
Performance Inspector Tools with Instruction Tracing and Per-Thread /
Function Profiling

Milena Milenkovic, Scott T. Jones, Frank Levine, Enio Pineda
International Business Machines Corporation

{mmilenko, stjones, levinef, enio}@us.ibm.com

Abstract

The open-source Performance InspectorTM project con-
tains a suite of performance analysis tools for Linux R©

which can be used to help identify performance prob-
lems in JavaTM and C/C++ applications, as well as help
determine how applications interact with the Linux ker-
nel. One such tool is the Per-Thread Time Facility
(PTT); it consists of a kernel module and user-space
components which maintain thread statistics for time
(cycles) or any of a number of predefined metrics. JProf
is a Java/C/C++ profiler which uses PTT to produce re-
ports with per-method/function metrics. Another tool
is a Tracing Facility, which may be used for tracing
instructions, thread dispatches, and sampling events.
In this paper we present the details of the most com-
monly used Performance Inspector tools, targeting the
audience of developers interested in performance fine-
tuning.

1 Introduction

“I suggest you count your bees, you may find
that one of them is missing.”

—Inspector Clouseau,
Pink Panther Strikes Again

With growing software complexity, a performance ana-
lyst job is becoming increasingly difficult. The Perfor-
mance Inspector project (PI) consists of a set of tools
that helps with analyzing application and system per-
formance on Linux. It includes a kernel driver mod-
ule (pitrace) and various user-space applications and li-
braries. The project is hosted on SourceForge (http:
//perfinsp.sourceforge.net). PI currently
includes support for the Intel x86, Intel and AMD
x86_64, and IBM PowerPC64 and s390 platforms.

The PI toolset enables analysts to identify the overall
processor utilization, and application/thread hardware
counter summary information. PI provides support for
both application and kernel sample-based profiling or
instruction tracing. Sample-based profiling without full
context information may not give enough analysis infor-
mation to tune large applications, so PI provides method
(Java) or function/subroutine (C/C++) tracing at the ap-
plication level, relying on built-in Java Virtual Machine
(JVM) support for method entries and exits and gcc
compile options to generate entry/exit notifications. The
Per Thread Time facility, together with the metrics cali-
bration, allows for accurate per-method counts of stable
metrics such as instruction completed. Because of the
repeatability of this metric, it has been used to assign in-
struction budgets to application components. Utilizing
the PI programmatic control of tracing and the consis-
tency of the measurements, changes in component in-
struction budgets can be identified.

PI encompasses the following user-space components:

• The libperfutil library includes a set of APIs for
communication with the pitrace driver and other
utilities. The JPerf.jar package includes support
for the equivalent Java interfaces: for example, you
can turn instruction tracing on and off directly from
a Java application, thus enabling fine-grain control
of the traced code.

• JProf (libjprof) is a Java profiling agent that re-
sponds to events from either the JVM Profiler Inter-
face (JVMPI) or the JVM Tool Interface (JVMTI),
based on the invocation options. Common usages
of JProf are:

– Capturing execution flow in the form of
method call trees or a method trace.

– Resolving Just-In-Time (JIT) compiled code
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Type and Length | Major Code | Minor Code | TimeStamp | Variable Data

16 bit | 16 bit | 32 bit | 32 bit | variable length

Figure 1: Trace record format

addresses to method names to support trace
post-processing.

– Capturing the state of the Java Heap that can
later be processed by the hdump PI applica-
tion to help locate memory leaks.

– Capturing information about IBMTM JVM
usage of locks via the Java Lock Monitor
(JLM).

• The rtdriver application is a socket-based com-
mand interface that enables interactive control of
JProf, such as when to start or stop of profiling, or
when to dump the contents of the Java Heap.

• The swtrace application is used to control the Trac-
ing facility. This application is also used to invoke
the AboveIdle tool—a lightweight tool which re-
ports processor utilization (busy, idle, and interrupt
time).

