
A Symphony of Flavours: Using the device tree to describe embedded
hardware

Grant Likely
Secret Lab

grant.likely@secretlab.ca

Josh Boyer
IBM

jwboyer@linux.vnet.ibm.com

Abstract

As part of the merger of 32-bit and 64-bit PowerPC sup-
port in the kernel, the decision was to also standardize
the firmware interface by using an OpenFirmware-style
device tree for all PowerPC platforms; server, desktop,
and embedded. Up to this point, most PowerPC em-
bedded systems were using an inflexible and fragile,
board-specific data structure to pass data between the
boot loader and the kernel. The move to using a device
tree is expected to simplify and generalize the PowerPC
boot sequence.

This paper discusses the implications of using a device
tree in the context of embedded systems. We’ll cover
the current state of device tree support in arch/powerpc,
and both the advantages and disadvantages for embed-
ded system support.

1 Background

We could go on for days talking about how embedded
systems differ from desktops or servers. However, this
paper is interested in one particular aspect: the method
used by the operating system to determine the hardware
configuration.

In general, desktop and server computers are engineered
to be compatible with existing software. The expecta-
tion is that the operating system should not need to be re-
compiled every time new hardware is added. Standard-
ized firmware interfaces ensure that the boot loader can
boot the operating system and pass it important details
such as memory size and console device. PCs have the
BIOS. PowerPC and Sparc systems typically use Open-
Firmware. Commodity hardware is also designed to be
probeable by the OS so that the full configuration of the
system can be detected by the kernel.

The embedded world is different. Systems vary wildly,
and since the software is customized for the system,
there isn’t the same market pressure to standardize
firmware interfaces. You can see this reflected in the
boot schemes used by embedded Linux. Often the op-
erating system is compiled for a specific board (plat-
form) with the boot loader providing minimal informa-
tion about the hardware layout, and the platform initial-
ization code is hard coded with the system configura-
tion.

Similarly, data that is provided by the boot firmware is
often laid out in an ad-hoc manner specific to the board
port. The old embedded PowerPC support in the ker-
nel (found in the arch/ppc subdirectory) uses a par-
ticularly bad method for transferring data between the
boot loader and the kernel. A structure called bd_info,
which is defined in include/asm-ppc/ppcboot.h,
defines the layout of the data provided by the boot
loader. #defines are used within the structure to add
platform-specific fields, but there is no mechanism to
describe which bd_info layout is passed to the ker-
nel or what board is present. Changes to the layout of
bd_info must be made in both the firmware and the
kernel source trees at the same time. Therefore, the ker-
nel can only ever be configured and compiled for a sin-
gle platform at a time.

When the decision was made to merge 32-bit (arch/
ppc) and 64-bit (arch/ppc64) PowerPC support in the
kernel, it was also decided to use the opportunity to
clean up the firmware interface. For arch/powerpc
(the merged architecture tree), all PowerPC platforms
must now provide an OpenFirmware-style device tree
to the kernel at boot time. The kernel reads the device
tree data to determine the exact hardware configuration
of the platform.

• 27 •



28 • A Symphony of Flavours: Using the device tree to describe embedded hardware

/ { // the root node
an-empty-property;
a-child-node {

array-prop = <0x100 32>;
string-prop = "hello, world";

};
another-child-node {

binary-prop = [0102CAFE];
string-list = "yes","no","maybe";

};
};

Figure 1: Simple example of the .dts file format

2 Description of Device Trees

In the simplest terms, a device tree is a data structure that
describes the hardware configuration. It includes infor-
mation about the CPUs, memory banks, buses, and pe-
ripherals. The operating system is able to parse the data
structure at boot time and use it to make decisions about
how to configure the kernel and which device drivers to
load.

The data structure itself is organized as a tree with a sin-
gle root node named /. Each node has a name and may
have any number of child nodes. Nodes can also have
an optional set of named property values containing ar-
bitrary data.

