
Containers checkpointing and live migration

Andrey Mirkin
OpenVZ

major@openvz.org

Alexey Kuznetsov
OpenVZ

alexey@openvz.org

Kir Kolyshkin
OpenVZ

kir@openvz.org

Abstract

Container-type virtualization is an ability to run multiple
isolated sets of processes, known as containers, under a
single kernel instance. Having such an isolation opens
the possibility to save the complete state of (in other
words, to checkpoint) a container and later to restart it.
Checkpointing itself is used for live migration, in partic-
ular for implementing high-availability solutions.

In this paper, we present the checkpointing and restart
feature for containers as implemented in OpenVZ. The
feature allows one to checkpoint the state of a running
container and restart it later on the same or a different
host, in a way transparent for running applications and
network connections. Checkpointing and restart are im-
plemented as loadable kernel modules plus a set of user-
space utilities. Its efficiency is proven on various real-
world applications. The overall design, implementation
details and complexities, and possible future improve-
ments are explained.

1 Introduction

OpenVZ is container-based virtualization for Linux.
OpenVZ partitions a single physical server into multi-
ple isolated containers. As opposed to other virtualiza-
tion solutions, all containers are running on top of a sin-
gle kernel instance. Each container acts exactly like a
stand-alone server; a container can be rebooted inde-
pendently and have root access, users, IP address(es),
memory, processes, files, etc. From the kernel point of
view, a container is the separate set of processes com-
pletely isolated from the other containers and the host
system.

Having a container not tied to a particular piece of hard-
ware makes it possible to migrate such a container be-
tween different physical servers. The trivial form of mi-
gration is known as cold (or offline) migration, which

is performed as follows: stop a container, copy its file
system to another server, start it. Cold migration is of
limited use since it involves a downtime which usually
requires prior planning.

Since a container is an isolated entity (meaning that all
the inter-process relations, such as parent-child relation-
ships and inter-process communications, are within the
container boundaries), its complete state can be saved
into a disk file—the procedure is known as checkpoint-
ing. A container can then be restarted back from that
file.

The ability to checkpoint and restart a container has
many applications, such as:

• Hardware upgrade or maintenance.

• Kernel upgrade or server reboot.

Checkpoint and restart also makes it possible to move a
running container from one server to another without a
reboot. This feature is known as live migration. Sim-
plistically, the process consists of the following steps:

1. Container’s file system transfer to another server.

2. Complete state of container (all the processes and
their resources) is saved to a file on disk.

3. The file is copied to another server.

4. The container is restarted on another server from
the file.

Live migration is useful for:

• High availability and fault tolerance.

• Dynamic load balancing between servers in a clus-
ter of servers.

• 85 •



86 • Containers checkpointing and live migration

This paper is organized as follows. Section 2 discusses
related work. Section 3 provides prerequisites and re-
quirements for checkpointing. Section 4 presents over-
all design of checkpoint and restart system. Section 5
describes the algorithm for live migration of containers.
Section 6 provides possible ways for live migration op-
timization. Finally, the paper is ended with a brief con-
clusion.

2 Related Work

There are many another projects which proposed check-
point and restart mechanisms:

• CHPOX (Checkpoint for Linux) [1]

• EPCKPT (Eduardo Pinheiro Checkpoint Project) [2]

• TCPCP (TCP Connection Passing) [4]

• BLCR (Berkeley Lab Checkpoint/Restart) [7]

• CRAK (Checkpoint/Restart As a Kernel Module) [5]

• ZAP [6]

• Sprite [10]

• Xen [8]

• VMware [9]

Not all the systems are available as open source soft-
ware, and the information about some of them is pretty
scarce. All the systems which are available under an
open source license lack one feature or another. First,
except for some written-from-scratch process migra-
tion operating systems (such as Sprite [10]), they can
not preserve established network connections. Second,
general-purpose operating systems such as UNIX were
not designed to support process migration, so check-
point and restart systems built on top of existing OSs
usually only support a limited set of applications. Third,
no system guarantees processes restoration on the other
side because of resource conflicts (e.g., there can be a
process on a destination server with the same PID).