• The post application is used to convert binary trace
files to readable reports using the liba2n (A2N—
address-to-name) library, which converts addresses
to symbolic names. This library may be used to
convert addresses to names for dynamically gener-
ated code, such as the code generated by Java via
the Just-In-Time (JIT) support; along with time-
stamped tracing, it provides accurate symbolic res-
olution even when addresses are reused.

• Other tools include msr, used to read and write
model-specific registers (MSR); mpevt, used to ma-
nipulate hardware performance counter events; ptt,
used to give summary per-thread metric counts;
and cpi, used to measure cycles per instruction
(CPI) for an application or a time interval.

The rest of the paper is organized as follows. Section 2
explains the Tracing facility and what kind of infor-
mation can be traced with it. Section 3 explains the
inner workings of the Per-Thread Time Facility which
provides per-thread metric virtualization, and Section 4
explains how metrics are adjusted for instrumentation

overhead in the JProf profiler. Section 5 briefly de-
scribes how users can visualize some of the PI reports,
and the last section gives directions for future project
development.

2 Tracing Facility

PI includes support for a software tracing mechanism—
the Tracing Facility. Although there are already estab-
lished Linux tools with somewhat similar functionality,
our tracing mechanism accurately captures information
necessary for address-to-name symbol resolution of dy-
namically generated code such as Java JITed code. The
main issue with the JITed code is that it can be recom-
piled and moved around the address space. The tracing
mechanism combines kernel knowledge about memory
segments for a process with JProf jita2n (JITed code
address-to-name) synchronizing records and the corre-
sponding dynamically generated code.

We consider two main groups of trace records: one
group consists of Module Table Entry (MTE) records
and the other group consists of all the other record
types, such as ITrace and tprof. Each group uses a
per-cpu buffer, i.e., there is an MTE buffer and a non-
MTE buffer (trace buffer) allocated for each CPU in
the pitrace driver. These buffers are pinned (allocated
in pitrace kernel module) and memory mapped, so that
libperfutil can read them directly. All trace records
have a similar format, shown in Figure 1. The Type and
Length field specifies the record length and the type of
the Variable Data field. The Major Code field specifies
a trace record type, for example, MTE, tprof, or ITrace.
The Minor Code field specifies a subtype within a type,
e.g., a process name MTE record. The TimeStamp field
has the lower 32-bits of the time stamp, and a special
trace record is written to indicate a change in the higher
32 bits.

Figure 2 shows a block scheme of PI components and
files involved when tracing a Java application.
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Figure 2: Block scheme for tprof/ITrace tracing of Java application

The swtrace application is the front-end which con-
trols the tracing facility via libperfutil APIs. It is
used to enable tracing of specific record types, specify
the size of trace and MTE buffers, turn tracing on and
off, write the content of trace buffers to a file, and se-
lect the Tracing facility mode. There are three possible
modes: normal, wrap-around, and continuous. In the
normal mode, tracing automatically stops when either
an MTE buffer or a trace buffer becomes full. In the
continuous mode, both MTE and trace buffer segments
are written to a file when a segment size reaches a given
threshold. In the wrap-around mode, meant to be used
to analyze application crashes or the most recent appli-
cation activity, MTE buffers are written continuously in
a file, and other trace records wrap around the buffer.
The default trace file name is swtrace.nrm2.

When initialized and turned on, the Tracing facility gets
notifications about each task exit and unmap, using
the existing kernel notification mechanism. When a task
exits, we write its parent tree (if not already written), and
if the task is not a clone, we also write a trace record
for each of its mapped executable memory segments.
Similarly, when a memory segment is unmapped, we
write the parent tree and executable segment info for the
corresponding task. When tracing is turned off, we write
previously unwritten MTE data for all tasks still alive.

A trace record write can be initiated from the
pitrace module, or from a user application, using the
libperfutil TraceHook() function. The JProf pro-
filer can use this function to trace start, stop, and name
information for each Java thread; it then also writes the
same information into a log-jtnm file. When a JITed
method is loaded, JProf can write trace records with
the method start address, current thread, and the current
time stamp; it then also writes address to name trans-
lation info such as code address, method name, class
name, time stamp, and possibly bytes of instructions,
into a log-jita2n file. This information is used by
post to resolve addresses of trace records to the correct
Java method, class, and thread name. Post can create an
ASCII version of a trace (post.show), a tprof.out re-
port from tprof trace records, and an arc report from
ITrace records. ITrace and tprof tracing mechanisms
are explained in more details in the following subsec-
tions.