The format of data contained within the device tree
closely follows the conventions already established by
IEEE standard 1275. While this paper covers a ba-
sic layout of the device tree data, it is strongly recom-
mended that Linux BSP developers reference the origi-
nal IEEE standard 1275 documentation and other Open-
Firmware resources. [1][2]

The device tree source (.dts) format is used to express
device trees in human-editable format. The device tree
compiler tool (dtc) can be used to translate device trees
between the .dts format and the binary device tree blob
(.dtb) format needed by an operating system. Figure 1
is an example of a tree in .dts format. Details of the
device tree blob data format can be found in the kernel’s
Documentation directory. [3]

For illustrative purposes, let’s take a simple example of
a machine and create a device tree representation of the
various components within it. Our example system is
shown in Figure 2.

PowerPC 440

IRQ Controller

PLB Bus

128MB RAM

OPB Bridge

Ethernet irq: 2 Serial 1 irq: 3 Serial 2 irq: 4 Flash

Figure 2: Example PowerPC 440 System

/dts-v1/
/ {

model = "acme,simple-board";
compatible = "acme,simple-board";
#address-cells = <1>;
#size-cells = <1>;

// Child nodes go here
};

Figure 3: Example system root node

It should be noted that the device tree does not need to
be an exhaustive list of all devices in the system. It is
optional to itemize devices attached to probable buses
such as PCI and USB because the operating system al-
ready has a reliable method for discovering them.

2.1 The root Node

The start of the tree is called the root node. The root
node for our simple machine is shown in Figure 3. The
model and compatible properties contain the exact
name of the platform in the form <mfg>,<board>,
where <mfg> is the system vendor, and <board> is
the board model. This string is a globally unique identi-
fier for the board model. The compatible property is not
explicitly required; however, it can be useful when two
boards are similar in hardware setup. We will discuss
compatible values more in Section 2.4.1.

2.2 The cpus Node

The cpus node is a child of the root node and it has a
child node for each CPU in the system. There are no ex-



2008 Linux Symposium, Volume Two • 29

cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {

device_type = "cpu";
model = "PowerPC,440GP";
reg = <0>;
// 400MHz clocks
clock-frequency = <400000000>;
timebase-frequency = <400000000>;
i-cache-line-size = <32>;
d-cache-line-size = <32>;
i-cache-size = <32768>;
d-cache-size = <32768>;

};
};

Figure 4: cpus node

plicitly required properties for this node; however, it is
often good practice to specify #address-cells=<1>,
and #size-cells=<0>. This specifies the format for
the reg property of the individual CPU nodes, which is
used to encode the physical CPU number.

CPU nodes contain properties for each CPU on the
board. The unit name for CPU nodes is in the form
cpu@0 and it should have a model property to describe
the CPU type. CPU nodes have properties to specify the
core frequency, L1 cache information, and timer clock
frequency. Figure 4 is the cpus node for our sample
system.

2.3 System Memory

The node that describes the memory for a board is, un-
surprisingly, called a memory node. It is most common
to have a single memory node that describes all of the
memory ranges and is a child of the root node. The reg
property is used to define one or more physical address
ranges of usable memory. Our example system has 128
MiB of memory, so the memory node would look like
Figure 5.

2.4 Devices

A hierarchy of nodes is used to describe both the buses
and devices in the system. Each bus and device in the
system gets its own node in the device tree. The node for

memory {
device_type = "memory";
// 128MB of RAM based at address 0
reg = <0x0 0x08000000>;

};

Figure 5: Memory node

the processor local bus is typically a direct child of the
root node. Devices and bridges attached to the local bus
are children of the local bus node. Figure 6 shows the
hierarchy of device nodes for the sample system. This
hierarchy shows an interrupt controller, an Ethernet de-
vice, and an OPB bridge attached to the PLB bus. Two
serial devices and a Flash device are attached to the OPB
bus.

2.4.1 The compatible property

You’ll notice that every node in the device hierarchy has
a compatible property. compatible is the key that
an OS uses to decide what device a node is describ-
ing. In general, compatible strings should be in the form
<manufacturer>,<part-num>. For each unique set
of compatible values, there should be a device tree
binding defined for the device. The binding documents
what hardware the node describes and what additional
properties can be defined to fully describe the configu-
ration of the device. Typically, bindings for new devices
are documented in the Linux Documentation directory
in booting-without-of.txt [3].

