths. Some of them need to be cov-
ered using the fault injection framework. One
limitation of LTP is that the test cases can-
not handle faults from the kernel. The test
case exits on failure. We propose a new LTP
robust subproject to allow LTP to work well
with fault injection.

– It is not possible for LTP to cover certain sce-
narios. With a wide set of permutable config
and boot options, it is not possible to test ev-
ery config/boot option and extract coverage.
We’ve tested the most common and minimal
configuration that works on our machine.

– It is not possible for LTP to handle cov-
erage of code that is not exposed to user
space. For example, a machine may be con-
figured with SPARSEMEM, FLATMEM or
DISCONTIGMEM. Testing these options
and obtaining coverage data is not possible.

– There are several areas of code that have no
coverage. We’ve taken up those areas as areas
that need more test cases. Section 7 provides
more details about our future plans.

• We intend to make code coverage data available to
the LTP website,5 so that developers can see how
well their code is tested. This might even motivate
them to contribute the test cases they’ve used for
testing the feature to LTP.

4 Role of LTP in testing Linux

Software testing can be broadly categorized into

• Compilation Testing6

• Unit Testing

• Functional Testing

• System Testing

• Stress Testing

• Performance Testing

LTP helps with Functional, System and Stress testing.
LTP cannot directly do Compilation, Performance or
Unit testing.

There are several ways of testing the Linux kernel. Most
developers run the latest kernel on their desktops and
servers. The kernel gets tested via the applications that
get executed. Any major performance regression is ob-
served and reported.

LTP goes a step further by providing test cases that test
user interfaces with several valid and invalid parame-
ters. It tests various subsystems of the kernel such as

5http://ltp.sourceforge.net/
6Many textbooks on software testing, do not include build as a

part of the test effort. Since Linux runs on several platforms and
has several features that can be enabled/disabled at compile time,
ensuring that the build works well across the platforms, architectures
and features is an important aspect of testing Linux



2008 Linux Symposium, Volume Two • 95

the memory management code, the scheduler, system
calls, file systems, real time features, POSIX semantics,
networking, resource management, containers, IPC, se-
curity, timer subsystem and much more. LTP provides
an infrastructure to stress test the system by:

• Providing test cases that stress the system.

• Allowing concurrent execution of test cases.

• Providing noise in the background (CPU, Memory,
Storage, Network, etc.) while running tests.

LTP plays an important role in system testing. Several
users of LTP use it to validate their entire system. Run-
ning LTP validates the “C” library and the user inter-
face(s) provided by the kernel (to the extent test cases
have been added).

LTP is also run by kernel testers for regression testing.
Given the size and nature of the LTP test cases, it pro-
vides a good framework for executing desired tests, se-
lecting a subset of those tests as basic acceptance test,
and running them.

In the future, we intend to enhance LTP to provide fa-
cilities for performance testing7 and more test cases that
can test the functionality of features not yet in the main-
line Linux kernel. This would help provide extensive
testing of a feature before it gets into the mainline Linux
kernel.

5 Early and Effective Testing

Up to a point it is better to let the snags [bugs] be
there than to spend such time in design that there
are none (how many decades would this course take?)

A M Turing, Proposals for ACE (1945)

The importance and significance of effective and early
testing cannot be stressed enough. According to Barry
Boehm’s Software Engineering Economics [5], the time
required to identify a defect in software after it has been
deployed is 40 to 1000 times longer than if had been
found in the requirements analysis. While testing cannot
really catch bugs introduced in the requirements phase,
it certainly can help catch them before the code is de-
ployed.

7By providing a performance testing framework

bug introduced

x x+1

x.stable

x+2

x+1.stable

x+3

x+2.stable x+3.stable

bug fixed

Figure 2: Sample bug fix flow for a bug introduced in
version x and fixed in version x+3.

Consider a hypothetical example of a feature that intro-
duces a bug into version x of the kernel. The bug is
tested and detected in version x+3. Figure 2 shows in
dotted lines the versions into which the bug needs to be
fixed. If Linux distributions have spawned off kernels in
between versions x and x+3, then more bug fixing, hot
fixes and updates need to take place.