2.1 ITrace

To fully understand a complex performance issue, ana-
lysts sometimes need to see a full instruction trace. To
get such a trace, we actually need to trace only taken
branch instructions, using the underlying hardware sup-
port for trap on branch or taken branch. The only is-
sue is that in some earlier 2.6 kernel distributions, trap
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# arc Field Definition:
# 1: cpu no.
# 2: K(kernel) or U(user)
# 3: last instruction type
# 0=INTRPT, 1=CALL, 2=RETURN, 3=JUMP, 4=IRET, 5=OTHER, 6=UNDEFD, 7=ALLOC
# 4: no. of instructions
# 5: @|? = Call_Flow | pid_tid
# 6: offset (from symbol start)
# 7: symbol:module
# 8: pid_tid_pidname_[threadname]
# 9: last instruction type (string)
# 10: line number (if available)
...

0 U 3 1 @ 120 <plt>:/opt/ibm-java2-i386-50/jre/bin/libj9prt23.so 11c1_11c1_java_main JUMP 0
0 U 3 2 @ 0 __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main JUMP 0
0 U 1 1 @ 2c __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main CALL 0
0 U 2 19 @ 0 __pthread_enable_asynccancel:/lib/libpthread-2.5.so 11c1_11c1_java_main RETURN 0
0 U 1 7 @ 31 __libc_write:/lib/libpthread-2.5.so 11c1_11c1_java_main CALL 0
0 K 5 1 @ 6 no_singlestep:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 0 syscall_trace_entry:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 0 do_syscall_trace:vmlinux 11c1_11c1_java_main OTHER 0
0 K 5 0 @ 2e do_syscall_trace:vmlinux 11c1_11c1_java_main OTHER 0

...
0 U 2 1 @ 1a java/io/PrintStream.print(Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main RETURN 0
0 U 3 1 @ 19f hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 5 @ 1af hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 11 @ c4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 7 @ d4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0
0 U 3 7 @ d4 hellop.main([Ljava/lang/String;)V:JITCODE 11c1_11c1_java_main JUMP 0

...

Figure 3: Excerpts from an arc file

on branch flags might not be correctly preserved across
interrupts and system calls, so we need to dynamically
patch such critical places or to use kprobes.

We call a branch trace ITrace. ITrace can include both
user- and kernel-space trace records. One ITrace record
has addresses of the branch and the branch target, and
possibly the number of instructions executed from be-
tween the previous and the last branch execution. There
are separate major codes for user and kernel addresses.
On PowerPC, ITrace records can also include load and
store addresses (with different major codes).

The post application can produce an arc report from an
ITrace and the corresponding log-jita2n file. Fig-
ure 3 shows excerpts from an arc file obtained from the
ITrace of a simple hellop application, where main()
calls myA() in a loop and prints a value; myA() calls
myC() which calculates that value. We can follow a
write request from JITed code to a JVM library to a
system library to the kernel and back. (One arc ex-
cerpt in the figure shows the entry to the kernel and the
other one shows the exit from PrintStream.print
to hellop.main.)

ITrace can be controlled using the provided run.
itrace script, or libperfutil C or Java interfaces.
run.itrace is normally used when we do not want
to or cannot change the tracing target application; the
script asks for the lowest pid to trace. A more con-
trolled ITrace can be obtained by using ITraceOn()
and ITraceOff() interfaces around the section of the
code to be traced.

Currently PI does not include support for continuous
ITrace. However, we are investigating an algorithm that
might enable this feature in future releases.

2.2 Tprof

Tprof trace can be used for system performance analy-
sis. It is based on a sampling technique which encom-
passes the following steps:

• Interrupt the system periodically if time-based, or
when performance-monitoring hardware reaches a
given threshold, if event-based.

