
AUGEAS—a configuration API

David Lutterkort
Red Hat, Inc.

dlutter@redhat.com

Abstract

One of the many things that makes Linux configura-
tion management the minefield we all love is the lack
of a local configuration API. The main culprit for this
situation, that configuration data is generally stored in
text files in a wide variety of formats, is both an impor-
tant part of the Linux culture and valuable when humans
need to make configuration changes manually.

AUGEAS provides a local configuration API that
presents configuration data as a tree. The tree is backed
directly by the various config files as they exist today;
modifications to the tree correspond directly to changes
in the underlying files. AUGEAS takes great care to pre-
serve comments and other formatting details across edit-
ing operations. The transformation from files into the
tree and back is controlled by a description of the file’s
format, consisting of regular expressions and instruc-
tions on how to map matches into the tree. AUGEAS cur-
rently can be used through a command line tool, the C
API, and from Ruby, Python, and OCaml. It also comes
with descriptions for a good number of common Linux
config files that can be edited “out-of-the-box.”

1 Introduction

Configuration management of Linux1 systems is a no-
toriously thorny subject. Problems in this space are nu-
merous, from making large numbers of machines man-
ageable by mere mortals, to the sheer mechanics of
changing the configuration files of a single system pro-
grammatically. What makes the latter so difficult is the
colorful variety of configuration file formats in com-
mon use, which has historically prevented any form of
system-wide configuration API for Linux systems.

AUGEAS lays the foundation for such an API by focus-
ing on the most basic and mundane task in this area:

1Most of this paper applies to any Unix-like system, though we
will only talk about Linux here.

changing configuration files in a way that abstracts away
the formatting details that are irrelevant to program-
matic configuration changes. While formatting details
may be irrelevant in this context, they are still impor-
tant, and AUGEAS goes through a lot of trouble to pre-
serve comments, whitespace, etc.

Logic for configuration changes is embedded in many
tools, and the same logic is reinvented multiple times,
often for no other reason than a difference in imple-
mentation language. As an example, Webmin [?] can
edit a wide variety of configuration files; that editing
logic, and the hard work for writing and maintaining it,
is of no use to other configuration tools like Puppet,
Bcfg2, or cfengine, since none of them is written in
Perl. The prospect of reimplementing large parts of this
logic in Ruby for use by Puppet was so unappealing
that it became clear that a language-agnostic and tool-
independent way to achieve this had to be found.

The lack of a simple local configuration API also pre-
vents building higher-level services around configura-
tion changes. Without it, there is no way to set system-
wide (or site-wide) policy for such changes that can be
enforced across multiple tools, from simple local GUI
tools to remote administration capabilities.

AUGEAS tackles this problem in the simplest possible
way and focuses solely on the mechanics of modifying
configuration files.

2 Design

There is no shortage of attempts to simplify and unify
Linux system configuration. Generally, they fall into
one of three categories: keyhole approaches targeted
at one specific purpose; greenfield approaches to solve
modifying configuration data once and for all; and tem-
plating, popular in homegrown config management sys-
tems when plain file copying becomes unsatisfactory,
and often used as a middle ground for the first two.

• 47 •

48 • AUGEAS—a configuration API

A careful look at these three types of approaches was
very instructive in setting AUGEAS’ design goals, and
determining what exactly it should do, and, even more
importantly, what it should not attempt to do.

2.1 Keyhole Approaches

The most direct and obvious approach to scripting con-
figuration changes is to use simple text editing tools like
sed and awk or the equivalent facilities in the script-
ing language of choice. Since changing configuration
data is usually only part of a larger task, like writing an
installer, the resulting scripts are good enough for their
purpose, but not general enough to be of use in other
situations, even if language barriers are not a concern.

All popular open-source config management systems
follow this approach, too, resulting in unnecessary du-
plication of logic to parse and write configuration files,
and a healthy mix of common and unique bugs in that
logic. Even seemingly simple file formats hold surprises
that make it all too easy to write a parser that will fail to
process all legal files for that format correctly. As an
example, one simple and popular format uses setting of
shell variables in a file sourced into a larger script. Since
comments in shell scripts start with a # and extend to the
end of the line, a parser of such files should strip this pat-
tern from every line it reads before processing it further.
Unless, of course, the # appears inside a quoted string.
But even that will trip up on unquoted uses of # that do
not start a comment, such as V=x#y.