You’ll also notice that sometimes compatible is a list
of strings. If a device is register-level compatible with
an older device, then it can specify both its compati-
ble string and the string for the older device, so that an
operating system knows that the device is compatible
with an older device driver. These strings should be or-
dered with the specific device first, followed by a list of
compatible devices. For example, the flash device in the
simple system claims compatibility with cfi-flash,
which is the string for CFI-compliant NOR flash chips.

2.4.2 Addressing

The device address is specified with the reg property.
reg is an array of cell values. In device tree terminol-



30 • A Symphony of Flavours: Using the device tree to describe embedded hardware

plb {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
UIC0: interrupt-controller {

compatible = "ibm,uic-440gp",
"ibm,uic";

interrupt-controller;
#interrupt-cells = <2>;

};
ethernet@20000 {

compatible = "ibm,emac-440gp";
reg = <0x20000 0x70>;
interrupt-parent = <&UIC0>;
interrupts = <0 4>;

};
opb {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0xe0000000

0x20000000>;
serial@0 {

compatible = "ns16550";
reg = <0x0 0x10>;
interrupt-parent = <&UIC0>;
interrupts = <1 4>;

};
serial@10000 {

compatible = "ns16550";
reg = <0x10000 0x10>;
interrupt-parent = <&UIC0>;
interrupts = <2 4>;

};
flash@1ff00000 {

compatible = "amd,s29gl256n",
"cfi-flash";

reg = <0x1ff00000 0x100000>;
};

};
};

Figure 6: Simple System Device Hierarchy

ogy, cells are simply 32-bit values. Array properties like
reg are arrays of cell values. Each reg property is a list
of one or more address tuples on which the device can
be accessed. The tuple consists of the base address of
the region and the region size.

reg = <base1 size1 [base2 size2 [...]]>;

The actual size of each reg tuple is defined by the par-
ent nodes’ #address-cells and #size-cells prop-
erties. #address-cells is the number of cells used
to specify a base address. Similarly, #size-cells is
the number of cells used to specify a region size. The
number of cells used by reg must be a multiple of
#address-cells plus #size-cells.

It is important to note that reg defines bus addresses,
not system addresses. The bus address is local to the
bus that the device resides on, or in device tree terms,
the address is local to the parent of the node. Buses in
turn can map bus addresses up to their parent using the
ranges property. The format of ranges is:

ranges = <addr1 parent1 size1 [...]>;

Where addr is a bus address and is #address-cells
wide, parent is an address on the parent bus and is the
parent node’s #address-cells wide. size is the par-
ent node’s #size-cells wide.

Buses that provide a 1:1 mapping between bus address
and parent address can forgo the explicit mapping de-
scribed above and simply specify an empty ranges
property:

ranges;

In this example system, the Flash device is at address
0x1ff00000 on the OPB bus, and the OPB bus specifies
that PLB bus address 0xe0000000 is mapped to address
0x0000000 on the OPB bus. Therefore, the Flash device
can be found at base address 0xfff00000.

2.5 Interrupts and Interrupt Controllers

The natural layout of a tree structure is perfect for de-
scribing simple hierarchies between devices, but is not
particularly suitable for capturing complex interconnec-
tions.

Interrupt signals are a good example of additional link-
ages. For example, it is correct to describe the serial
device in our sample system as a child of the OPB bus.
However, it is also correct to say that it is a child of the
interrupt controller device, so how should this be de-
scribed in the device tree? Established convention says
that the natural tree structure should be used to describe
the primary interface for addressing and controlling the
devices. Secondary connections can then be described



2008 Linux Symposium, Volume Two • 31

with an explicit link between nodes called a phandle. A
phandle is simply a property in one node that contains a
pointer to another node.

For the case of interrupt connections, device nodes
use the interrupt-parent and interrupts prop-
erties to describe a connection to an interrupt controller.
interrupt-parent is a phandle to the node that de-
scribes the interrupt controller and interrupts is a list
of interrupt signals on the interrupt controller that the
device can raise.

Interrupt controller nodes must define an empty prop-
erty called interrupt-controller. They also must
define #interrupt-cells as the number of cells re-
quired to specify a single interrupt signal on the interrupt
controller, similar to how #address-cells specifies
the number of cells required for an address value.

Many systems, particularly SoC systems, only have one
interrupt controller, but more than one can be cascaded
together. The links between interrupt controllers and de-
vices form the interrupt tree.