• Determine the address of the interrupted code
along with the process id (pid) and thread id (tid).
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================================
)) Process_Thread_Module_Symbol

================================

LAB TKS %%% NAMES

PID 2372 51.25 java_103c
TID 1704 36.82 tid_main_103c
MOD 721 15.58 vmlinux
SYM 123 2.66 _spin_unlock_irqrestore
SYM 88 1.90 system_call
SYM 48 1.04 write_chan
SYM 42 0.91 __copy_to_user_ll
...
MOD 338 7.30 JITCODE
SYM 81 1.75 hellop.myC()V
SYM 32 0.69 hellop.main([Ljava/lang/String;)V
SYM 17 0.37 java/lang/String.indexOf(II)I
SYM 17 0.37 java/io/PrintStream.write(Ljava/lang/String;)V
SYM 16 0.35 java/lang/Long.getChars(JI[C)V
SYM 15 0.32 java/io/FileOutputStream.write([BII)V
SYM 13 0.28 java/lang/StringBuffer.append(Ljava/lang/String;)Ljava/lang/StringBuffer;
SYM 12 0.26 sun/nio/cs/StreamEncoder.flushBuffer()V
...

Figure 4: A time-based tprof report excerpt

• Record tprof trace record in a trace buffer.

• Return to the interrupted code.

The detailed steps to obtain a tprof trace and a sub-
sequent tprof.out report are encapsulated by the
run.tprof script. This script interacts with the analyst
to set up and run necessary steps. Similarly to ITrace,
JProf is used to collect the necessary JIT address-to-
name information.

The Tprof.out report shows percentages of tprof
trace records for various granularity, such as for each
process, module within a process, or a symbol within a
module. Figure 4 shows an excerpt from a time-based
tprof report for the hellop application, for symbols
within a module within a thread. Such reports can be
used to detect hot-spots in the application or to indicate
the resource distribution.

2.3 Other Trace Types

The trace format can easily be used for various types of
trace records. In addition to ITrace, tprof, MTE, system
information, and time stamp change trace records, the
tracing facility currently can produce traces of thread
dispatches, and interrupt entries and exits.

3 Per-Thread Time Facility

To accurately determine performance metrics accumu-
lated in an instrumented function, the user-space profiler
needs operating system or device driver support for vir-
tualized per-thread metrics (PTM). Such support needs
to:

• Keep separate metrics count for threads of interest.
The PTM code needs to get control when a new
thread is about to be dispatched, and to read and
save away values of hardware monitoring counters
used for metrics.

• Factor out time spent in external interrupts.
When applications are being monitored, there are
some kernel operations that are being done as a di-
rect result of the application code, such as those
that require a kernel service. When those services
are executed synchronously, it is usually best to in-
clude the overhead of the entire code path, includ-
ing the kernel code path as part of the application
because that is how the application will run nor-
mally, without instrumentation. For example, we
do not want to remove the influence of page faults.
However, some events, such as I/O interrupts, tend
to occur randomly on a given thread. When trying
to produce repeatable measurements, it is helpful to
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factor out or separate out the metric counts related
to asynchronous interrupts.

• Make per-thread metric values available to the pro-
filer. One way to do it is to use a system call or an
ioctl. However, we can avoid the overhead of
system calls using a mapped data area with all nec-
essary information.

The best solution would be to have all these features pro-
vided by the operating system. By having the OS mon-
itor the selected threads, we avoid security issues, es-
pecially if an application is allowed to monitor only its
own threads. The perfmon2 project is an excellent PTM
candidate and we eagerly await its full inclusion into the
mainstream Linux kernel [1]. In the mean time, we im-
plement the necessary support in the Per-Thread Time
Facility (PTT) in the PI driver module, pitrace. Note
that a more correct name would be Per-Thread Metrics
Facility; PTT is a legacy name from the time it sup-
ported only per-thread processor cycles. Today PTT can
support virtualization of any physical metric provided
by the performance monitoring counters.