2.2 Greenfield Approaches

Recognizing that the state of the art of modifying Linux/
Unix configuration is less than ideal, various proposals
have been put forward to improve it, such as Elektra and
Uniconf. Since the variations in config file formats are
the biggest roadblock to treating configuration data in a
unified manner, they generally start by proposing a new
scheme for storing that data. The exact storage scheme
varies from project to project, from LDAP to relational
databases and files in their own favorite format. Such an
approach is of course unrealistic, since it requires that
the upstream consumers of configuration data modify
their applications to use the new API. From the perspec-
tive of an upstream maintainer, such changes are with-
out reward while the API is new and unproven. And the

only way to prove that an API is worth upstream’s effort
is to get upstream projects to use it.

A side effect of introducing completely new storage for
configuration data is that the configuration files that ad-
ministrators are used to, and that a multitude of tools
knows about, are either no longer used at all, or are
no longer the authoritative store for configuration data.
This is undesirable, as system administrators have to get
used to a whole new way of making local configuration
changes, and scripts have to be changed to use the new
configuration API.

Greenfield approaches generally also aim much higher
than just modifying configuration data. It is tempt-
ing to model other aspects of configuration data and
build more capabilities into the new unified API, rang-
ing from fine-grained permissioning schemes to hiding
differences between Linux distributions and Unix fla-
vors. Each of these addresses a problem that is hard
in its own right, often not just because of technical dif-
ficulties, but also because modeling it in a way that is
suitable for a wide variety of uses is hard.

2.3 Templating

Templating, just as the greenfield approaches, intro-
duces a new “master” store for all configuration data,
which makes it impossible to change it in its “native”
location, either manually (for example, during an emer-
gency), or with other programs than the template engine.

2.4 Design Goals

With the successes and limitations of these approaches
in mind, AUGEAS focuses on the problem at the heart
of all of them: editing configuration files programmati-
cally. Above all else, AUGEAS limits its scope to a hand-
ful of goals around that task.

As we have seen for greenfield approaches, it is un-
likely that the current situation of configuration data
scattered across many files in many formats can be ad-
dressed by radically breaking with history and custom.
At the same time, as shown by templating approaches,
the penalty for generating these files from a new au-
thoritative source is high, and rarely ever appropriate.
AUGEAS therefore uses the existing config files as its
sole store of configuration data and does not require ad-
ditional data stores.

2008 Linux Symposium, Volume Two • 49

The multitude of producers and consumers of config-
uration data makes it imperative that AUGEAS be use-
ful without the support of these producers and con-
sumers. In other words, AUGEAS must be useful with-
out any changes to other code which handles config-
uration data—in particular, without any support from
the primary users of that data like system daemons.
Similarly, there are a vast number of tools that mod-
ify configuration data, and it should be possible to use
these tools side-by-side with AUGEAS. As a conse-
quence, AUGEAS should not rely on such tools preserv-
ing any AUGEAS-specific annotations (for example, in
comments), while making sure that such annotations
added by other tools are preserved across edits with
AUGEAS.

We would like AUGEAS to handle as wide a variety of
configuration files as possible. Since every format needs
some form of intervention by a person, AUGEAS should
make it as easy as possible to describe file formats, not
only in terms of the notation of the description, but also
in the checks that it can perform to spot errors in the
description.

How a change to the tree is translated into a change in
the underlying file should be intuitive, and should cor-
respond to a reasonable expectation of “minimal” ed-
its. For example, changing the alias of one host in
/etc/hosts should only lead to a change on the line
containing the host entry, and leave the rest of the file
untouched.

Finally, configuration changes have to be made in many
situations and with tools written in many languages.
AUGEAS therefore must be “language neutral” in the
sense that it can be used by the widest variety of
programming languages. In practice, this means that
AUGEAS has to be implemented in C. Furthermore, the
public API relies solely on strings as data types, where
some strings denote paths in the tree.

3 Using AUGEAS to change files

AUGEAS can be used in a number of ways: a C library
API, the augtool shell command, and from a number
of other programming languages. Currently, bindings
are available for Python, Ruby, and OCaml. The fol-
lowing discusses the usage of augtool, which closely
mirrors the other interfaces.