Referring back to the serial device node, the property
interrupt-parent defines the link between the node
and its interrupt parent in the interrupt tree.

The interrupts property defines the specific inter-
rupt identifier. Its format depends on its interrupt par-
ent’s #interrupt-cells property and the values con-
tained within are specific to that interrupt domain. A
common binding for this property when the parent’s
#interrupt-cells property is 2 is to have the first
cell represent the hardware interrupt number for the de-
vice in the interrupt controller, followed by its level/
sense information.

2.6 Special Nodes

2.6.1 The chosen Node

Firmware often needs to pass non-hardware types of in-
formation to the client OS, such as console port, and
boot arguments. The node that describes this kind of
information is called the /chosen node. There are no
required properties for this node; however, it is quite
useful for defining the board setup. If our example sys-
tem booted from a USB key and used the serial port as
the console, the /chosen node might look like Figure 7.

chosen {
bootargs = "root=/dev/sda1 rw ip=off";
linux,stdout-path =

"/plb/opb/serial@10000";
};

Figure 7: Chosen node

aliases {
console = "/plb/opb/serial@10000";
ethernet0 = "/plb/ethernet@20000";
serial0 = "/plb/opb/serial@0";
serial1 = "/plb/opb/serial@10000";

};

Figure 8: Aliases node

2.6.2 aliases

In order to ease device lookup in client operating sys-
tems, it is often desirable to define an aliases node.
This allows one to provide a shorthand method for iden-
tifying a device without having to specify the full path
on lookup. This is typically only done for the more com-
mon devices on a board, such as Ethernet or serial ports.
Figure 8 provides an example.

The types of nodes and properties that can be contained
in a device tree are as varied as the hardware that they
describe. As hardware designers invent new and creative
ways of designing components, these unique properties
will continue to grow. However, the direction is to be
as general as possible to allow commonality between
the various hardware components across these boards.
Given the flexible nature of the device tree concept, the
hope is that the client operating systems will be able to
adapt to new hardware designs with a minimal amount
of code churn and allow the most possible reuse of code.

3 Usage of Device Tree in Linux Kernel

3.1 Early Boot

To understand how the kernel makes use of the de-
vice tree, we will start with a brief overview of the
arch/powerpc boot sequence. arch/powerpc pro-
vides a single entry point used by all PowerPC plat-
forms. The kernel expects a pointer to the device tree



32 • A Symphony of Flavours: Using the device tree to describe embedded hardware

blob in memory to be in register r3 before jumping to
the kernel entry point.1

The kernel first does some basic CPU and memory
initialization, and then it tries to determine what kind
of platform it is running on. Each supported plat-
form defines a machdep_calls structure. The ker-
nel calls probe_machine(), which walks through the
machine_desc table, calling the .probe() hook for
each one. Each .probe() hook examines the device
tree and returns true if it decides that the tree describes
a board supported by that platform code. Typically, a
probe will look at the compatible property on the root
node of the tree to make the decision, but it is free to
look at any other property in the tree. When a probe
hook returns true, probe_machine() stops iterating
over the table and the boot process continues.

3.2 Device initialization

In most regards, using the device tree has little impact
on the rest of the boot sequence. Platform code registers
devices into the device model and device drivers bind
to them. Probable buses like PCI and USB probe for
devices and have no need for the device tree. Sequence-
wise, the boot process doesn’t look much different, so
the real impact is not on the sequence, but rather on
where the kernel obtains information from about periph-
erals attached to the system.

The interesting questions, then, revolve around how the
platform code determines what devices are present and
how it registers them with the kernel.

3.2.1 of_platform bus

Currently, most embedded platforms using the device
tree take advantage of the of_platform bus infras-
tructure. Like the platform bus, the of_platform

bus doesn’t represent a hardware bus. It is a soft-
ware construct for manually registering devices into
the device model; this is useful for hardware which

1Actually, this is not entirely true. If the boot firmware provides
an Open Firmware-compatible client interface API, then the kernel
first executes the prom_init() trampoline function to extract
the device tree from the firmware before jumping into the common
entry point.

cannot be probed. Platform code2 can use the of_

platform_bus_probe() convenience function to it-
erate over a part of the device tree and register a struct
of_device for each device. Device drivers in turn reg-
ister a struct of_platform_driver, and the of_

platform infrastructure matches drivers to devices.

