A Survey of Virtualization Workloads

Andrew Theurer
IBM Linux Technology Center

habanero@us.ibm.com

Abstract

We survey several virtualization benchmarks, including
benchmarks from different hardware and software ven-
dors, comparing their strengths and weaknesses. We
also cover the development (in progress) of a new vir-
tualization benchmark by a well known performance
evaluation group. We evaluate all the benchmarks’ ease
of use, accuracy, and methods to quantify virtualization
performance. For each benchmark, we also detail the ar-
eas of a virtualization solution they stress. In this study,
we use Linux where applicable, but also use other oper-
ating systems when necessary.

1 Introduction

Although the concept of virtualization is not new [1],
there is a recent surge of interest in exploiting it. Vir-
tualization can help with several challenges in comput-
ing today, from host and guest management, energy
consumption reduction, reliability, and serviceability.
There are now several virtualization offerings, such as
VMware® ESX [2], IBM PowerVM ', Xen [3][4] tech-
nology from Citrix, Virtual Iron, RedHat, and SUSE,
and Microsoft® Windows Server® 2008 Hyper-V [5].
As the competition heats up, we are observing a growth
of performance competitiveness across these vendors,
yielding “marketing collateral” in the form of bench-
mark publications.

1.1 Why are Virtualization Benchmarks Different?

A key difference in benchmarking a virtualization-based
solution is that a hypervisor is included. The hypervi-
sor is responsible for sharing the hardware resources for
one or more guests in a safe way. The use of a hypervi-
sor and the sharing of hardware can introduce overhead.
One of the goals of benchmarking virtualization is to
quantify this overhead and ideally show that virtualiza-
tion solution X has lower overhead than virtualization

Karl Rister
IBM Linux Technology Center

kmr@us.ibm.com

Steve Dobbelstein
IBM Linux Technology Center

steved@us.ibm.com

solution Y. Another difference in benchmarking virtu-
alization is that the benchmark scenarios can be very
different than one without virtualization. Server consol-
idation is such a scenario. Server consolidation may not
typically be benchmarked without the use of a hypervi-
sor (but not out of the realm of possibility; for example,
containers may be used). Server consolidation bench-
marks strive to show how effective a virtualization so-
lution can host many guests. Since many guests can be
involved in this scenario, it may require the use of sev-
eral benchmarks running concurrently. This concept is
not common on traditional benchmarks.

2 Recently Published Benchmarks

The following are virtualization benchmarks with pub-
lished specifications and run rules that users can repli-
cate in their own environment. These benchmarks strive
to set a standard for virtualization benchmarking. In
this section, we discuss the strengths and weaknesses
of these benchmarks.

2.1 vConsolidate

The vConsolidate benchmark [6] was developed by
Intel® to measure the performance of a system running
consolidated workloads. As one of the earlier proposals
for a virtualization benchmark, vConsolidate was writ-
ten to prompt the industry to discuss how the perfor-
mance of a system running with virtualization should be
measured.

vConsolidate runs a benchmark for a web server, a mail
server, a database server, and a J ava server, each in a
separate guest. There is also a guest that runs no bench-
mark, which is meant to simulate an idle server. These
five guests make up a consolidation stack unit, or CSU,
as illustrated in Figure 1.

The tester starts with running 1 CSU, obtaining the
benchmark score and the processor utilization of the

e 215 o



216 e A Survey of Virtualization Workloads

Csu 1 CsuU 2 CsuU 3
Java
Database Database Database
Mail Mail Mail
Web Web Web

Figure 1: Consolidation stack units

system. The tester does three iterations and then uses the
median score and its processor utilization. The tester in-
crementally adds additional CSUs, recording the bench-
mark score and processor utilization, until the bench-
mark score for the set of N CSUs is less than the score
for N-1 CSUs, or until all the system processors are fully
utilized. The final benchmark score is the maximum of
the scores reported along with the number of CSUs and
the processor utilization for that score.