The pitrace module hooks the scheduler close to
its return, when the thread to be scheduled is already
known. We either use kprobes or dynamically patch
the kernel ourselves. To factor out external interrupts,
we patch the interrupt entries and exits, so that the time
spent in interrupts is accounted for in per-cpu interrupt
buckets.

When a request to monitor a thread is made, the driver
allocates and maps a thread work area which the appli-
cation or profiler attached to the application may access
directly. The profiler specifies the exact metrics to be
monitored and the driver simply reads and accumulates
the specified metrics at dispatch and interrupt entry/exit
time. Figure 5 shows the PTM state machine. For exam-
ple, when a previous state was the Dispatch and we are
currently entering an interrupt, the metrics delta (differ-
ence from the metrics in the last state) should be added
to the accumulated thread metrics.

The mapped thread work area contains the accumulated
per-thread values and the per-cpu values in the last PTM
state. The profiler reads the metrics, calculates the dif-
ferences from the value of the counters at the time of
the last PTM state, and adds those differences to the
accumulated values. Since there is a chance that the
thread could be dispatched out and back in during the

Interrupt entryInterrupt entry Interrupt exitInterrupt entryInterrupt entry

DispatchDispatchDispatchDispatch

Interrupt entry

I

T/I

T T/I T/I T

II

T

T   – metrics applied to a thread
I    – metrics applied to the interrupt bucket
T/I – applied to a thread or the interrupt bucket, depending 
whether there are pending interrupts

Figure 5: State machine for virtual per-thread metrics

calculations, there should be a simple way for the pro-
filer to determine that this has occurred. One way to
provide this feature is to also keep track of the number
of dispatches and interrupts in the mapped thread work
area. The profiler reads the count of dispatches and in-
terrupts before reading the metrics and reads them again
after performing the calculations. If the number of dis-
patches and interrupts does not change, then the calcu-
lated values can be used. If the thread was dispatched
or interrupted while reading counters, then the calcula-
tions should be repeated until the number of dispatches
and interrupts stays the same [2]. Our experiments in-
dicate that this procedure needs to be repeated at most a
couple of times.

3.1 PTT Interfaces and ptt Application

The libperfutil library provides interfaces to the
PTT facility in the driver. There are APIs to initial-
ize the PTT facility (PttInit()) and to terminate it
(PttTerminate()). Instead of using a single func-
tion to get the current thread metric values, recent pack-
ages provide separate functions depending on whether
the underlying platform is a uni- or multi-processor sys-
tem, and on the number and combination of metrics
(counters vs. cycles), so that the most frequently used
cases of one or two metrics are optimized to reduce
overhead. The required function is automatically se-
lected by libperfutil, so that the profiler code only
needs to set a pointer to it. The interested reader can
get more details about available APIs from the package
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documentation. The maximum number of metrics col-
lected concurrently is eight, regardless of the number of
performance monitoring counters available.

One example of PTT facility usage is the ptt applica-
tion, which can turn PTT on and off and dump informa-
tion about threads for which PTT data is available.

4 JProf Callflow Tracing and Metrics Calibra-
tion

Identifying and reporting calling sequences, by receiv-
ing notifications on entries and exits to functions or Java
methods, is an important methodology that has been
shown to be very useful for performance analysis [3].

Based on the invocation options, JProf calls a
libperfutil function, PttInit(), which in turn
initializes the PTT facility. JProf receives notifica-
tions from the Java Virtual Machine (JVM) about Java
method entries and exits, via the JVM Profiler Interface
(JVMPI) or the JVM Tool Interface (JVMTI), and it can
also query the JVM about the method type and other
relevant information.

When an entry or exit event is received, JProf can get
the virtualized metrics for the thread on which it is exe-
cuting. However, the act of observing a metric in a run-
ning application almost always changes the behavior of
that application in some way. For example, the instruc-
tions used to read a metric increase the execution path
length of the application and the memory used to store
what was read reduces the amount of memory available
to the application. That is why the metrics need to be
calibrated, that is, adjusted to compensate for the over-
head caused by the instrumentation required to observe
the metric.