The example scenario above shows the advantage of
early and effective bug fixing. Had the bug been de-
tected in version x itself, the unnecessary overhead of
bug-fixing, maintenance and additional testing could
have been avoided.

This brings up an important question: To what extent do
we test the kernel? We believe that all bugs that can be
caught easily and with some effort and observation must
be discovered and fixed. Turing’s quote at the beginning
of this section refers to a good trade off between bugs
and time spent.

6 Simplest way to write a LTP test case

There have been papers written by LTP Maintain-
ers/developers regarding ways/methodology to write a
simple LTP test case. Notably amongst them are:

• Testing Linux with the Linux Test Project [9] , and

• Improving the Linux Test Project with Kernel Code
Coverage Analysis [8]

All of these are easily available in archives, hence we
skip the intricate details of writing a testcase. We in-
stead focus on presenting a set of workflows to depict
the overall mechanism to run the LTP suite, and individ-
ual test case execution.



96 • Building a Robust Linux kernel piggybacking The Linux Test Project

6.1 LTP Suite Execution Framework

Figure 3 depicts the flow of how the entire LTP suite
works. On invocation, runltp script parses all options.
It proceeds to generate the list of test cases to be exe-
cuted depending on user choice at command line. It ex-
ports all the identifiers necessary for test execution next.
Optionally, it can also generate certain stress on the sys-
tem. Next, it invokes the test driver PAN, which then
takes care of executing each test case in the list. Once
all test cases are executed, PAN reports PASS if all test
cases have executed successfully. Else, it returns fail if
at least one of them failed. Generation of HTML output
and auto-mail-back is optional. Once that is over, the
script does the necessary cleanups (releasing resources,
clearing system stress, etc.) and exits.

6.2 Individual Test Execution Framework

Figure 4 shows the preamble, which starts with mention-
ing the copyright statement(s) followed by the GPLv2
declaration (which is mandatory). Following that, the
test case name and algorithm are described. Modifica-
tion history is maintained to identify sources of this code
modification: the author, date and reason of modifica-
tion.

Figure 5 shows the the main body of the test case.
It starts by including headers that declare general and
LTP-specific global and static identifiers. Once inside
the main() block, the first thing is to check whether
the feature under test is supported by this kernel ver-
sion/architecture/FS type/glibc version. If any of these
evaluate to false, the test is aborted, corresponding mes-
sage written to logs/output, cleanups done and test exits
with proper exit-value. If everything is supported, the
main code of testing is executed.

If there are some BROKEN or WARNING messages
generated, then the test takes appropriate action. As-
suming everything goes well, test execution status is
written to log/output, cleanups are done, and the test ex-
its with a proper return value.

7 Future Plans

Several initiatives have been taken so far to improve
LTP. Most of them have been successful. We plan to
take up more such initiatives in future. As a part of

Invoke runltp

Parse Command
line options

Generate Default
Test Cases List

Export Necessary
Variables

Generate Background Stress
(CPU/Memory/Storage/Network)

PAN
(Test Driver)

(Execute Tests Sequentially)

 Invoke PAN with options

Report
PASS/FAIL

Test 1

Generate HTML Output

Archive Reports and Logs.
Send e-mail

Cleanups

Exit

Test n

Figure 3: LTP Flow Diagram



2008 Linux Symposium, Volume Two • 97

Preamble

Copyright & 
 GPLv2 declaration

Declare Test Name

Write the Algorithm

Update Modification 
 history

Figure 4: LTP Test Flow Preamble

LTP’s initiative to involve kernel developers in particu-
lar, we have already started with the concept of LTP de-
velopment packages. These are a combination of LTP-
specific libraries, header files, executables and man-
pages, easing developers’ task of developing unit test
cases, for the features that they plan to merge to the ker-
nel.