The core of both the platform and of_platform

buses is almost identical, which begs the question of
why do two separate software buses exist in the first
place? The primary reason is that they use different
methods to match devices to drivers. The platform bus
simply matches a device and a driver if they share the
same .name property. The of_platform bus instead
matches drivers to devices on the basis of property val-
ues in the tree; in particular, the driver provides a match
table of name, device_type, and compatible prop-
erties’ values. When the values in one of the table en-
tries match the values in an of_device, then the bus
calls the driver’s probe hook.

3.2.2 platform bus adapters

While the of_platform bus is often convenient, it is
by no means mandated or the only way to retrieve de-
vice information out of the device tree. Some drivers
already exist with platform bus bindings and the devel-
opers have decided not to rework the binding to use
of_platform. Rather, a helper function is used to
search the device tree for nodes with the appropriate
property values. When interesting nodes are found, the
function creates a new struct platform_device,
populates it with data from the tree node, and registers
it with the platform bus. Several examples of this can be
seen in arch/powerpc/syslib/fsl_soc.c. As of
this writing, the Freescale Gianfar, USB host controller,
and I2C device drivers work this way.

There is some debate amongst the Linux PowerPC hack-
ers over whether to merge the of_platform bus func-
tionality back into the platform bus. Doing so would
eliminate a lot of duplicated code between them, but it
leaves the question of how to match drivers and devices.
The following are some of the options:

2Not to be confused with the platform bus. Platform code in this
context refers to the support code for a particular hardware platform
and can be found in the arch/powerpc/platforms subdi-
rectory.



2008 Linux Symposium, Volume Two • 33

Teach platform bus about device tree matching. If
the platform drivers could optionally supply an OF
match table, it could be used if the platform device also
had a pointer to a device node in the tree. The downside
is that it increases the complexity of platform devices,
but these are intended to be simple constructs. It is un-
certain whether this approach would be acceptable to the
platform bus maintainers.

Translate between nodes properties and platform
bus names. This approach has a minimal amount of
impact on existing platform bus drivers. However, it
requires the match table to also supply functions for
populating pdata structures from the data in the device
tree. Also, device-tree-to-platform-bus translation must
occur at boot time and not at module load time, which
means that the binding data must be contained within the
driver module. Besides, device registration is supposed
to be under the control of platform code. It is poor form
for drivers to register their own platform devices.

Make drivers search the device tree directly. This
solves the problem of data about matching devices being
separate from the device driver, but it doesn’t work so
well because there is no easy way to prevent multiple
drivers from binding against the same node. Once again,
it is bad form for drivers to register their own devices.

3.2.3 Other Methods

Of course, not all initialization fits simply within the
platform/of_platform bus model. Initialization of
interrupt controllers is a good example, since such con-
trollers are initialized directly from one of the platform
code hooks and do not touch the driver model at all. An-
other example is devices that are logically described by
more than one node within the device tree. For instance,
consider an audio device consisting of a node for the
I2S bus and another node for the CODEC device. In
this case, each node cannot be probed independently by
separate drivers. The platform code most likely needs
to interpret the tree data to create device registrations
useful to the device drivers.

The key here is that the device tree is simply a data struc-
ture. Its sole purpose is to describe the hardware layout
and it does not dictate kernel architecture. Platform code

and device drivers are free to query any part of the tree
they desire to make appropriate decisions.

At this point it is worth mentioning that it can be a strong
temptation to design new device tree bindings around
what is convenient for the device drivers. The problem
is that what might seem like a good approach when you
start writing a device driver often turns out to be just the
first of several bad ideas before you finish it. By keeping
the device tree design focused on hardware description
alone, it decouples it from the driver design and makes
it easier to change the driver approach at some point in
the future. There are literally decades of Open Firmware
conventions to help you design appropriate bindings.

4 Case Studies

4.1 PowerPC 440 SoCs

The PowerPC 440 chip is a widely used SoC that comes
in many different variations. In addition to the PPC
440 core, the chip contains devices such as 16550-
compatible serial ports, on-board Ethernet, PCI host
bridge, i2c, GPIO, and NAND flash controllers. While
the actual devices on the various flavors of the 440 are
typically identical, the quantity and location of them in
the memory map is very diverse. This lends itself quite
well to the device tree concept.