All metrics can be calibrated, but the accuracy of the
calibration depends on the stability of the metric being
observed. For example, the number of processor cy-
cles required to execute a method is not a stable metric,
since it is influenced by a great number of factors such
as memory latency, the size of the instruction or data
cache, the amount of free memory, asynchronous inter-
rupts, and even the size and complexity of the instruc-
tions used by the method. On the other hand, the number
of instructions completed is a stable metric, because the
number of instructions executed along any given path in
the uninstrumented application is fixed. This is why the

JProf calibration algorithm is optimized for instructions,
although it can be applied to any metric.

The most obvious kind of calibration is performed by
merely reading the values of the metrics at entry to and
exit from JProf. By doing this, JProf can eliminate its
own effects on the metrics between these two reads.
We call this internal calibration. To maximize the ac-
curacy of the internal calibration, we want to read the
metrics as soon as possible after entry to JProf (Early
Read) and again at the last possible moment before exit
from JProf (Late Read). Another calibration component
is external calibration—compensation for instrumenta-
tion overhead outside of JProf.

In an ideal world, there would be no instructions before
the Early Read or after the Late Read, but this is never
true. Even the instructions necessary to call the Early
Read routine or setup the actual reading of the values
are overhead that must be removed.

To achieve successful removal of the JProf portion of
external overhead, there are no conditional branches be-
fore the Early Read and after the Late Read, to keep the
instruction path constant.

4.1 The Calibration Algorithm

The basic assumption on which the calibration algo-
rithm is based is that the overhead which must be re-
moved can be computed from the minimum observed
change in the metrics between calls to the profiler. Be-
tween any consecutive calls to the profiler, we can com-
pute metric deltas which are the differences in the metric
values between those acquired by the Early Read rou-
tine from the current call and those acquired by the Late
Read routine from the previous call. Each delta includes
both the external instrumentation overhead that we want
to remove and the actual metric values that we want to
keep.

However, the instrumentation overhead may vary de-
pending on the type of the event (entry or exit), type
of method (native, interpreted or JITed), and even the
transition sequence between methods. The overhead as-
sociated with an entry event following an entry event
may be different from the overhead associated with an
entry event following an exit event, due to optimizations
in the so-called glue code.

The solution is to maintain an array of minimum ob-
served deltas for each sequence of method types and
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transition types. We have found that a sequence of three
method types and the transitions between them is suf-
ficient for all of the applications we have tested. For
example, Interpreted-enters-JITed-enters-Interpreted is
one sequence, while JITed-exits-to-JITed-enters-JITed
is a different sequence.

Working with the JVM, we have found that there are
really three different transition types: entry, exit, and
exception-exit. We treat exception-exit (an exit from a
routine as a result of an exception) as a unique type, in
order to eliminate its influence on statistics gathered for
normal exits.

There are also many different method types. We not
only consider interpreted and JITed methods, but also
native methods. We further distinguish between static
and non-static methods for each of these types, since
non-static routines require additional glue code to iden-
tify the object associated with the method. The last two
method types we use are Compiling and Other. Just as
we defined a special transition type to isolate the effects
of exceptions, we define a special method type for the
Java compiler to isolate its effects. Finally, we define an
Other type to allow us to isolate the effects of methods
whose type can not be accurately identified. This can
occur when profiling is started in the middle of execut-
ing a method and we lack information about the context
in which the method is executing. Thus, we use 8 dif-
ferent method types and 3 different transition types for
a total of 8*3*8*3*8 = 4608 different sequences.

Although the categories are still relatively easy to man-
age, the sheer number of categories introduces other
problems. As the number of categories increases, the
number of events in each category decreases. This
makes it harder to find the true minimum overhead for
each category. It also makes it too costly to save counts
of all of the different types of sequences with every
method.

The solution to both of these problems is to train the
profiler by saving the minimum observed values from
other profiling runs. This is most effective if the train-
ing application generates events in as many valid cat-
egories as possible. Some categories will never occur,
such as JITed-enters-Native-exits-to-Native, which is in-
valid because the native method must return to the JITed
method which called it. We use a trainer Java test case,
which is included in the PI package.