Hardware virtualization approaches like Xen [8] and
VMware [9] allow checkpointing and restarting only
an entire operating system environment, and they can
not provide checkpointing and restarting of small sets
of processes. That leads to higher checkpointing and
restart overhead.

3 Prerequisites and Requirements for System
Checkpointing and Restart

Checkpointing and restarting a system has some prereq-
uisites which must be supplied by the OS which we use
to implement it. First of all, a container infrastructure is
required which gives:

1. PID virtualization – to make sure that during
restart the same PID can be assigned to a process
as it had before checkpointing.

2. Process group isolation – to make sure that parent-
child process relationships will not lead to outside
a container.

3. Network isolation and virtualization – to make sure
that all the networking connections will be isolated
from all the other containers and the host OS.

4. Resources virtualization – to be independent from
hardware and be able to restart the container on a
different server.

OpenVZ [11] container-type virtualization meets all
these requirements. Other requirements which must be
taken into account during the design phase are:

1. The system should be able to checkpoint and restart
a container with the full set of each process’ re-
sources including register set, address space, al-
located resources, network connections, and other
per-process private data.

2. Dump file size should be minimized, and all ac-
tions happening between a freeze and a resume
should be optimized to have the shortest possible
delay in service.

4 Checkpointing and Restart

The checkpointing and restart procedure is initiated
from the user-level, but it is mostly implemented at
the kernel-level, thus providing full transparency of the
checkpointing process. Also, a kernel-level implemen-
tation does not require any special interfaces for re-
sources re-creation.

The checkpointing procedure consists of the following
three stages:



2008 Linux Symposium, Volume Two • 87

1. Freeze processes – move processes to previously
known state and disable network.

2. Dump the container – collect and save the com-
plete state of all the container’s processes and the
container itself to a dump file.

3. Stop the container – kill all the processes and un-
mount container’s file system.

The restart procedure is checkpointing, vice versa:

1. Restart the container – create a container with the
same state as previously saved in a dump file.

2. Restart processes – create all the processes inside
the container in the frozen state, and restore all of
their resources from the dump file.

3. Resume the container – resume processes’ execu-
tion and enable the network. After that, the con-
tainer continues its normal execution.

The first step of the checkpointing procedure and also
the last step of restart procedure before processes can re-
sume their execution is process-freeze. The freeze is re-
quired to make sure that processes will not change their
state and saved processes’ data will be consistent. It is
also easier to reconstruct frozen processes.

Process freeze is performed by setting the special flag
TIF_FREEZE on all the processes’ threads. In this
case, the PF_FREEZE task flag can not be used, as
atomic change is required. After TIF_FREEZE flag
is set on all the threads, each process receives a fake
signal. Sending the fake signal is for moving all the
threads to a beforehand known state—in this case, it is
refrigerator(). Using just a fake signal for freez-
ing processes has the benefit that all the signals which
are on the way to a process will be saved and delivered
after the process restart.

Using such a mechanism for processes freeze has bene-
fits for processes which are in the kernel context at the
moment of freezing—they will handle the fake signal
before returning to user mode, and will be frozen as all
the other processes are. If a process is in an uninter-
ruptible state (system call or interrupt handling), it will
be frozen right after the kernel event is completed. If
a process is in an interruptible system call, it will be
interrupted and handle the fake signal. In most cases,

Session

Group 1

Group 2

Group 3

Session
leader

Group
leader Group

leader

Group
leader

Figure 1: Process hierarchy

such system calls will be automatically restarted; other-
wise, the caller should be prepared for the appropriate
error handling. Such a mechanism is simple, as it uses
the already implemented “software suspend” kernel fea-
ture, and so does not require much change in the kernel
source code.

It is very important to save a consistent state of all the
container’s processes. All process dependencies should
be saved and reconstructed during restart. Dependencies
include the process hierarchy (see Figure 1), identifiers
(PGID, SID, TGID, and other identifiers), and shared
resources (open files, SystemV IPC objects, etc.). Dur-
ing the restart, all such resources and identifiers should
be set correctly. Any incorrectly restored parameter can
lead to a process termination, or even to a kernel oops.