In arch/ppc, each PPC 440 board had its own unique
board file, and described the MMIO resources for its de-
vices as a set of #define directives in unique header
files. There were some attempts to provide common
code to share among board ports; however, the amount
of code duplication across the architecture was quite
large. A typical board file was around 200 lines of C
code. The code base was manageable and fairly well
maintained, but finding a fairly complete view of the in-
teraction among the files was at times challenging.

When contrasted with the arch/powerpc port for PPC
440, some of the benefits of the device tree method are
quickly revealed. The average board file is around 65
lines of C code. There are some boards that have no ex-
plicit board file at all, as they simply reuse one from a
similar board. Board ports have become relatively easy
to do, often taking someone familiar with device trees
a relatively short time to complete base support for a



34 • A Symphony of Flavours: Using the device tree to describe embedded hardware

PowerPC 440

Memory Bus

EMAC0

MAL

EMAC1

Figure 9: Logical EMAC/MAL connections

board.3 Additionally, multiplatform support makes it
possible to have a single vmlinux binary that will run
on any of the PPC 440 boards currently supported today.
This was virtually impossible before device trees were
used to provide the device resources to the kernel.

However, using a device tree does present unique chal-
lenges at times. Situations arise that require the intro-
duction of new properties or using different methods
of defining the interaction between nodes. For Pow-
erPC 440, one of those cases is the MAL and EMAC
nodes. The MAL and EMAC combined comprise the
on-board Ethernet. A simplified view of the intercon-
nects is shown in Figure 9.

The MAL device has a number of channels for trans-
mit and receive. These channels are what the various
EMAC instances use for their transmit and receive oper-
ations. The MAL also has 5 interrupts, but not all these
interrupts go to a single interrupt parent. These issues
required some more complex concepts and new proper-
ties to be applied in the device tree.

To solve the multiple interrupt parent problem for the
MAL, an interrupt map was used. In this situation, the
MAL node’s interrupt-parent property is set to
itself, and the interrupts property simply lists inter-
rupts 0–5. Recall that this is possible because the repre-
sentation of that property is dependent upon the node’s
interrupt-parent property, which in this case is
the MAL itself. To properly map the real interrupts
to the appropriate controllers, the interrupt-map
property is used. In this property, each MAL-specific

3The AMCC PowerPC 440EPx Yosemite board support was
completed in 5 hours, with the majority of the work coming from
rearranging the existing 440EPx support and adapting a new DTS
file.

interrupt is mapped to its proper interrupt parent using
the interrupt domain for that parent. Figure 10 shows
the device tree node for the MAL. Here you can see that
MAL interrupt 0 maps to UIC0 interrupt 10, and so on.

MAL0: mcmal {
compatible = "ibm,mcmal-440gp",

"ibm,mcmal";
dcr-reg = <0x180 0x62>;
num-tx-chans = <4>;
num-rx-chans = <4>;
interrupt-parent = <&MAL0>;
interrupts = <0 1 2 3 4>;
#interrupt-cells = <1>;
interrupt-map = <
/*TXEOB*/ 0 &UIC0 0xa 4
/*RXEOB*/ 1 &UIC0 0xb 4
/*SERR*/ 2 &UIC1 0 4
/*TXDE*/ 3 &UIC1 1 4
/*RXDE*/ 4 &UIC1 2 4>;

interrupt-map-mask = <0xffffffff>;
};

EMAC0: ethernet@40000800 {
device_type = "network";
compatible = "ibm,emac-440gp",

"ibm,emac";
interrupt-parent = <&UIC1>;
interrupts = <1c 4 1d 4>;
reg = <40000800 0x70>;
local-mac-address = [000000000000];
mal-device = <&MAL0>;
mal-tx-channel = <0 1>;
mal-rx-channel = <0>;

};

Figure 10: PowerPC 440 MAL and EMAC nodes

You’ll also notice in Figure 10 that there are some new
MAL-specific properties introduced for the total number
of transmit and receive channels. When looking at the
EMAC node in Figure 10, you will see that there are
new properties specific to the MAL as well. Namely, the
mal-device property is used to specify which MAL
this particular EMAC connects to, pointing back to the
phandle of the MAL node. The mal-tx-channel
and mal-rx-channel properties are used to specify
which channels within that MAL are used. The device
driver for the on-board Ethernet parses these properties
to correctly configure the MAL and EMAC devices.