The vConsolidate benchmark score is calculated by
first summing each of the component benchmark scores
across the individual CSUs. The sums are then normal-
ized against the score of the benchmark running on a
reference system, giving a ratio of the sum compared to
the score of the reference platform. The reference sys-
tem scores can be obtained from a 1 CSU run on any
system. It is Intel’s desire to define a “golden” reference
system for each profile. The vConsolidate score for the
test run is the geometric mean of the ratios for each of
the benchmarks. Figure 2 shows sample results from a
vConsolidate test run. In this example, the maximum
score was achieved at 4 CSUs with a processor utiliza-
tion of 78.3%.

The reporting of the processor utilization along with the
score is not common. Most standard benchmarks sim-
ply report the benchmark score and are not concerned
with the processor utilization. The processor utilization,
however, is a useful metric in characterizing the per-
formance of the system running the consolidated work-
loads. It can also be useful in spotting performance is-
sues in other areas of the system (for example, disk I/O,
network), for example, when the score starts dropping
off before the processors get fully utilized, as seen in
Figure 2.

vConsolidate score —— Processor utilization —e—

vConsolidate score
~
IS
5

Processor utilization

Figure 2: Sample results for vConsolidate

2.1.1 Benchmark Implementation

vConsolidate specifies which benchmarks are run for
each of the workloads: WebBench'" [7] from PC Maga-
zine for the web server, Exchange Server Load Simula-
tor (LoadSim) [8] from Microsoft for the mail server,
SysBench [9] for the database server, and a slightly
modified version of SPECjbb2005 [10] for the Java
server.

WebBench is implemented with two programs—a con-
troller and a client. The controller coordinates the run-
ning of the WebBench client(s). vConsolidate uses only
one client program, which runs eight engine threads.
The client and the controller can be run on the same
system because neither is processor intensive. The only
interface to WebBench is through its GUI, making it dif-
ficult to automate.

vConsolidate indirectly specifies which mail server to
run. Microsoft’s LoadSim only works against a Mi-
crosoft Exchange Server, therefore, the mail server must
be Exchange Server running on the Windows operating
system. Although it runs in a GUI, LoadSim can be eas-
ily automated because it can be started from the com-
mand line.

vConsolidate runs a version of SysBench that has been
modified so that it prints out a period after a certain num-
ber of database transactions. The output is then redi-
rected to a file, which is processed by vConsolidate to
calculate the throughput score.

vConsolidate has instructions for modifying the
SPECjbb2005 source to add a think time, so that the test



2008 Linux Symposium, Volume Two e 217

doesn’t run full bore, and to have it print out some statis-
tics at a periodic interval. The output is then redirected
to a file that is processed by vConsolidate to calculate
the throughput score. The benchmark specifies the ver-
sion of Java to run: BEA® JRockit® 5.0.

One observation of the benchmark implementation is
that most of the workloads are modified or configured
such that the benchmark does not run all out, but sim-
ulates a server running with a given load. LoadSim is
configured to run with 500 users. SysBench is config-
ured to run only four threads. SPECjbb2005 is modified
to add a delay. However, WebBench is not modified to
limit its load. The delay time and think time are both
zero. It may be that this is an oversight of the bench-
mark configuration. Or it may be that even with no de-
lay and no think time that WebBench does not generate
enough load to consume the network and/or processor
utilization on the server. That is, WebBench may gener-
ate a moderate load even with the delay and think time
set to zero.

Certain components of vConsolidate are portable
to other applications and other operating systems.
WebBench makes standard HTTP requests, conse-
quently it doesn’t matter which web server software is
run nor the OS on which it runs. The POSIX version
of SysBench has support for MySQL., PostgreSQL, and
Oracle® database, making it conceivable that vConsol-
idate could be easily modified to use those databases.
SPECjbb will run on any OS that has a Java Virtual
Machine. SPECjbb will also run on any Java Vir-
tual Machine (JVM), so although vConsolidate specifies
JRockit 5.0, it is conceivable that it could run with any
other JVM. Other components of vConsolidate are not
portable, e.g., the mail benchmark is LoadSim which re-
quires Microsoft Exchange Server. vConsolidate could
be made more portable by not requiring specific soft-
ware, e.g., JRockit 5.0, and by using more portable, in-
dustry standard bench marks, such as SPECweb2005 for
the web server and SPECmail2008 for the mail server.