Another big area of checkpointing and restart is net-
working. During checkpointing and restart, the net-
work should be disabled—it is needed to preserve net-
work connections. The simplest way to disable the net-
work is to drop all incoming packets, as processes are
frozen and can not process incoming packets. From the
point of view of an outside, user it looks like a tempo-
rary link network problem, not something like “host un-
reachable” message. Such a behavior is acceptable since
the TCP protocol has a mechanism to resend packets if
no acknowledgment is received, and for the UDP proto-
col, packet loss is expected.

As most of the resources must be restored from the pro-
cess context, a special function (called “hook”) is added



88 • Containers checkpointing and live migration

on top of the stack for each process during the restart
procedure. Thus, the first function which will be exe-
cuted by a process will be that “hook,” and the process
itself will restore its resources. For the container’s init
process, this “hook” also restores the container state in-
cluding mount points, networking (interfaces, route ta-
bles, iptables rules, and conntracks), and SystemV IPC
objects; and it initiates process tree reconstruction.

5 Live Migration

Using the checkpointing and restart feature, it is easy
to implement live migration. A simple algorithm is im-
plemented which does not require any special hardware
like SAN or iSCSI storage:

1. Container’s file system synchronization. Transfer
the container’s file system to the destination server.
This can be done using the rsync utility.

2. Freeze the container. Freeze all the processes and
disable networking.

3. Dump the container. Collect all the resources and
save them to a file on disk.

4. Second container’s file system synchronization.
During the first synchronization, a container is still
running, so some files on the destination server can
become outdated. That is why, after a container is
frozen and its files are not being changed, the sec-
ond synchronization is performed.

5. Copy the dump file. Transfer the dump file to the
destination server.

6. Restart the container on the destination server. At
this stage, we are creating a container on the desti-
nation server and creating processes inside it in the
same state as saved in dump file. After this stage,
the processes will be in the frozen state.

7. Resume the container. Resume the container’s ex-
ecution on the destination server.

8. Stop the container on the source server. Kill the
container’s processes and unmount its file system.

9. Destroy the container on source server. Remove
the container’s file system and config files on the
source server.

If, during the restart, something goes wrong, the migra-
tion process can be rolled back to the source server, and
the container will resume execution on the source server
as if nothing happened.

In live migration for external clients which connected
to the container via the network, the migration process
will look like a temporary network problem (as live mi-
gration is not instantaneous). But after a delay, the con-
tainer continues its execution normally, with the only
difference being that it will already be on the destina-
tion server.

In the above migration scheme, Stages 3–6 are respon-
sible for the most delay in service. Let us take a look at
them again and dig in a little bit deeper:

1. Dump time – the time needed to traverse over all
the processes and their resources and save this data
to a file on disk.

2. Second file system sync time – time needed to per-
form the second file system synchronization.

3. Dump file copying time – time needed to copy the
dump file over the network from the source server
to the destination server.

4. Undump time – time needed to create a container
and all its processes from a dump file.

6 Migration Optimizations

Experiments show that second file system sync time and
dump file copying time are responsible for about 95%
of all the delay in service. That is why optimization of
these stages can make sense. The following options are
possible:

1. Second file system sync optimization – decrease
the number of files being compared during the sec-
ond sync. This could be done with the help of file
system changes tracking mechanism.

2. Decreasing the size of a dump file:

(a) Lazy migration – migration of memory after
actual migration of container, i.e., memory
pages are transferred from the source server
to the destination on demand.

(b) Iterative migration – iterative migration of
memory before actual migration of container.

These three optimizations are described below.



2008 Linux Symposium, Volume Two • 89

Source server Destination server

Frozen
container

Restarted
container

“page-in”
 swap device

“page-out”
daemon

Network 1
2

3

4

5

1. Request a page from swap.

2. Resend the request to the source server.

3. Find the page on the source server.

4. Transfer the page to the destination server.

5. Load the page to memory.

Figure 2: Lazy migration

6.1 File System Changes Tracking

The idea is that when this system is activated, it begins
to collect the names of the files being changed and stores
them in a list. The list of modified files is to be used
during the second file system synchronization. It can
dramatically decrease second file system synchroniza-
tion time. Tracking file system changes can not be im-
plemented as a separate loadable kernel module, as it
requires core kernel changes.