3.1 The tree and path expressions

In the tree that AUGEAS maintains, each node consists
of three pieces of information: a string label that is part
of the path to the node and all its children, an optional
string value, and a list of child nodes. Since files are
inherently ordered data structures, the AUGEAS tree is
also ordered; in particular, the order of siblings matters.
Multiple siblings can have the same label—for example,
a host entry in /etc/hosts can have multiple aliases,
each of which is stored in a separate alias node.

Because of this structure, AUGEAS’ tree is conceptually
similar to an XML parse tree. When multiple siblings
have the same label, it is of course necessary to distin-
guish between them. For that, and for simple searches,
AUGEAS adapts some of the conventions of XPath [2].
In particular, a label by itself in a path, for example,
alias/, matches all children of a node with label
alias. The n-th child with that label can be picked
out with alias[n], and the last such child, with the
special notation alias[last()].

Wildcard searches using * as a path component are also
supported. The path /p/*/g matches all grandchildren
with label g of the node p. Searches with * are not
recursive, and the above pattern does not match a node
p/a/b/g.

3.2 Tree manipulation

When augtool starts, it reads schema descriptions out
of a set of predefined directories, and parses configura-
tion files according to them. The result of this initializa-
tion is the tree that is presented to the user. The user can
now query the tree, using match to search nodes that
match a certain path expression, and get to retrieve the
value associated with a node.

The tree is modified using ins to insert new nodes at a
specific position in the tree—for example, to insert an-
other alias node after the first such node, and rm to
delete nodes and whole subtrees. The value associated
with a node can be changed with set.

Files are not modified while the tree is being changed,
both so that files with possibly invalid entries are not
produced while multi-step modifications are under way,
and to enable more extensive consistency checks when
files are finally written. Writing of files is initiated with

50 • AUGEAS—a configuration API

the save command, which writes new versions of all
files whose tree representation has changed; files that
have no modifications made to them are not touched.

What files are written, and how the tree is transformed
back into files, are again governed by the schemas that
augtool read on startup. Schemas are written in a
domain-specific language, and the primitives of the lan-
guage ensure that the transformation from file to tree
and the reverse transformation from tree to file match
and follow certain consistency rules designed to make
the round trip from file through tree to modifed file safe
and match users’ expectations. The mechanisms per-
forming the transformation need to know two pieces of
information: which files to transform, and how to trans-
form them. The first is given through a file name filter,
described as shell globs specifying which files to include
or exclude; the second is done by writing a lens that is
applied to the contents of each file matching the filter.

4 Lenses and bidirectional programming

AUGEAS needs to transform file contents (strings) into
a tree and that tree back into file contents. Rather than
having users specify these two mappings separately, and
running the risk that they might not be compatible with
one another, AUGEAS uses the idea of a lens to combine
the two mappings in a way that guarantees their compat-
ibility in a very precise sense.

The term lens was coined by the Harmony project [4],
and originates from the “view update” problem: given
a concrete view of data (configuration files in AUGEAS’
case) and an abstract view of the same data (the tree),
construct suitable mappings between the two views that
translate changes to the abstract view into intuitively
minimal changes of the concrete data. Generally, the
mapping from concrete to abstract view leaves out some
information, for example, formatting details or com-
ments that are of no use in the abstract view. Conversely,
the mapping from abstract to concrete view must restore
that data. With that, lenses are not bijective mappings
between the concrete and the abstract domains: multiple
concrete views, namely all the ones that differ only in
unimportant details such as formatting, map to the same
abstract view. Harmony uses lenses to construct map-
pings between tree-structured data [3], for example, for
synchronization of calendar files that essentially contain
the same information, but use different XML-based for-
mats. Similarly, Boomerang [1] performs mappings

between unstructured text data. AUGEAS uses the same
approach for its mapping between text data and trees.