However, vConsolidate has achieved its purpose of get-
ting the discussion started on benchmarking virtualiza-
tion. Intel is not concerned with trying to make vConsol-
idate and industry standard benchmark. Comments on
how to improve the benchmark are now being fed to the
Standard Performance Evaluation Corporation (SPEC)
and they are developing an industry standard benchmark
for virtualization. In fact, the portability issue is still up
for debate among the SPEC members. Some are of the

mind that the benchmark should specify the software
and benchmarks used so that fair comparisons can be
made between different hardware platforms. Others see
that specifying the software and benchmarks favors the
software selected, does not allow for comparisons to be
made between software stacks, and reduces the concept
of the benchmark being open.

2.1.2 Running the Benchmark

As mentioned above, the test setup requires client ma-
chines to run LoadSim and to run the WebBench con-
troller and client. In the current version of vConsoli-
date (1.1), each client runs one instance of LoadSim and
one instance of the WebBench controller and client. Es-
sentially, one machine runs all of the client drivers for
one CSU. This is an improvement over the previous ver-
sion of vConsolidate that specified separate clients for
LoadSim and WebBench. Having one client machine
per CSU makes for an easier test setup, not to mention
the savings in hardware, energy, and rack space.

The test setup also requires one machine to run the
vConsolidate controller. The controller coordinates the
start and stop of each test run so that all benchmarks
start at the same time via a daemon that runs on the
LoadSim and WebBench clients, and on the database
and Java servers. The controller kicks off the LoadSim
clients first and then delays some time to let the Load-
Sim clients finish logging into the mail servers before
starting the other benchmarks. The controller collects
the benchmarks’ results when the run is complete.

The vConsolidate controller, LoadSim client, and
WebBench controller and client are all Windows appli-
cations. As with the servers, this prevents a person from
running a single OS other than Windows for the test bed.
When testing a Linux environment one must still deal
with Windows clients.

vConsolidate has nice automation of the benchmarks.
The Linux daemons kickoff and kill a run . sh script to
start and stop the test, respectively. The run. sh script
can can have any commands in it. We were able to add
commands to run . sh to kickoff and kill profilers. The
Windows daemon is capable of starting and stopping
LoadSim and is able to press the “Yes” button on the
WebBench GUI to start WebBench.

On the other hand, vConsolidate itself is hard to auto-
mate. Much of this arises from a common mentality



218 e A Survey of Virtualization Workloads

when writing a Windows application, which is to as-
sume that everything is controlled by a user sitting in
front of the screen. Many Windows benchmarks are
written with GUIs that are nice for user interaction but
terrible for automating the benchmark. We have a so-
phisticated, well-developed automation framework for
running benchmarks that allows us to, for example, kick
off a batch of benchmarks to be run over night and come
back in the morning and look at the results. It is dif-
ficult to run GUI-based benchmarks from the scripted
automation framework.

The vConsolidate controller uses a GUI interface. Thus,
you cannot automate a test run suite of 1, 2, and 3 CSUs,
for example. Each test run must be started by a user
pressing the “Start!” button on the vConsolidate GUI.
It would be nice if vConsolidate could be started from a
command line, thus enabling it to be scripted.

Our test runs of vConsolidate used a version prior to
1.1 which required the user manually to press a “Stop!”
button when the WebBench clients finished. The tester
had to keep an eye on the WebBench tests and when
they finish, go to the vConsolidate controller and push
the “Stop!” button. If the tester was not alert, he could
miss the end of the test run and end up with bad re-
sults because the other benchmarks would have con-
tinued to run beyond the end of the WebBench test
and would have logged throughput numbers including
the time when WebBench was not running. We man-
aged to automate the test termination by making use of
Eventcorder' " [11], a Windows program for automating
keyboard and mouse input. vConsolidate version 1.1 ad-
dressed this issue and will stop the tests by itself.

As mentioned above, vConsolidate uses WebBench to
test the web server. WebBench is also a GUI-based
Windows benchmark. For each test run, and for each
client, the tester must manually setup the test on the
WebBench controller up to the point of clicking the
“Yes” button to start the test. The vConsolidate con-
troller does coordinate the pushing of the Yes button on
all the WebBench controllers at the same time so the
tests start at the same time. However, the tester must
manually setup each WebBench controller before each
test run. This could be avoided by using a more recent
benchmark (WebBench is six years old) that is not GUI-
based, such as SPECweb2005.

vConsolidate is still a work in progress. Some issues,
such as test termination, have been addressed. Other is-

sues have been deferred to the SPEC virtualization work
group. We hope to see many of the issues raised here ad-
dressed in future releases of the benchmark.