While this is certainly not the most complex interac-
tion between devices that can be found, it does illus-



2008 Linux Symposium, Volume Two • 35

trate how a more interesting setup can be accomplished
using the device tree. For those interested in further ex-
amples of complex setups, including multiple bridges
and unique address ranges, the arch/powerpc/boot/
dts/ebony.dts file found in the kernel would be a
good starting point.

4.2 Linux on Xilinx Spartan and Virtex FPGA plat-
forms

Xilinx has two interesting FPGA platforms which can
support Linux. The Spartan and Virtex devices both sup-
port the Microblaze soft CPU that can be synthesized
within the FPGA fabric. In addition, some of the Vir-
tex devices include one or more dedicated PowerPC 405
CPU cores. In both cases, the CPU is attached to pe-
ripherals which are synthesized inside the FPGA fabric.
Changing peripheral layout is a simple matter of replac-
ing the bitstream file used to program the FPGA.

The FPGA bitstream file is compiled from VHDL, Ver-
ilog, and system layout files by Xilinx’s Embedded De-
velopment Kit tool chain. Historically, EDK also gener-
ated an include file called xparameters.h which con-
tains a set of #define statements that describes what
peripherals are present and how they are configured.
Unfortunately, using #defines to describe the hard-
ware causes the kernel to be hard coded for a particular
version of the bitstream. If the FPGA design changes,
then the kernel needs to be recompiled.

Just like other platforms, migrating to arch/powerpc

means that Virtex PowerPC support must adopt the de-
vice tree. Fortunately, the device tree model is particu-
larly suited to the dynamic nature of an FPGA platform.
By formalizing the hardware description into the device
tree, the kernel code (and therefore the compiled image)
is decoupled from the hardware design—particularly
useful now that hardware engineers have learned soft-
ware’s trick of changing everything with a single line of
source code.

On the other hand, the burden of tracking changes in the
hardware design is simply shifted from making changes
in the source code to making changes in the device tree
source file (.dts). For most embedded platforms, the
.dts file is written and maintained by hand, which is
not a large burden when the hardware is stable and few
changes are needed once it is written. The burden be-
comes much greater in the FPGA environment if every

change to the bitstream requires a manual audit of the
design to identify device tree impacts.

Fortunately, the FPGA tool chain itself provides a solu-
tion. The FPGA design files already describe the sys-
tem CPUs, buses, and peripherals in a tree structure.
Since the FPGA tool chain makes significant use of the
TCL language, it is possible to write a script that in-
spects EDK’s internal representation of the system de-
sign and emits a well formed dts file for the current
design. Such a tool has been written; it is called gen-
mhs-devtree [?] and it is in the process of being officially
integrated into the EDK tool chain.

Figure 11 shows an example of a device tree node gen-
erated by an instance of version 1.00.b of the opb_

uartlite ipcore. As you can see, the node includes
the typical compatible, reg, and interrupt prop-
erties, but it also includes a set of properties with the
xlnx, prefix. These properties are the ipcore configura-
tion parameters extracted from the FPGA design. The
device tree has made it possible to provide this data to
the operating system in a simple and extensible way.

RS232_Uart_1: serial@40400000 {
compatible =

"xlnx,opb-uartlite-1.00.b";
device_type = "serial";
interrupt-parent = <&opb_intc_0>;
interrupts = < 4 0 >;
port-number = <0>;
reg = < 40400000 10000 >;
xlnx,baudrate = <2580>;
xlnx,clk-freq = <5f5e100>;
xlnx,data-bits = <8>;
xlnx,odd-parity = <0>;
xlnx,use-parity = <0>;

} ;

Figure 11: node generated by gen-mhs-devtree

With the success of the device tree for Xilinx PowerPC
designs, Xilinx has decided to also adopt the device tree
mechanism for Microblaze designs. Since many of the
Xilinx peripherals are available for both PowerPC and
Microblaze designs anyway, it was the natural choice to
use the same mechanism for describing the hardware so
that driver support can be shared by both architectures.