Formally, a lens consists of two functions, get and put.2

If C is the set of all concrete data structures (in AUGEAS’
case, strings), and A is the set of all abstract data struc-
tures (in AUGEAS’ case, trees), a lens l consists of

l.get : C → A

l.put : A×C →C

The get function is used to transform concrete views
into abstract ones. The put function, which maps ab-
stract views back to concrete views, receives the origi-
nal concrete view as its second argument and consults
that to restore any information left out by the get direc-
tion. The two directions are tied together by two re-
quirements that express intuitive notions of how lenses
should behave when we make a roundtrip from concrete
to abstract view and back: for every c ∈C and a ∈ A, a
lens l must fulfill

l.put (l.get c) c = c (GETPUT)

l.get (l.put a c) = a (PUTGET)

Put into words, GETPUT expresses that transforming a
string c into a tree, and then transforming the unmod-
ified tree back into a string, should yield the string c
we started with, and ensures that the put direction re-
stores any information not captured in the tree faithfully
when the tree is not modified. The PUTGET law states
that transforming any tree back into a string using an ar-
bitrary concrete string c as the second argument to put
and transforming the result back into a tree must yield
exactly the tree we started with, limiting how put uses
its second argument c when transforming a tree: it can
only use it for those parts of a string that are abstracted
away by the get direction.

The lens laws are weaker than requiring that get and put
be inverses of one another. That would require that both
be bijective, and keep lenses from doing what makes
them so useful in practice: abstracting away unimpor-
tant information like comments or how many spaces are
used to separate two values. Since all lenses contain a
get and put direction that are compatible in the sense laid

2Strictly speaking, there is a third function, create, involved to
create new concrete data from abstract data alone; since we are not
proving anything about lenses here, there’s no need to distinguish
between put and create.

2008 Linux Symposium, Volume Two • 51

down by the lens laws, building complex lenses from
simpler ones is called bidirectional programming, since
every lens expresses how to get from input c to output a,
and at the same time, how to get from an output a back
to an input c.

Lenses are built from simple builtin lenses, called
lens primitives, by combining them with a few builtin
lens combinators. This mechanism of building com-
plex lenses from simpler ones forms the backbone of
AUGEAS’ schema descriptions. The two lens laws,
GETPUT and PUTGET, restrict how lenses can be com-
bined; in AUGEAS, these restrictions are enforced by the
typechecker described below.

Typically, a complex lens that describes the processing
of a whole file is broken up in smaller lenses, each of
which processes a small portion of the file, for example
the aliases of a host in /etc/hosts. To support this
mode of working, where complex lenses are gradually
built from simpler ones, AUGEAS has a builtin unit test
facility which makes it possible to verify that a “small”
lens applied to a text fragment or a partial tree produces
the desired result.

4.1 Matching

Behind the scenes, when a lens is applied either to a
string (in the get direction) or to a tree (in the put direc-
tion), it has to be matched to the current input for a va-
riety of reasons, the most basic being to check whether
a lens applies to the input at all.

In the get direction, this poses little difficulty and match-
ing of a lens to a string boils down to matching a string
to a regular expression. Regular expressions are re-
stricted to the ones familiar from formal language the-
ory, not the ones popular in various languages such as
Perl, as those introduce extensions that leave the realm
of regular languages. Some of the computations that
the typechecker has to perform can be easily done with
regular languages but become uncomputable when a
broader class of languages, such as context-free lan-
guages, are considered. In practical terms, AUGEAS

uses the notation of extended POSIX regular expres-
sions, but does not support backreferences.3

3The implementation currently also lacks support for a few other
features, such as named character classes, but unlike backreferences,
those are supportable in principle.

Matching a tree in the put direction to a lens is more
complicated than string matches for the get direction.
To avoid implementing a mechanism that matches trees
against a full tree schema, AUGEAS defines tree match-
ing solely in terms of matching the labels at one level of
the tree against a regular expression. For example, a lens
that produces any number of nodes labelled a followed
by a node labelled b, matches any tree that has such a se-
quence of nodes at its root level, regardless of the struc-
ture of the trees underneath each a and b node. This
simplification makes it possible to reduce tree matching
to matching regular expressions against strings. A tree
with two nodes labelled a followed by a node labelled
b and a node labelled c at its root level is converted into
the string a/a/b/c/ for purposes of matching, and the
lens mentioned above is converted to the regular expres-
sion (a/)∗b/. Clearly, this lens does not match the
tree a/a/b/c/.

4.2 Lens primitives

AUGEAS has a handful of lens primitives; strictly speak-
ing, the builtins are functions that, given a regular ex-
pression, indicated as re, or a string, indicated by str, or
both, produce lenses.