2.2 VMmark

We must note up front that we have not had any hands-
on experience with VMmark' . The following analysis
is based on the paper VMmark: A Scalable Benchmark
Sor Virtualized Systems [12].

VMmark was developed by VMware®. VMmark was
the first performance benchmark for virtualization. Like
vConsolidate, VMmark is a benchmark to measure the
performance of a system running consolidated work-
loads. And like vConsolidate, VMmark runs a bench-
mark for a web server, a mail server, a database server,
and a Java server, and has an idle server. VMmark adds
another benchmark for a file server. In VMmark’s ter-
minology, the combination of the six guests is called a
tile.

VMmark constrains each of its benchmarks so that it
runs at less than full capacity so that it emulates a server
that is usually running at less than full capacity. A given
tile should then generate a certain amount of load on
the system. The tester starts with a test run on a single
tile and then incrementally adds tiles until the system is
fully utilized.

VMmark specifies which benchmarks to use: Ex-
change Server Load Simulator (LoadSim) from Mi-
crosoft for the mail server, a slightly modified version of
SPECjbb2005 for the Java server, SPECweb2005 [13]
for the web server, SysBench for the database server,
and a slightly modified version of dbench [15] for the
file server. The paper mentions using Oracle database
and Oracle’s SwingBench benchmark, but the latest ver-
sion of VMmark specifies MySQL and SysBench.

A normal run of LoadSim increases the number of users
until a maximum is reached. The benchmark score is
the maximum number of users. VMmark is concerned
with maintaining a specific load, therefore it keeps the
number of users set at 1000 and instead measures the
number of transactions executed by the server.

VMmark uses a modified version of SPECjbb2005.
SPECjbb2005 is designed to do short runs over an in-
creasing number of warehouses. The VMmark version
of SPECjbb2005 is set to run eight warehouses for a



2008 Linux Symposium, Volume Two e 219

long period of time. It is also modified to report periodic
status instead of a final score at the end of a run. As with
vConsolidate, VMmark requires BEA® JRockit® 5.0.

VMmark uses a modified version of SPECweb2005.
The VMmark version of SPECweb changes the think
time from ten seconds to two seconds to generate the
desired load. The run rules for SPECweb benchmark
specify three separate runs, each with a warm up and
a cool down period. VMmark, however, does one long
run to keep a consistent load on the system. VMmark
makes use of the internal polling feature of SPECweb to
get periodic measurements of the number of pages ac-
cessed. VMmark runs both the SPECweb2005 backend
simulator and the web server in the same guest “to sim-
plify administration and keep the overall workload tile
size down.”

VMmark does not need to modify SysBench. The de-
sired workload can be obtained by setting the number of
threads. (The same is true of SwingBench. In the paper,
SwingBench is configured for 100 users.)

VMmark uses a modified version of dbench. The bench-
mark is modified to run repeatedly so that it keeps run-
ning during the full VMmark run. The benchmark is
also modified to connect to an external program that
keeps track of the benchmark’s progress and controls
the benchmark’s resource use so that it generates a pre-
dictable load. VMmark also runs a small program that
allocates and mlocks a large block of memory to keep
the page cache small and force most of the dbench I/O
to go to the physical disk.

As with vConsolidate, VMmark requires one client ma-
chine per tile. The client machines run Microsoft Win-
dows Server 2003 Release 2 Enterprise Edition (32-bit).

A VMmark test runs at least three hours. Periodic mea-
surements are taken every minute. After the system has
achieved a steady state, the benchmark is run for two
hours. The two hours are split into three 40 minute runs.
The median score of the three runs is used to calculate
the score for the tile. This method has an advantage
over vConsolidate, since the tester only has to start the
test once instead of having to start three separate runs.

