Thermal Management in User Space

Sujith Thomas
Intel Ultra-Mobile Group

sujith.thomas@intel.com

Abstract

With the introduction of small factor devices like Ultra
Mobile PC, thermal management has gained a higher
level of importance. Existing thermal management so-
lutions in the Linux kernel lack a standard interface to
user space. This mandates that all the thermal manage-
ment policy control needs to reside in the kernel. As
more and more complex algorithms are being developed
for thermal management, it makes sense to allow mov-
ing the policy control decisions part into user space and
allow the kernel to just facilitate these decisions.

In this paper, we will introduce a generic solution for
Linux thermal management, which usually contains
a user application for policy control; a generic ther-
mal sysfs driver, which provides a set of platform-
independent interfaces; native sensor drivers; and device
drivers for thermal monitoring and device throttling. We
will also take a look at the software stack of Intel’s Men-
low platform, where this solution is already enabled.

1 Thermal Modeling

Even though there are many thermal modeling concepts
out there, the crux still remains the same.

e There are sensors associated with devices. The de-
vices have various throttle levels and by putting the
device into a lower performance state, the temper-
ature of the device as well as the overall platform
will decrease.

e There may be provisions for programming sensor
trips to send notifications to the monitoring appli-
cation.

e There may be a fan in the platform and it may have
multi-speed control.

Zhang Rui
Intel Open Source Technology Center
zhang.rui@intel.com

Provided these hardware features are available, how can
the software manage thermals for a platform? This can
be implemented either in kernel space or in user space.
The kernel-space implementation by using the frame-
work is enough as long as there are only a few thermal
contributors, and mainly the CPU.

But with the Ultra Mobile PCs (UMPC) and Mobile In-
ternet Devices (MID), the CPU is no longer the major
thermal contributor. There may be cases where, over
a period of time, multiple devices’ contributions cause
the platform temperature to rise significantly. So, the
real challenge here is to choose the right device(s) and
to pick up the right performance levels.

2 The Concept of ‘Thermal management in
User Space’

Thermal management in user space would imply that
all the policy decisions will be taken from user space
and the kernel’s job would be only to facilitate those
decisions. This model gives us the these advantages:

e The algorithms can scale well from simple scripts
to complex algorithms involving neural networks.

o The kernel is freed from consuming CPU cycles for
non-critical tasks. Response to a non-critical ther-
mal scenario, which is the most common case, is
not immediately required—that is, we don’t have
to account for decisions which are in milliseconds
or microseconds. This is because raising the plat-
form temperature about one degree Celsius takes
around 20s-30s on most platforms. So moving
thermal management from kernel space, where we
have critical things to do, is the right thing to do.

e This also guarantees that the same application will
work on different platforms even though the ther-
mal modeling is different at the hardware level.

e 227 o

228 e Thermal Management in User Space

But for the thermal management to shift to user space,
applications still need to get support from the kernel.
That’s the role the generic thermal management frame-
work plays.

3 ACPI vs. Generic Thermal Management

The ACPI 2.0 thermal model was a good start for ther-
mal management. But for new platforms with small
form factors like the Mobile Internet Devices (MID),
this model is no longer sufficient. Some of the reasons
are:

e ACPI proposes active trip points, but there may not
be any fans on the handhelds.

e ACPI assumes that the CPU is the major thermal
contributor and doesn’t discuss other thermal con-
tributors.

o ACPI doesn’t support sensors with programmable
AUX trip points.

Even with these limitations, many platforms still use
ACPI because of its other benefits. As a matter of
fact, the generic thermal management is not a thermal
model itself; instead it complements existing models
like ACPI.

The generic thermal management solution was designed
to support thermal models (like ACPI 2.0) and to go
beyond, to complement such models with proprietary
platform-based sensors and devices. Intel’s Menlow
platform is a good example of using ACPI as the back-
bone for thermal management. Along with that, it uses
sensors with programmable AUX trip points and it can
even throttle the memory controller. A case study in the
latter part of this paper illustrates this solution.