Tree nodes are constructed by the subtree lens combina-
tor discussed in the next section. The lens primitives lay
the groundwork for the subtree lens: they mark which
parts of the input to use as a tree label, which to store as
the node’s value, and which to omit from the tree.

• key re matches the regular expression re in the get
direction and tells the subtree lens to use that as
the label of the tree node it is constructing. In the
put direction, it outputs the label of the current tree
node.

• label str does not consume any input in the get di-
rection, nor does it produce output in the put direc-
tion. It simply tells the subtree lens to use the str
as the label of a tree node.

• seq str is similar to label; in the get direction, it
sets the label of the enclosing subtree to a number.
When that subtree is used in an iteration, the num-
bers are consecutive, starting from 1. The str ar-
gument is used to distinguish between separate se-
quences. In the put direction, the seq lens expects a
tree node labelled with any positive number. There

52 • AUGEAS—a configuration API

is also a counter str lens whose sole effect it is to
reset the counter with the given name back to 1 in
the get direction.

• store re matches the regular expression re in the
get direction and tells the subtree lens to use that
as the value of the tree node it is constructing. In
the put direction, it outputs the value of the current
tree node.

• del re str matches the regular expression re in the
get direction and suppresses any matches from in-
clusion in the tree. In the put direction, it restores
the match in the output, if the current tree node cor-
responds to preexisting input, or outputs the default
str if the current tree node was added to the tree and
does not have any counterpart in the original input.

4.3 Lens combinators

Besides the subtree lens, there are a few more lens
combinators that make it possible to build complicated
lenses from the five lens primitives listed above. In the
following, l, l1, and l2 always refer to arbitrary lenses:

• The subtree lens, written as [l], applies l in the
get direction to the input and constructs a new tree
node based on the results of l.get. It uses whatever l
marked as label and value for the new tree node; if l
contains other subtree lenses, the trees constructed
by them become the children of the new tree node.

• Lens concatenation, written as l1 · l2, applies first l1
and then l2. In the get direction, the tree produced
by l1 is concatenated with that produced by l2; sim-
ilarly, in the put direction, the current tree is split
and the first part is passed to the put direction of l1,
and the second part to the put direction of l2.

• Lens union, l1|l2, chooses one of l1 or l2 and ap-
plies it. Which one is chosen depends on which
one matches the current text in the get direction, or
the current tree in the put direction.

• Lens iteration, l∗ and l+, applies l as long as it
matches the current text in the get direction and the
current tree in the put direction.

When AUGEAS processes a file with a lens l, it expects
that the lens for that file processes the file in its entirety:

that means that l.get has to match the whole contents of
the file. If it only matches partially, AUGEAS flags that
as an error and refuses to produce the tree for that file.
Similarly, when AUGEAS writes the tree back to a file, it
expects that the entire subtree for that file, for example,
everything under /files/etc/hosts, gets written
out to file. It is an error if any nodes in that subtree are
not written, or if required nodes (such as the canonical
name for an entry in /etc/hosts) are missing from
the tree.

5 Writing schemas

The description of how files are to be mapped to the
tree, and the tree back into files are defined in AUGEAS’
domain-specific language. The language is a functional
language, following the syntactic conventions of ML.
Figure 1 shows the definitions needed to process /etc/
hosts.

Schema descriptions are divided into modules, one
per file. A module can contain autoload direc-
tives and names defined with let. AUGEAS’ language
is strongly typed, and statically typechecked; this en-
sures that as many checks as possible are performed
without ever transforming a single file. The available
types are string, regexp, lens, filter, and
transform—the last two are only needed for describ-
ing which lens is applied to what file.

String literals are enclosed in double-quotes, and can
use the escape sequences familiar from C. Regular ex-
pression literals are enclosed in forward slashes and use
extended POSIX syntax.

The most important part of the listing in Figure 1 is line
16, which defines the lens used to transform a whole
/etc/hosts file. Strictly speaking, lenses are only
ever applied to strings; finding files and reading and
writing their contents is done by transforms. The trans-
form xfm combines the lens lns and a filter that in-
cludes the one file /etc/hosts. Transforms are used
by augtool when it starts up to find all the files it
needs to load; to this end, it looks for all transforms in
modules on its search path that are marked for autoload,
as the transform xfm is on line 2 in the example.