The overall benchmark score is determined by the num-
ber of tiles run and the individual scores of the bench-
marks. Similar to vConsolidate, the individual bench-
mark scores are first normalized with respect to a refer-
ence system. The score for a tile is the geometric mean

of the normalized scores for each benchmark in the tile.
The overall VMmark score is the sum of the scores for
each tile. This is different from vConsolidate, which
sums the normalized scores across the CSUs for each
benchmark and then takes the geometric mean of each
of the benchmark sums for the overall score.

VMmark is less portable than vConsolidate. It specifies
which operating systems, server software, and bench-
marks are to be used. And, of course, it only runs on
VMware® ESX Server. Apparently VMmark is only
concerned with comparing hardware platforms.

It is not clear how much effort VMware will spend on
updating VMmark. VMware is on the SPEC Virtualiza-
tion subcommittee and is spending effort there to help
build an industry standard virtualization benchmark.

3 Other Benchmark Studies

These studies focus on virtualization benchmarks that
do not implement a reference standard, and did not at-
tempt to be adopted as such. They can be considered
“ad-hoc,” but certainly could be adapted or replicated.

3.1 Server Consolidation on POWERS5

In 2006, we conducted a study [17] to help understand
the effectiveness of server consolidation using an IBM
System p5'" 550 server and Linux guests. The goal
was to see how many servers tasked with common ser-
vices such as web, file and e-mail could be consolidated.
New methods were constructed to capture representative
loads for such servers and to measure the server consol-
idation capacity of a virtualization solution.

3.1.1 Workload Definition

A goal of this project was to devise a metric that was tai-
lored to a virtualization solution, not just an application
solution. Typically, a single benchmark is designed to
be ramped-up to achieve peak throughput while main-
taining a specified quality-of-service level, and the met-
ric is a measure of throughput. This study instead used
many benchmarks, each configured to inject a fixed load
with no ramp-up. Similar to some server consolidation
benchmarks, aggregate load for the host was increased
by adding more guests and benchmarks. This study



220 e A Survey of Virtualization Workloads

achieved this with three benchmark types, targeting a
mail, web, and file server. Initially, one instance of the
three benchmark types was used (concurrently), inject-
ing load to three guests. Host load was increased iter-
atively by adding another instance of the three bench-
mark types along with three more guests. This was re-
peated until either 50% of host processor utilization was
reached or quality of service from any benchmark in-
stance could not be maintained.

In this study, there was a desire to have each server that
was consolidated represent a load that might be typical
on a stand-alone server. This was achieved by taking a
common x86 server, and for each benchmark type, in-
jecting a low load, then ramping up the load until the
server reached 15% processor utilization. The load level
to achieve 15% processor was our reference load. This
reference load was then used to target guests on the
POWER5"" system.

3.1.2 Resource Characterization

This workload exhibited a significant amount of disk
and network I/O due to both file server and web server
benchmarks involved. This flows logically to/from
guest and its client. However, there is significant traf-
fic between the guests and the guest designated as the
Virtual I/O Server (VIOS). Unless a guest has an I/O
adapter dedicated to its exclusive use, the VIOS must
handle I/O requests for the guests. This requires an effi-
cient method to move this data as well as adequate pro-
cessor resources for the VIOS.

3.1.3 Issues and Challenges

This study required an effective way to ensure that the
host did not exceed 50% processor utilization. This lim-
itation was placed on this study to ensure ample head-
room, should a guest or multiple guests need to accom-
modate spikes in load. One could have monitored sys-
tem utilization tools, but there was a concern that all
processor cycles may not be accounted for. For exam-
ple, processor cycles used by the hypervisor, which may
not be attributed to one particular guest, may not be
accounted for in a host utilization tool. To avoid this
problem, half the processors were disabled, ensuring no
chance of exceeding 50% host processor utilization