4 Generic Thermal Management Architecture

The generic thermal management has these key compo-
nents:

e Thermal zone drivers for thermal monitoring and
control.

e Cooling device drivers for device throttling.

e An event framework to propagate the platform
events to user-space applications.

o A generic thermal sysfs driver which provides a set
of platform-independent interfaces.

Figure 1 shows the software stack of the generic thermal
solution.

4.1 Thermal Zone Drivers

A thermal zone, by definition, not only gives the temper-
ature reading of a thermal sensor, but also gives the list
of cooling devices associated with a sensor. The driver
or application may in turn control these devices to bring
down the temperature of this thermal zone. The thermal
zone driver abstracts all the platform-specific sensor in-
formation and exposes the platform thermal data to the
thermal sysfs driver. This may include data like temper-
ature and trip points. In addition, it also binds cooling
devices to the associated thermal zones. This driver is
also responsible for notifying user space about thermal
events happening in the platform.

4.2 Cooling Device Drivers

The cooling device drivers are associated with thermal
contributors in the platform. The cooling device drivers
can register with the generic thermal sysfs driver, thus
becoming the part of platform thermal management. By
registering, these drivers provide a set of thermal ops
that they can support, like the number of cooling states
they support and the current cooling state they are in.
The generic thermal sysfs driver will redirect all the
control requests to the appropriate cooling device driver
when the user application sets a new cooling state. It is
up to the cooling device driver to implement the actual
thermal control.

4.3 Eventing Framework

Events will be passed from kernel to user space us-
ing the netlink facility. The applications may use
libnetlink to receive these events and to do further
processing.

2008 Linux Symposium, Volume Two e 229

Thermal management policy control application

ApplicationA

Sysfs I/F

Sysfs throttle I/F

f

Thermal Sysfs I/F

A

A v

Processor
Driver

Thermal Driver

Native Sensor Native Device
Driver Driver

Platform hardware, BIOS, Firmware

Figure 1: Generic thermal management architecture

4.4 Generic Thermal sysfs Driver

The generic thermal sysfs driver is a platform-
independent driver which interacts with the platform-
specific thermal zone drivers and cooling device drivers.
This driver, in turn, builds a platform-independent sysfs
interface (or I/F) for user space application. It mainly
works on device management and sysfs I/F management
for registered sensors and cooling devices.

4.4.1 Device Management

The thermal sysfs driver exports the following interfaces

e thermal_zone_device_register()
e thermal_ zone_device_unregister ()
e thermal_cooling device_register ()

e thermal_cooling_device_
unregister ()

e thermal_zone_bind_cooling_
device ()

e thermal_ zone_unbind cooling_
device ()

for the thermal zone drivers and cooling device drivers
to register with the generic thermal solution and to be a
part of it. The thermal sysfs driver creates a sysfs class
during initialization and creates a device node for each
registered thermal zone device and thermal cooling de-
vice. These nodes will be used later on to add the ther-
mal sysfs attributes.

The bind/unbind interfaces are used by the thermal
zones to keep a mapping of the cooling devices asso-
ciated with a particular thermal zone. Thermal zone
drivers usually call this function during registration, or
when any new cooling device is registered.

4.4.2 Sysfs Property

The generic thermal sysfs driver interacts with all
platform-specific thermal sensor drivers to populate the
standard thermal sysfs entries. Symbolic links are cre-
ated by the generic thermal driver to indicate the binding
between a thermal zone and all cooling devices associ-
ated with that particular zone. Table 1 gives all the at-
tributes supported by the generic thermal sysfs driver.

The generic thermal management uses a concept of
cooling states. The intent of a cooling state is to define
thermal modes for supporting devices. The higher the
cooling state, the lower the device/platform temperature
would be. This can be used for both passive and active
cooling devices. It’s up to the cooling device driver to