Another initiative is starting the LTP-mm tree. Develop-
ers might not wait for their features to be part of main-
line kernel and then open up the test cases. The same
test cases can be contributed to the LTP-mm. Test cases
can be contributed to the LTP-mm project as early as the
corresponding feature hits any kernel tree (mm,rc,etc.),
or planning to get into any tree. The test case(s) them-
selves can be modified multiple times in resemblance to
the corresponding feature changes/modification in the
kernel tree. Once the feature becomes part of main-
line kernel, the corresponding test cases are moved from
LTP-mm project to main LTP project.

While we will be happy to have those test cases use the
LTP-specific logging libraries, it is not a mandatory re-
quirement. If the test case(s) is/are written in C/Shell
and returns 0/1 on PASS/FAIL, then it is a very good
candidate for inclusion into the LTP. We encourage ker-
nel developers to contribute their unit test cases in what-
ever form they have. The LTP community will help
them in converting them to the required format across
time. We would also urge test cases to find their way
to the LTP in many unexplored areas, such as device
drivers, and also in areas where the kernel code cover-

Body

Include Headers

Declare Global 
 and Static Identifiers

Enter Main

Check for Kernel version 
 Arch & FS Type

setup() 
 (Resource Allocation)

Supported

Write to 
 Log/Output File(s)

Not
Supported

Execute Test Code

BROK/WARN/ 
 RETR/CONF

INFO/PASS/FAIL
Stop

Execution

cleanup() 
 (Resource de-allocation)

Exit Main 
 (with Return-Code)

Figure 5: Individual Test Flow Diagram

age is very low.

When we request the community to contribute to test
case(s) development, we also want to convey to you that
the LTP aims to include new test cases in the areas of:

• Power Management testing,

• Controllers and Containers testing,

• KDUMP (kdump on Xen hypervisor and guests),

• Union Mount,

• Sharedsubtree, etc.



98 • Building a Robust Linux kernel piggybacking The Linux Test Project

SAMPLE LTP OUTPUT

<<<test_start>>>
tag=remap_file_pages01 stime=1208361993
cmdline="remap_file_pages01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
remap_file_pages01
1 PASS : Non-Linear shm file OK

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=7 cstime=2
<<<test_end>>>
<<<test_start>>>
tag=faccessat01 stime=1208362004
cmdline="faccessat01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
faccessat01

6 FAIL : faccessdat() Failed, errno=20 : Not a directory

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=8 cstime=2
<<<test_end>>>
<<<test_start>>>
tag=fallocate01 stime=1208363009
cmdline="fallocate01"
contacts=""
analysis=exit
initiation_status="ok"
<<<test_output>>>
fallocate03

0 WARN : System doesn’t support execution of the test

<<<execution_status>>>
duration=1 termination_type=exited
termination_id=0 corefile=no
cutime=8 cstime=2
<<<test_end>>>

Figure 6: Sample LTP Output

in very near future. We will continue to fix and improve
upon the existing testcases. Forthcoming enhancements
in the area of LTP infrastructure include:

• Development of XML logs/output. We plan to gen-
erate the logs/output in XML format so that they

SAMPLE LTP LOG

Test Start Time: Wed Apr 16 21:47:41 2008
--------------------------------------------
Testcase Result Exit Value
-------- ------ ----------
remap_file_pages01 PASS 0
faccesat01 FAIL 1
fallocate03 WARN 1
--------------------------------------------
Total Tests: 2
Total Failures: 0
Kernel Version: 2.6.18-53.1.13.el5
Machine Architecture: i686
Hostname: <sniff>

Figure 7: Sample LTP Log

can be parsed easily by any XML parser.

• .config File based Execution. Options to run LTP
are growing. It may be difficult for users to remem-
ber and mention all options at command line. We
plan to provide .config file, which will host all such
options in variable=value format. Users will be re-
quired to just run runltp, which will automatically
parse options from the .config file.

• Network based installation, execution and report
collection. We plan to create an infrastructure
where it will be possible to provision LTP on mul-
tiple machines from a central machine. The pro-
visioning server will be capable of deploying LTP
suite across multiple machines, build & install, run,
and bring back all of the reports.