When dealing with benchmarks that have different
strategies to begin injecting load, warming up, enter-
ing a measurement period, ramping down, and stopping,
a method was required that allowed one to accurately
measure the load of all three benchmark types. Ide-
ally, one would have individual benchmarks that have
their measurement period coincide at the exact same
time. In absence of this, one must record the results
of each benchmark type individually, while ensuring the
load of the other two benchmarks is the load desired and
is generated throughout the entire measurement period
of the first benchmark. For example, to get results for
the web server benchmark, one must ensure the file and
mail server benchmarks’ steady state began before, and
ended after, the web server benchmark’s measurement
period. This technique should be followed for mail and
file server benchmark measurements as well. Because
each of these benchmarks can align their measurement
period with benchmarks of the same type, all instances
of that server type can be measured concurrently. For
example, if one is testing 10 sets of consolidated servers
(10 web, 10 file, 10 e-mail), three passes of measure-
ments are made. The first pass has all web bench-
marks execute in unison, while mail and file bench-
marks’ steady state begin before, and end, after the web
benchmarks’ measurement period occurs. The second
pass has measurements from file benchmarks, and the
third pass has measurements from mail benchmarks.

3.2 LAMP Server Consolidation

One of the primary workloads that we have targeted for
consolidation has been the underutilised LAMP (Linux
Apache MySQL PHP/Perl/Python/etc.) servers, simi-
lar to what a web-hosting company might have. Tra-
ditionally, these types of servers are some of the low-
est utilized and therefore have a high capacity for con-
solidation. Additionally, as detailed further when dis-
cussing the workload characteristics, these workloads
stress many parts of the system stack and are therefore
more representative as a generic workload than some-
thing that stresses one area.

In order to compare the consolidation capabilities of
various virtualization solutions (Xen, VMware, Pow-
erVM, and KVM) on various hardware platforms (x86,
x86_64 and POWER), a consolidation benchmark was
developed using a LAMP stack application and addi-
tional open-source tools. In order to ensure cross plat-
form availability, all stack components were built from



source (with the exception of the Linux kernel and the
distribution being tested). The benchmark consists of
two data collection steps that combine to form a con-
solidation metric which is the number of underutilized
servers that can be consolidated as guests on a single
virtualized system. The first data collection step is to
run the target workload on a system that is representa-
tive of the historically underutilized servers that are to
be virtualized. Existing surveys and reports by industry
consulting services provide metrics such as the average
processor utilization of the underutilized servers; these
processor utilization metrics are used to determine the
injection rate (the amount of work for the benchmark
drivers to “inject” into the test system) that the client
drivers should use to drive the baseline system. This
injection rate combined with the workload itself defines
the baseline workload that is then run simultaneously on
each of the virtualized guests on the test system in the
second data collection step. The more guests that a test
system can host while maintaining similar performance
and quality-of-service to the baseline system, the higher
the consolidation metric it achieves.

In order to understand the workload characteristics that
the virtualized system must be capable of handling, the
characteristics of the workload when running on the
baseline system must first be understood. A LAMP
stack application consists of the Apache web server, the
MySQL database, and an interpreted language (PHP in
this particular example) all running on top of the Linux
operating system. These applications inherently have
properties that need to be understood.

The Apache web server accepts connections from client
systems and responds appropriately depending on the
request. Servicing a simple request with non-dynamic
code will usually consist of reading the requested object
from disk or fetching it from cache, and returning it to
the client. Servicing a more complicated request, such
as PHP code, will involve fetching the script from disk
or cache, invoking the interpreter, and then returning the
generated content to the client. All requests are logged,
which consists of a sequential I/O write that will even-
tually be forced to flush to disk.

When the dynamic code interpreter is invoked, the ex-
ecution possibilities are quite expansive, but there are
some basic concepts that can be summarized: first, the
dynamic code may have never been requested before,
which means that it will have to be compiled before ex-
ecution; second, if the dynamic code has been executed

2008 Linux Symposium, Volume Two e 221

before and was not cached, such as by a PHP accelera-
tor, it will have to be compiled again; third, in a LAMP
scenario, the dynamic code will most likely involve con-
necting to the database and waiting for data to be re-
turned or processed. Any compilation of dynamic code
will require processor cycles so caching of the compiled
code is desirable in order to reduce processor utilization.

When requests are made to the database from the dy-
namic code execution, a combination of reads and writes
are likely, and the I/O pattern can vary depending on the
operation required. Database read queries will likely
result in small random, read I/O operations. Database
write queries will likely consist of a combination of ran-
dom I/O writes for the data and sequential 1/O writes for
the log.