Transition Num Instr
En-jitted-En-jitted 3
En-jitted-En-Jitted 6
En-jitted-En-native 28
En-jitted-En-Native 35
En-jitted-Ex-jitted 3
En-jitted-Ex-Jitted 3
En-Jitted-En-jitted 3
En-Jitted-En-Jitted 4
En-Jitted-En-native 28
En-Jitted-En-Native 29
En-Jitted-Ex-jitted 3
En-Jitted-Ex-Jitted 3
En-native-Ex-jitted 4
En-native-Ex-Jitted 4
En-Native-Ex-jitted 23
En-Native-Ex-Jitted 4
Ex-jitted-En-jitted 1
Ex-jitted-En-Jitted 4
Ex-jitted-En-native 38
Ex-jitted-En-Native 29
Ex-jitted-Ex-jitted 1
Ex-jitted-Ex-Jitted 1
Ex-Jitted-En-jitted 1
Ex-Jitted-En-Jitted 2
Ex-Jitted-En-native 38
Ex-Jitted-En-Native 39
Ex-Jitted-Ex-jitted 1
Ex-Jitted-Ex-Jitted 1

Table 1: Minimum number of instructions for the most
frequently seen transitions. En–method entry, Ex–
method exit, lower case–static methods, upper case–
non-static methods.

4.2 Environmental Overhead

The calibration algorithm described so far still has one
remaining flaw: not all glue code should be associated
with instrumentation overhead. Some glue code will be
executed even if the application is not being profiled.
The calibration algorithm can accurately detect over-
head, but it can not determine how much to remove and
how much to keep. To do this, the profiler requires spe-
cific knowledge about the execution environment when
executing applications that have not been instrumented.

The solution to this problem is to execute the trainer ap-
plication while gathering an instruction trace. By care-
fully analyzing the results of the instruction trace, a set
of minimum values after calibration can be determined.
Table 1 shows an example of minimum calibration val-
ues for the most frequently seen transitions, for IBM
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JVM 5.0 SR5 for 32-bit Linux on Intel platforms. For
example, En-jitted-Ex-Jitted means that a method calls
a static JITed method which then returns to a non-static
JITed method.

Note that we are using only 4 of the types in the 5-type
sequences we described. Due to the difficulty of gener-
ating every possible combination in the trainer code, we
limit the number of the steps to 4. The sequences not
covered by data Table 1 will assume a minimum over-
head of 1. We do not try to determine values for inter-
preted methods, because all methods significantly con-
tributing to the overall application profile will be JITed
after the initial warm-up.

The calibration algorithm must still be used with these
minimum calibration values. The amount of calibration
needed can still vary based on the parameters specified
during instrumentation, even though the environmental
overhead represented by these minimum calibration val-
ues remains constant.

By applying the calibration algorithm with an appropri-
ate set of minimum calibration values, profiling accu-
racy is nearly identical to that achieved by instruction
tracing with a fraction of the impact on the execution
speed of the application. We validated this approach by
comparing a calibrated flow to the instruction trace, for
several testcases.

Note that we assume that the instrumentation overhead
is constant for a particular transition/type sequence.
This is achieved in IBM Java 5. Another concern is
that a Java compiler may in-line methods and then may
or may not produce entry/exit events for such methods.
Disabling in-lining may affect the general overhead of
the application. One approach for Java is to simply
let in-lining occur as normal and only get the entry/exit
events for the methods that are not in-lined. Moreover,
a compiler may optimize code and change it in various
ways, such as partial in-lining or loop unrolling. These
and other optimizations may cause the calibrated met-
rics to vary from what is expected by examining the
code.

4.3 Profiling Exit/Entry Events in C/C++ Code

The same calibration concept can be extended to code
written in other programming languages, such as C.
JProf needs two additional event categories, for C code

entries and exits, so that it can be used for profil-
ing of both standalone C code and code called from
Java using the Java Native Interface (JNI). We imple-
mented a prototype profiler library hookit which sends
entry/exit notifications to JProf. The code to be pro-
filed needs to be compiled using the gcc compile op-
tion -finstrument-functions and to be stati-
cally linked with libhookit.