6.2 Lazy Migration

During live migration, all processes’ private data are
saved to a dump file, which is then transferred to the
destination server. In the case of large memory usage,
the size of the dump file can be huge, resulting in an
increase of dump file transfer time, and thus in an in-
creased delay in service. To handle this case, another
type of live migration can be used—lazy migration. The
idea is the following—all the memory pages allocated
by processes are marked with a special flag, which is
cleared if a page is changed. After that, a container can
be frozen and its state can be dumped, but in this case
only pages without this flag are stored. That helps to
reduce the size of a dump file.

The only problem which should be also solved here is
how to transfer all the remaining memory pages from
the source server to the destination. A special page-in
swap device on the destination server and a page-out
daemon on the source server are proposed to solve this
problem.

Iteration 1
Container's

memory

Source server Destination server

Iteration 2

pages changed during iteration 1

all pages

changed pages

Iteration 3

pages changed during iteration 2

changed pages

Figure 3: Iterative migration

During processes restart on the destination server, all the
pages which are not saved to the dump file are marked
as swapped to a page-in device. When a process re-
sumed on the destination server accesses a page which
is marked as swapped, a request to the swap device is
generated. The page-in device resends this request to
the page-out daemon on the source server. The page-
out daemon sends the requested page to the destination
server, and then this page is loaded into memory on the
destination server. See Figure 2 for details. During the
first few minutes pages, are transferred to the destina-
tion server on demand. After a while, the swap-out is
forced, and all the pages are transferred from the source
server to the destination.

6.3 Iterative Migration

Another way to decrease the size of the dump file is
to transfer memory pages in advance. In this case, all



90 • Containers checkpointing and live migration

the pages are transferred to the destination server be-
fore container freeze. But as processes continue their
normal execution, pages can be changed and transferred
pages can become outdated. That is why pages should
be transferred iteratively. On the first step, all pages are
marked with a clean flag and transferred to the desti-
nation server. Some pages can be changed during this
process, and the clean flag will be removed in this case.
On the second step, only the changed pages are trans-
ferred to the destination server. See Figure 3 for details.
This iterative process stops if the number of the changed
pages becomes zero, or the number of the changed pages
becomes more than N

2i , where N is the total number of
pages and i is the iteration number.

All the transferred pages temporarily stored on the des-
tination server are used during the restart process. All
the pages changed during the last iteration are stored in
a dump file and restored from it during the restart pro-
cess.

7 Conclusion

The checkpointing and restart mechanism for contain-
ers has been designed and implemented in the OpenVZ
Linux kernel. On top of this mechanism, the live migra-
tion feature has been implemented, allowing the move-
ment of containers from one server to another without
a reboot. The efficiency of the system has been proven
on various real-world applications. Possible optimiza-
tions of the migration algorithm have been proposed to
decrease the delay in service.

References

[1] O.O. Sudakov, Yu.V. Boyko, O.V. Tretyak, T.P.
Korotkova, E.S. Meshcheryakov, Process
checkpointing and restart system for Linux,
Mathematical Machines and Systems, 2003.

[2] Eduardo Pinheiro, Truly-Transparent
Checkpointing of Parallel Applications, Federal
University of Rio de Janeiro UFRJ.

[3] Eduardo Pinheiro, Ricardo Bianchini, Nomad,
COPPE Systems Engineering, Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil.

[4] Werner Almesberger, TCP Connection Passing, In
Proceedings of the Linux Symposium (Ottawa,
Ontario, Canada, July, 2004).

[5] Hua Zhong, Jason Nieh, CRAK: Linux
Checkpoint/Restart As a Kernel Module,
Department of Computer Science, Columbia
University, Technical Report CUCS-014-01,
November 2001.

[6] Steven Osman, Dinesh Subhraveti, Gong Su,
Jason Nieh, The Design and Implementation of
Zap: A System for Migrating Computing
Environments. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA,
December 9–11, 2002.

[7] Jason Duell, The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart,
Lawrence Berkeley National Laboratory

[8] Xen. http://www.xen.org

[9] VMware, Inc. http://www.vmware.com

[10] The Sprite Operating System. http:
//www.eecs.berkeley.edu/Research/
Projects/CS/sprite/sprite.html

[11] OpenVZ. http://openvz.org



Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