Recently, we identified that many LTP test cases fail
while running concurrently. We plan to make the entire
LTP suite concurrency-safe [3]. We also plan to test
all kernel releases (mm, rc, etc.) and make those results
available on the LTP website, along with the code cov-
erage details against the latest stable kernel. In the near
future, LTP will continue to focus on all possible means
to improve code coverage. However, in the long term,
we will also consider adding benchmark infrastructure
to LTP.

8 Conclusion

As Linux testing evolved through the ages, other test
projects/suites with better infrastructure/features came



2008 Linux Symposium, Volume Two • 99

to the center-stage. LTP is considered to have the fol-
lowing defects: Lacking the facility to provide auto-
matic kernel build/reboot and test, having low code cov-
erage, non-parsible output logs, and broken test cases.
While it is true that the LTP does not provide autobuild
and test options, that was not the main focus area. It was
designed to be a very handy regression test suite. LTP
used in conjunction with other test suite(s) can com-
plement each other’s features to implement the much
broader goal of making Linux better.

The kernel code coverage cannot be drastically im-
proved without the corresponding test cases for kernel
features being made available to the LTP. While this
responsibility cannot be enforced, the impact of such
can be brought to developers notice. Each section of
logs/output are properly tagged, which in turn can be
parsed by even a simple parser. Figure 6 depicts a sam-
ple test output, and, Figure 7 shows a sample log file
contents. The HTML output depicted in Figure 1 is tes-
timony to the fact that LTP log/output can be parsed very
easily. Hence, a simple parser was able to generate this
HTML from a normal text output. And this very triv-
ial output format will also enable us to write the future
XML parser.

Many test cases were found to be broken, as many ker-
nel features have undergone changes, and, the same test-
cases were not cleaned. LTP clearly distinguishes the
way test cases should report results, with keywords like
INFO, BROK, CONF, RETR, PASS, FAIL, etc. well
documented in the LTP manpages. Elaborate informa-
tion about the test case behavior is also reported along
with these keywords.

Everybody can put forth their views of how LTP should
move forward, what it should address, and what it
should avoid. The LTP community highly appreciates
patches, the benefit of which goes directly to all. LTP
has discovered opportunity in positive criticism, and has
focused with more vigor on its primary goal of pro-
viding a functional and regression test suite. It will
keep growing at any cost along with the growing kernel,
while simultaneously addressing bottlenecks in other ar-
eas too. However, we need more active contribu-
tion from the kernel developers to make LTP a very
strong and useful test suite for the Linux kernel.

Acknowledgments

We would like to thank Robert Williamson, IBM, for his
input to and review of drafts of this paper. We also owe
lot of thanks to Sudarshan Rao, Premalatha Nair, and
our team mates for their active support and enthusiasm.
And a special thanks to all those LTP developers whose
immense contribution keeps this project growing.

Legal Statement

c©International Business Machines Corporation 2008. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] Linux test project download page.
https://sourceforge.net/project/

showfiles.php?group_id=3382.



100 • Building a Robust Linux kernel piggybacking The Linux Test Project

[2] Linux test project home page.
https://sourceforge.net/projects/ltp.

[3] Linux test project mailing list.
https://sourceforge.net/mailarchive/

forum.php?forum_name=ltp-list.

[4] Linux test project source code repository.
http://ltp.cvs.sourceforge.net/ltp/.

[5] B. Boehm. Software Engineering Economics.
Prentice Hall, 1981.

[6] N. Hinds. Kernel korner: The linux test project:
Finding 500 bugs in 50 different kernel versions is
the fruit of this thorough linux testing and code
coverage project. Linux Journal, 2004. http:
//www.linuxjournal.com/article/7445.

[7] M. Iyer. Linux test project documentation howto.
http://ltp.sourceforge.net/

documentation/how-to/ltp.php.

[8] P. Larson. Improving the linux test project with
kernel code coverage analysis. Linux Symposium
2003.

[9] P. Larson. Testing linux with linux test project.
Linux Symposium 2002.

[10] P. Larson, R. Williamson, and M. Ridgeway.
Linux test project technical papers.
http://ltp.sourceforge.net/

documentation/technicalpapers.



Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