When you combine the characteristics of the various
stack components you get the following: TCP/IP socket
connections handled by the web server, disk reads and
writes by the web server, processor intensive compila-
tion and execution of dynamic code, and disk reads and
writes (both sequential and random) from the database
engine. For an underutilized system, the magnitude
of these characteristics is relatively low and of little
concern, however, in a consolidation scenario that can
change.

When large numbers of guests are consolidated on a sin-
gle system, the workload properties of the consolidated
guests are stacked on top of each other. In the case of
the TCP/IP connections, due to the fact that these are
lightly loaded servers being consolidated, the number
of requests are quite low and therefore not an overrid-
ing factor in the test. The processor utilization is cause
for some concern, but it is one of the finite resources
that consolidation is trying to maximize, so it will in-
herently run out at some point anyway. The real area
of concern is the disk I/O that the workload drives. In
an ideal world of spinning disks, all I/O would be se-
quential in order to minimize the penalty of head seeks.
Unfortunately, this is not the case, and most workloads,
such as this LAMP stack application, have a mix of se-
quential and random I/O patterns. Virtualization exac-
erbates the problem, though because due to the fact that
all guests have their own carved out disk space and the
drive heads are forced to seek more and more with each
added guest. This means that drive I/O capacity will
decrease with each added guest until the I/O pattern be-
comes completely random, and the ability to complete
requests will be bounded by the random I/O capabili-



222 e A Survey of Virtualization Workloads

ties of the storage system. In some of the consolidation
studies we have done, on systems with large amounts of
processor power (large numbers of fast processor cores)
the maximum consolidation factor could be not reached
due to the I/O capacity of available storage systems be-
ing maxed out well before processor horsepower was
exhausted. A reality of today’s storage systems is that
systems capable of high random I/O performance are
quite expensive, and for workloads with large amounts
of I/O, success of consolidation will depend greatly on
the ability to pair the target virtualization system with
the the proper storage.

3.3 Processor Scalability Workloads

For the 2006 Ottawa Linux Symposium, we conducted
several scalability tests [18]. These workloads were de-
signed specifically to measure and improve the scala-
bility of hypervisors and the guests they manage. Un-
like other workloads discussed here, these are more syn-
thetic, and are designed to isolate and study specific
scalability problems. They do not necessarily strive to
represent typical virtualization scenarios, but try to tar-
get extreme scalability situations.

3.3.1 Two Types of Scalability

Typically, one would measure scalability by testing a
scenario with N resources (in our case, processors), then
testing again with N*M resources, and observing the
relative increase in throughput. A benchmark would
normally run “all out” to maximize the use of the re-
source. Without virtualization, this is fairly straight for-
ward. One would boot with one processor enabled, run
a test (for example dbench), record the result, then boot
with N processors and run the test again. The scalabil-
ity would be the N-way throughput divided by the 1-
way throughput. There are, of course, variations of this
theme—for example, using 1 and N sockets or NUMA
nodes instead of processors. For virtualization scalabil-
ity, we alter this method slightly in order to study two
types of scenarios: scalability of a single guest and scal-
ability of many guests.

3.3.2 Single Guest Scalability

Scaling just one guest involves assigning the guest one
processor resource (or socket, or NUMA node), test-

ing, then assigning the guest N processors (or sock-
ets, NUMA nodes) and testing again. This is probably
the easiest way to test virtualization, as it follows the
methodology that one would use for traditional scala-
bility testing. With just one guest, there is no plurality
of benchmarks to manage and synchronize, and no sets
of results to aggregate. One complication is that there
may be a service and/or I/O guest which should also be
accounted for.

3.3.3 Multiple Guest Scalability

For scaling many guests, we start with one guest, assign
a fixed processor resource (core, socket, etc.), then test
with N guests, running the same benchmark at the same
time, each assigned the same resource amount (core,
socket, etc.), such that we have enough guests to maxi-
mize that resource. Our goal is to analyze the scalability
of the hypervisor, and not necessarily the scalability of
the guests. In the previous scenario, any scalability in-
hibitor within the guest could affect the overall scaling,
while in this scenario that is not true. In this type of scal-
ability test, we do have a little more work to do. Because
we are running many guests, one must ensure that all of
the benchmarks begin and end at the same time. One
must also sum the benchmarks’ results into one result.