230 e Thermal Management in User Space

Sysfs Location Description RW
type /sys/class/thermal/thermal_zone[0-*] The type of the thermal zone RO
mode /sys/class/thermal/thermal_zone[0-*] One of the predefined values in [kernel, user] RW
temp /sys/class/thermal/thermal_zone[0-*] Current temperature RO
trip_point_[0-*]_temp | /sys/class/thermal/thermal_zone[0-*] Trip point temperature value RO
trip_point_[0-*]_type | /sys/class/thermal/thermal_zone[0-*] Trip point type RO
type /sys/class/thermal/cooling_device[0-*] | The type of the cooling device RO
max_state /sys/class/thermal/cooling_device[0-*] | The maximum cooling state supported RO
cur_state /sys/class/thermal/cooling_device[0-*] | The current cooling state RwW
cdev[0-*] /sys/class/thermal/thermal_zone[0-*] Symbolic links to a cooling device node NA
cdev[0-*]_trip_point /sys/class/thermal/thermal_zone[0-*] The trip point that this cooling device is associated with | RO

Table 1: Thermal sysfs file structure

implement the cooling states. In most of the cases, it
may map directly to the power modes of the device. But
in some other cases, it may not. The CPU is the exam-
ple of when power modes are controlled by P states, but
thermal is controlled by a combination of P and T states.

Besides the generic thermal sysfs files, the generic ther-
mal sysfs driver also supports the hwmon thermal sysfs
extensions. The thermal sysfs driver registers an hwmon
device for each type of registered thermal zones. With
the hwmon sysfs extensions, an attempt has been made
to support applications which use the hwmon style of in-
terfaces. Currently, using this interface, the temperature
and critical trip point of the platform are exposed.

Table 2 shows the hwmon thermal sysfs extensions.

5 User Space Policy Control

The generic thermal management framework enables
thermal management applications to collect all the rele-
vant thermal data. The data will be pre-processed and
then passed on to the intelligent algorithm where the
throttling decisions are taken. The algorithm may con-
sider user preferences before executing any decisions,
again through the generic thermal management frame-
work.

Here are the operations which applications can perform
using the generic thermal management framework.

e Enumerate the list of thermal sensors in the plat-
form.

e Enumerate the list of thermal contributors (CPU,
Memory, etc.) in the platform.

e Enumerate the list of active cooling devices (fans)
in the platform.

e Enumerate the thermal zones (to get device sensor
associations) in the platform.

e Get sensor temperatures and trip points of various
Sensors.

o Set the threshold trip points if the underlying plat-
form supports this feature.

o Get notifications on thermal events happening in
the platform.

e Get exclusive control of any thermal zone in the
platform.

6 Thermal Management on Intel’s Menlow
Platform

Menlow is Intel’s handheld platform for the 2008 time
frame. It is a small form-factor device (screen size of
about 5 inches), which makes its thermal management a
challenge. The goal of the solution was that at any time,
the skin temperature (top and bottom) should be below
45°C. The other challenge was that the CPU was not
the major thermal contributor. There are other devices,
like the memory controller and communication devices,
which contributed equally to the platform’s skin tem-
perature. There was clearly a need for a complex algo-
rithm to perform the thermal management by throttling
the devices at the same time, while not compromising
the performance.

6.1 Why ACPI Was Not Enough...

Menlow’s thermal management solution leverages many
of the ACPI standards available on the platform. But

2008 Linux Symposium, Volume Two e 231

Sysfs Location Description RW
Name /sys/class/hwmon/hwmon[0-*] | Same as the thermal zone ’type’ | RO
Temp[1-*]_temp | /sys/class/hwmon/hwmon[0-*] | Current temperature value RO
Temp[1-*]_crit /sys/class/hwmon/hwmon[0-*] | Critical temperature value RO

Table 2: Hwmon support file structure

relying only on the ACPI standards was not enough be-
cause sensors available in the platform were capable of
doing more things than in ACPI 2.0. Hence the concept
of generic thermal management was proposed.

The Menlow platform has many thermal sensors at-
tached to the platform’s embedded controller. The
embedded controller firmware was in charge of read-
ing the temperature from the sensors. These sensors
had the additional capability of programming the AUX
trips, wherein the application can program the upper
and lower thresholds, based on the current temperature.
Whenever the temperature exceeds any of these thresh-
olds, the application will get an event and can make
a decision based on the user policy. ACPI 2.0 didn’t
have support for AUX trip point programming. Generic
thermal management was used to complement the ACPI
standards.