The /etc/hosts file is line-oriented, with lines fur-
ther subdivided in fields separated by whitespace. The
fields are the IP address, the canonical name, and an

2008 Linux Symposium, Volume Two • 53

1: module Hosts =
2: autoload xfm

4: let sep_tab = del /[\t]+/ "\t"
5: let sep_spc = del /[\t]+/ " "
6: let eol = del "\n" "\n"

8: let comment = [del /#.*\n/ "# "]
9: let word = /[^# \n\t]+/

10: let host = [seq "host" .
11: [label "ipaddr" . store word] . sep_tab .
12: [label "canonical" . store word] .
13: [label "alias" . sep_spc . store word]*
14: . eol]

16: let lns = (comment | host) *

18: let xfm = transform lns (incl "/etc/hosts")

Figure 1: The definition of the lenses used for mapping /etc/hosts into the tree and back.

127.0.0.1 localhost
192.168.0.2 server
A comment
192.168.0.3 ns

(a) Restoring comments by position

127.0.0.1 localhost
192.168.0.1 router
A comment
192.168.0.2 server
192.168.0.3 ns

(b) Initial /etc/hosts

127.0.0.1 localhost
A comment
192.168.0.2 server
192.168.0.3 ns

(c) Restoring comments by key

Figure 2: Two possibilities of restoring comments in a changed file. After removing the tree node for
192.168.0.1 from the tree for the initial file (middle), the tree can either be transformed so that the comment is
restored at the same position (left), or so that the comment is restored by its key (right).

arbitrary number of aliases for a host. Lines starting
with # are comments. Accordingly, the lens lns on
line 16 processes any combination of matches for the
comment and host lens.

The comment lens on line 8 deletes any line matching
the regular expression /#.*\n/, i.e. anything from a
starting # to the end of the line. Since AUGEAS requires
that a file in its entirety is matched, there is no need to
anchor regular expressions at the start and end of lines
with ˆ or $. The del primitive is enclosed in a sub-
tree construct [...]; that causes the tree to contain a
node with NULL label and value for every comment in
the file. The reason for doing this has to do with how
the put direction of del restores text: conceptually, the
get direction of lenses produces a skeleton of the parsed
text consisting of all the text deleted by the del lens with
“holes” to fill in the parts stored in the tree. The put di-

rection traverses the tree and fills the holes. The skele-
tons are associated with the parent node in the tree. If the
comments were not their own tree node, AUGEAS would
treat the whole /etc/hosts file as consisting of some
comments with a fixed number of host entries between
the comments. As an example, consider the initial file
in Figure 2. After the initial file shown in the middle
is read into the tree and the tree node corresponding to
192.168.0.1 is deleted, there are two ways in which
the comment can be preserved when the tree is saved
back to file: either by putting the comment after the sec-
ond host entry (by position) as shown in Figure 4.3 or as
coming after the entry for 127.0.0.1 but before the
entry for 192.168.0.2 (by key). The former behav-
ior results from not enclosing the del for comment in a
subtree, the latter is the behavior of the lens in Figure 1.

The host lens on lines 10–14 in Figure 1 is straight-

54 • AUGEAS—a configuration API

forward in comparison: it stores host entries in sepa-
rate subtrees, labelled with the number of the host entry.
Each such subtree consists of a node labelled ipaddr,
followed by a node labelled canonical, followed by
zero or more nodes labelled alias. The value for
each of the nodes is taken from splitting the line along
spaces. The only difference between the sep_tab and
sep_spc lenses that consume the whitespace between
tokens on a line is how they behave when the tree is
modified so that a brand new host entry is written to the
file: sep_tab produces a tab character in that case,
whereas sep_spc produces a space character.

The example in Figure 1 also illustrates two different
ways to transform array-like constructs into the tree:
the whole /etc/hosts file can be viewed as an ar-
ray of lines of host entries (ignoring comments for the
moment), and the aliases for each host are an array of
space-separated tokens. For the former, we used the
seq lens to produce a tree node for each host entry,
wherease for the latter, we simply produce a new node
with label alias for each alias. The reason for this
is again connected to how formatting is preserved when
entries are deleted from the tree or added to it. The for-
mer construct, using seq restores spacing by key, the
number of the host entry in this case, whereas the latter
restores it by position. When a new host entry is inserted
into the tree under a new key, e.g. 10000, all existing
entries keep their spacing, since the skeletons for each
entry are restored using that key. On the other hand,
when a new alias for a host is inserted into the tree as
the first alias for the host, the spacing is restored by po-
sition, so that the space between the (new) first and sec-
ond alias is the same as the space that was in the initial
file between the (old) first and second alias. Generally,
it is preferrable to map arrays into the tree by using the
same fixed label repeatedly, as is done for aliases here,
since it makes the tree easier to manipulate, but often,
considerations of what it means to preserve formatting
in an “intuitive” way require that constructs using seq
be used.