4.4 JProf Callflow Reports

JProf can produce two kinds of callflow reports, depend-
ing on the invocation options. More frequently used
is a log-rt report, which represents methods orga-
nized into a call tree, with the number of callers and
callees for each method. Figure 6 shows an excerpt of
a log-rt file for hellop. The number of loop iter-
ations was 1000, so both myA and myC are called 1000
times. The BASE column shows the accumulated num-
ber of instructions executed for all 1000 calls.

The other type of callflow report is a log-gen file,
which has a full callflow trace, with one line for each
method entry or exit event, together with the metric
value(s) between two successive events. The records in
a log-gen file are written immediately after a method
entry/exit, so the calibration algorithm has to apply
whatever is the current minimum delta.

5 Performance Inspector report visualization

Several types of reports produced by PI toolset can
be visualized using Visual Performance Analyzer
(VPA), which is an Eclipse-based visual performance
toolkit [4].

With the help of VPA, users can visualize tprof reports
with its Profile Analyzer component, and callflow re-
ports with the Control Flow Analyzer.

6 Conclusion and Future Directions

Although some of PI tools have overlapping function-
alities with other Linux utilities or kernel modules, we
believe that the project significantly contributes to the
always-demanding field of performance analysis, by
providing some unique useful features. One such fea-
ture is per-thread metrics virtualization which, together
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LV CALLS CEE BASE DELTA DS IN NAME
2 1000 1000 11888 2378000 1 6 J:hellop.myA()V
3 1000 0 7004919 1225000 0 12 J:hellop.myC()V
2 1000 1000 9200 2384000 0 7 J:java/lang/StringBuffer.<init>()V
3 1000 1000 48529 2382000 0 8 J:java/lang/StringBuffer.<init>(I)V
4 1000 0 3880 1221000 0 5 J:java/lang/Object.<init>()V
2 1000 2000 37855 3543000 1 6 J:java/lang/StringBuffer.append(J)Ljava/lang/StringBuffer;
3 1000 3000 114912 4709000 5 14 J:java/lang/Long.toString(J)Ljava/lang/String;
4 1000 0 108379 1225000 1 5 J:java/lang/Long.stringSize(J)I
4 1000 0 178282 1225000 0 4 J:java/lang/Long.getChars(JI[C)V
4 1000 1000 10800 2384000 0 5 J:java/lang/String.<init>(II[C)V
5 1000 0 3320 1221000 0 2 J:java/lang/Object.<init>()V

Column Labels:
: LV = Level of nesting (Call Depth)
: CALLS = Calls to this method (Callers)
: CEE = Calls from this method (Callees)
: BASE = Metrics observed
: DELTA = BASE adjustment due to calibration
: DS = Dispatches observed
: IN = Interrupts observed
: NAME = Name of Method or Thread

Figure 6: A log-rt report excerpt with the instruction completed metric

with the metrics calibration mechanism, enables accu-
rate profiling of Java methods or C functions. Also
useful is the combination of the Tracing Facility and
address-to-name resolution mechanism, which results
in correct trace interpretation for dynamically generated
code.

We constantly add support for new hardware platforms,
and we will continue to do so in the future. Current tools
support a limited set of hardware performance counter
events, but this set can be easily extended by adding new
events to per-platform event description files.

We also strive to support new Linux releases. The sensi-
tivity to kernel changes would be significantly reduced
if we could build on the top of mechanisms integrated
with the mainline Linux kernel. In the future, we might
be able to use perfmon2 for per-thread performance
counter virtualization [1]. It would be nice to merge
the Tracing facility with some of the on-going tracing
efforts, such as the Driver Tracing Infrastructure [5].

We maintain a long wish list of useful additions to the
PI project, such as the capability for continuous ITrace.
As always, new ideas and contributions are welcome.
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