6.2 How the Generic Thermal Management Works
on Menlow Platform

Menlow’s thermal management is the first use of the
generic thermal solution. Thermal management on
Menlow is made up of these components.

e An intelligent user-space application which can
make throttling decisions based on thermal events
it receives.

o ACPI thermal management, which has its thermal
zone driver (ACPI thermal driver) and cooling de-
vice drivers (processor, fan, and video driver) reg-
istered with the thermal sysfs driver.

e intel_menlow platform driver, which provides
required, extra thermal management, such as mem-
ory controller throttling and AUX trip point pro-
gramming.

e ACPI BIOS which has objects for controlling the
processor’s P and T states.

e Embedded controller firmware which reads the
sensor temperature and programs the temperature
thresholds.

Figure 2 shows the thermal sysfs architecture on the
Menlow platform.

6.3 Thermal Zone Driver on Menlow

The ACPI thermal driver plays a key role on Menlow,
which is registered with the thermal sysfs driver to ex-
port the temperature and trip point information to user
space. The ACPI thermal driver does the thermal man-
agement to some extent—that is, it controls the pro-
cessor P and T states whenever the temperature crosses
the configured _P SV temperature. The generic thermal
management provides a way for a user-space application
to override kernel algorithm using the sysfs-exported file
named mode. If ACPI thermal zones’ modes are set to
“user,” ACPI thermal zones will no longer follow ther-
mal policy control. Instead, they will only export tem-
perature change events to user space through netlink.
Whenever the application exits, it can give back the ther-
mal management control by writing “kernel” into the
file mode. This was needed to guarantee the mutual ex-
clusivity of the thermal management between the kernel
and the user-space application.

6.4 Menlow’s Native Driver

Intel_Menlow is a platform-specific driver which
handles:

e AUX trip point programming for platform thermal
Sensors.

e Throttling of memory controller.

232 e Thermal Management in User Space

Thermal management
algorithm

Sysfs I/F

I

Thermal Sysfs I/F

0

|
T NG I

ACPI Processor
Driver

ACPI Thermal

Driver)

Menlow Sensor T A

Driver ' H

! ' ACPIBIOS } Embedded Controller]
! Tz01 :/: ; : :\ '
1 TZ02 7 meseeesessses | heseecscssseseeeaas ! ! Sensor 2 !
1] 1 1] 1

L]
1 Sensor 1

Figure 2: Menlow using the generic thermal management

6.5 Cooling device driver on Menlow

The following cooling devices are registered with the
thermal sysfs driver on Menlow:

e Memory controller, which controls the temperature
by throttling the memory bandwidth.

e ACPI processor cooling state is a combination of
the processor P-state and T-state. The ACPI CPU
frequency driver prefers to reduce the frequency
first, and then to throttle.

e The ACPI fan driver supports only two cooling
states: state 0 means the fan is off, state 1 means
the fan is on.

e ACPI video throttles the LCD device by reducing
the backlight brightness levels.

7 Conclusion

For handheld devices it is viable to move the thermal
management to user space applications. By doing so the

application are given the freedom to implement the al-
gorithm that would be the best to handle thermals for a
particular class of devices. The job of the kernel would
be limited to delivering events and exposing device spe-
cific throttle controls. This approach can be used on
platforms with ACPI, without ACPI, or to compliment
thermal models like ACPL

8 Acknowledgment

This paper is based on “Cool Hand Linux—Handheld
Thermal Extensions” co-written by Len Brown and
Harinarayan Seshadri. We would also like to acknowl-
edge Nallaselan Singaravelan, Vinod Koul, and Sailaja
Bandarupali of the Ultra Mobility Group, Intel Corpo-
ration, for their valuable contributions.

9 References

e “Cool Hand Linux—Handheld Thermal Exten-
sions” by Len Brown and Harinarayan Seshadri,

2008 Linux Symposium, Volume Two e 233

Proceedings of the Linux Symposium, Ottawa,
Canada, 2007.

o ACPI Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba. Advanced Configuration and Power Inter-
face 3.0b, October, 2006. http://www.acpi.
info

234 e Thermal Management in User Space

Proceedings of the
Linux Symposium

Volume Two

July 23rd-26th, 2008
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.

Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net

Robyn Bergeron

Dave Boutcher, /IBM

Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