5.1 Lens development

When developing a lens for a new file format, the needed
lens is gradually built up from simpler lenses and tested
against appropriate text or tree fragments. For example,
with the definitions from Figure 1, we can add a test

test lns get
"127.0.0.1 localhost.localdomain localhost" = ?

to that same file. Running the modified file through
augparse prints the tree resulting from applying the
get direction of lns to the given string; augparse is
a companion to augtool geared towards lens develop-
ment.

There are two different kinds of tests: test LNS get
STR = RESULT applies the get direction of LNS to
STR and compares the resulting tree to RESULT, or
prints it if RESULT is ?. Conversely, test LNS
put STR after COMMANDS = RESULT first ap-
plies the get direction of LNS to STR; it then changes the
resulting tree using the COMMANDS, which can change
the tree similar to augtool’s set, rm, and ins com-
mands, and transforms the modified tree back to a string
using the put direction of LNS. The test succeeds if this
string equals the given RESULT string.

5.2 The typechecker

When configuration files are modified programmati-
cally, ensuring that the changed configuration files are
still valid is a major concern. AUGEAS contains a type-
checker, very closely modelled on Boomerang’s [1]
typechecker, that helps guard against common problems
that could lead to invalid configuration files. Typecheck-
ing is performed statically—in other words, based solely
on the schema description, to help weed out problems
before any file is ever transformed according to that
schema.

Typechecking happens in two phases: the first phase
performs fairly standard checks that arguments to func-
tions and operators have the type required by those
functions and operators, for example, to ensure that the
subtree operator [...] is only applied to lenses, and
not to strings or regular expressions.

The second phase checks lenses for certain problems as
they are constructed from simpler lenses. The details of
those checks are based on the theoretical foundation laid
by Boomerang [1] and make heavy use of computa-
tions on the regular languages matched by those lenses.
In essence, the checks ensure that the lens laws GETPUT

and PUTGET hold for any lens that is constructed.

Explaining these checks in detail would triple this paper
in size; instead, let us just look at one of them to provide
a taste of what the typechecker does. For two lenses l1
and l2, call the regular expressions they match in the get

2008 Linux Symposium, Volume Two • 55

direction r1 and r2. The get direction of the concatena-
tion l = l1 · l2 of these two lenses matches the concate-
nation r = r1r2 of their underlying regular expressions.
When l.get is applied to a string u matching r, it needs
to split it into two strings u = u1u2 and then pass u1 to
l1.get and u2 to l2.get. The two lenses l1 and l2 may do
completely different things with these strings, for exam-
ple, l1 may be a del lens and l2 a store lens. It is therefore
imperative that there be no ambiguity in how u is split
into two strings; otherwise, the way u is processed by
l, and therefore the resulting tree, would depend on ar-
cane implementation details of the split operation, and
may change unexpectedly as code is changed.

The typechecker therefore checks every time a conca-
tentation of two lenses is formed to ensure that the regu-
lar languages matched by them are unambiguously con-
catenable; in other words, that each string u matching r
can be split in exactly one way in one part matching r1
and one part matching r2.

Similar checks are performed for iteration of lenses to
ensure that a string matching an iterated lens l∗ can be
split in exactly one way into n pieces matching l. For the
union l1|l2 of lenses, checks are performed to ensure that
whether l1 or l2 is chosen is guaranteed to be unique.