36 • A Symphony of Flavours: Using the device tree to describe embedded hardware

5 Tradeoffs and Critique

5.1 kernel size

One of the often-heard concerns of using the device tree
method is how much larger the kernel binary will be.
The common theory is that by adding all the device
tree probing code, and any other “glue” code to make
the board-specific drivers function with the generic ker-
nel infrastructure, the overall vmlinux binary size will
drastically increase. Combine this with having to store
the dtb for the board and pass it in memory to the ker-
nel, and one could see why this might be a concern for
embedded targets.

While it is certainly true that the size of the vmlinux
binary does grow, the actual differences are not as
large as one may think. Let’s examine the sizes of an
arch/ppc and an arch/powerpc vmlinux binary
using feature-equivalent kernel configs for minimal sup-
port with a 2.6.25-rc9 source tree.4 Table 1 shows the
resulting binary size for each arch tree.

Arch Text Data BSS Total
ppc 2218957 111300 82124 2412381

powerpc 2226529 139564 94204 2460297

Table 1: Section sizes of vmlinux binaries

As you can see, the overhead for the device tree method
in this case is approximately 47KiB. Add in the addi-
tional 5KiB for the dtb file, and the total overhead for a
bootable kernel is approximately 52KiB.

While to some this may seem like quite a bit of growth
for such a simple configuration, it is important to keep in
mind that this brings in the base OpenFirmware parsing
code that would be required for any arch/powerpc
port. Each device driver would have some overhead
when compared to its arch/ppc equivalent; however,
this would be a fairly small percentage overall. This
can be seen when examining the vmlinux size for a
multiplatform arch/powerpc config file. This con-
fig builds a kernel that runs on 6 additional boards, with
support for 5 additional CPU types, and adds the MTD
subsystem and OF driver. The resulting vmlinux adds

4Essentially, the kernel was configured for BOOTP autoconf us-
ing an NFS rootfilesystem for the PowerPC 440GP Ebony evaluation
board.

approximately 130 KiB of overhead when compared to
the single-board arch/ppc config. A comparison with
a similar multiplatform config in arch/ppc cannot be
done, as there is no multiplatform support in that tree.

5.2 Multiplatform Kernels

Another question that is often heard is “But why do I
care if I can boot one vmlinux on multiple boards?
I only care about one board!” The answer to that, in
short, is that most people probably don’t care at all. That
is particularly true of people who are building a single
embedded product that will only ever have one config-
uration. However, there are some benefits to having the
ability to create such kernels.

One group that obviously benefits from this are the up-
stream kernel maintainers. When changing generic code
or adding new features, it is much simpler to build
a multiplatform kernel and test it across a variety of
boards than it is to build individual kernels for each
board. This is helpful for not only the architecture main-
tainers, but anyone doing wider cross-arch build testing.

It’s important to note that for most of the embedded
boards, there is nothing that precludes building a sin-
gle board config. Indeed, there are approximately 35
such defconfigs for the Freescale and IBM/AMCC em-
bedded CPUs alone. However, doing a “buildall” re-
gression build of this takes quite a long time, and the
majority of it is spent building the same drivers, filesys-
tems, and generic kernel code. By using a multiplatform
defconfig, you only need to build the common bits once
and the board-specific bits are built all together.

So while not everyone agrees that multiplatform embed-
ded kernels are useful, the current direction is to put em-
phasis on making sure new board ports don’t break this
model. The hope is that it will be easier for the main-
tainers to adapt existing code, perform cleanups, and do
better build test regressions.

References

[1] http://playground.sun.com/1275/
home.html, Accessed on June 24, 2008.

[2] http://www.openfirmware.org,
Accessed on June 24, 2008.



2008 Linux Symposium, Volume Two • 37

[3] Benjamin Herrenschmidt, Becky Bruce, et al.
http://git.kernel.org/?p=linux/
kernel/git/torvalds/linux-2.6.
git;a=blob;f=Documentation/
powerpc/booting-without-of.txt,
Retrieved on June 21, 2008.



38 • A Symphony of Flavours: Using the device tree to describe embedded hardware



Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