The lens laws impose restrictions both on the get and
the put direction of lenses, and both are enforced by the
typechecker. The concatenation of two lenses is not only
restricted by the requirement that any input string in the
get direction can be split unambiguously, but also by the
requirement that any tree in the put direction can be split
unambiguously. Splitting (for concatenation and itera-
tion) and choice (for union) of trees is performed solely
on the labels of the immediate children of the node un-
der consideration. This has the advantage that it is easy
to implement, and can be easily reduced to checks sim-
ilar to those for the get direction, but has the disadvan-
tage that as far as the typechecker and the put direction
of lenses are concerned, all tree nodes labeled foo are
identical, no matter whether they are a leaf or whether
they are the root of complicated subtrees. This simple
approach to matching trees has not yet led to any sig-
nificant problems in practice, but it is conceivable that
a more sophisticated approach to trees and tree schemas
is needed at some point in the not-too-distant future.

6 Future Work

The current implementation of AUGEAS is useful, but
by no means complete. Improvements can be made in
almost every area: first and foremost is the task of ex-
panding the set of configuration files that AUGEAS can
process “out-of-the-box.”

Several limitations of the current implementation would
be particularly interesting to remove. First, the public
API lacks support for recursive matching. While path
expressions can use the * wildcard operator, that oper-
ator does only match one level in the tree. An opera-
tor that matches multiple levels at once would be very
useful, similar to the ** extension to filename globbing
in some programs, or the // operator in XPath expres-
sions. Other changes to the public API, such as efficient
iteration over large parts of the tree, are desirable.

The language currently misses the concept of permu-
tations; for example, in some files entries take options,
similar to shell commands. If individual options are pro-
cessed by lenses l1, l2, . . ., ln, there is no convenient way
in the language to construct a lens that matches a permu-
tation of these n lenses; permutations either need to be
written out manually or approximated with a construct
like (l1|l2| . . . |ln)∗. Because of the combinatorial com-
plexity involved, a straightforward implementation of
permutations will be of limited use in practice. Instead,
adding an operator like RelaxNG’s interleave to the
language seems more promising, but even that will re-
quire some special care to keep the runtime of the type-
checker bearable.

AUGEAS can only handle file formats that can be de-
scribed as a regular language. In particular, file formats
that have constructs that can be nested arbitrarily deep
can not be processed by AUGEAS. That is a fairly severe
limitation in practice, as it precludes processing of the
very popular httpd.conf: the Apache configuration
allows some constructs, most notably IfModule, that
can be nested to an arbitrary depths. While it is not ter-
ribly hard to expand the implementation to process such
non-regular file formats, enhancing the typechecker to
handle them is hard. The most promising approach is
to expand the class of file formats that AUGEAS ac-
cepts only very slightly, e.g. by allowing balanced lan-
guages, but not all context-free languages, and basing
typechecking such file formats off suitable regular ap-
proximations of the file format.

56 • AUGEAS—a configuration API

Another area of possible improvements are services
built on top of AUGEAS: system-config-boot,
one of the graphical configuration tools shipped with
Fedora, contains some experimental code that sepa-
rates the user interface from the logic changing /etc/
grub.conf through DBus. The UI sends messages
to a DBus activated service that checks the users cre-
dentials with PolicyKit and, if the users is authorized
to make the change, uses Augeas to edit /etc/grub.
conf. The backend does not need any specific knowl-
edge about the file being edited, and it would be fairly
easy to expand this code to add permissioning to con-
figuration changes that distinguishes between different
nodes in the Augeas tree, even if those nodes ultimately
come from the same file.

In a similar vein, it would be interesting to investigate
a remote-able configuration API built on top of Augeas,
where a special daemon allows remote counterparts to
modify a system’s configuration.

Acknowledgments

We wish to thank Benjamin Pierce and Nathon Foster
and their collaborators for their work on Harmony and
Boomerang. Anders Moeller provided invaluable in-
put, not the least through his dk.brics.automaton
Java package, for the finite automata library used by the
type checker.

References

[1] Aaron Bohannon, J. Nathan Foster, Benjamin C.
Pierce, Alexandre Pilkiewicz, and Alan Schmitt.
Boomerang: Resourceful lenses for string data. In
ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), San
Francisco, California, January 2008.

[2] World Wide Web Consortium. XML Path
Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath.

[3] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the
view-update problem. ACM Transactions on
Programming Languages and Systems, 29(3):17,
May 2007. Preliminary version presented at the

Workshop on Programming Language
Technologies for XML (PLAN-X), 2004; extended
abstract presented at Principles of Programming
Languages (POPL), 2005.

[4] Benjamin Pierce et al. Harmony. http://
alliance.seas.upenn.edu/~harmony.

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