3.4 SPEC and Virtualization

The Standard Performance Evaluation Corporation
(SPEC) is a non-profit corporation that creates, main-
tains and endorses a standardized set of benchmarks.
Members of SPEC include many computer hardware
and software manufacturers across the world. Recently,
SPEC has formed a new sub-committee, Virtualization,
to create and maintain virtualization benchmarks.

3.4.1 SPECvirt_sc2009

SPECvirt_sc2009 is the first virtualization benchmark
from SPEC. As of this writing, this benchmark is still
under development. The characteristics, methodolo-
gies, and run rules described here are subject to change.
The SPEC virtualization sub-committee contains mem-
bers who have been involved in many of the virtu-
alization benchmarks outside of SPEC, including the
benchmarks mentioned earlier in this paper. As such,



SPECvirt_sc2009 takes influence from these bench-
marks, both from their methodologies and from the
lessons learned.

SPECvirt_sc2009 follows a server consolidation sce-
nario, similar to other benchmarks described here. The
benchmark uses the same tile concept as VMmark, sim-
ilar to the vConsolidate CSU and server sets on the
POWERS Server Consolidation Study. The benchmark
metric is the number of tiles one can run while maintain-
ing the quality of service of all benchmarks participat-
ing. However, there are some attributes that differentiate
this benchmark from the others previously mentioned

SPEcvirt_sc2009 also addresses the issue of portabil-
ity. There are no restrictions on the type of architecture
or operating system. All services tested can be imple-
mented with proprietary and/or open-source solutions.
The client driver also makes no requirement of architec-
ture or operating system.

The proposed SPECvirt_sc2009 tile consists of 6
guests: a web server, mail server, application server,
database server, infrastructure server, and an idle server.
To drive a single tile, three SPEC benchmarks are
used: SPECweb2005, SPECmail2009, and SPEC-
JAppServer2004. SPECweb2005 injects requests to a
web server guest. A back-end database simulator, or
Besim, resides on the infrastructure guest, simulating
database requests from the web guest. In addition, the
web server has part of its document root NFS mounted
from the infrastructure server, so some HTTP requests
are served by just the web guest, and some involve the
infrastructure guest as well. The SPECmail2009 bench-
mark injects requests using the IMAP mail protocol to
the mail server, driving load on the mail server guest
only. The SPECjAppServer2005 benchmark injects re-
quests to the application server. The application server
guest requires a database, located on the database server
guest. The SPECjAppServer2004 benchmark drives
load on both the application server and database server.
The idle guest is used to represent the overhead of a
guest which is running but not actually doing anything.
It does not interact with any of the other tile compo-
nents.

One of the big issues for other virtualization bench-
marks, which had heterogeneous guests and load gen-
erators, was synchronization. When using the origi-
nal SPEC benchmarks to prototype SPECvirt, one en-
counters similar issues. It is possible to configure each

2008 Linux Symposium, Volume Two e 223

benchmark type such that they begin and end their mea-
surement period at nearly the same time, however it can
not be done with a high level of confidence. The SPEC
virtualization sub-committee is changing these bench-
marks to support a more tightly controlled apparatus,
ensuring the benchmarks’ start and stop times coincide
exactly.

SPECvirt_sc2009 aims to introduce a characteristic
which is not too prominent on most of the other vir-
tualization benchmarks: intra-guest network communi-
cation. The benchmark introduces dependencies which
will require network communication between guests
within a tile. A portion of the document root for the web
server guest is served by the infrastructure server guest,
generating a significant amount of NFS traffic between
these two guests. SPECjAppServer is required to use
two guests, one for the application server and one for
the database server, so that communication between the
two services is between guests, compared to both ser-
vices on the same guest communicating over loopback.

4 Considerations for Future Virtualization
Benchmarking

After working with these benchmarks, we would like to
propose some ideas for consideration when designing,
running, and analysing virtualization workloads. These
ideas are not strictly for benchmarking or marketing col-
lateral, but also for general testing of virtualization.

4.1 Simplification

Many of today’s benchmarks are already quite com-
plicated. Configuring a multi-tier benchmark such as
SPECweb2005 or SPECjAppServer2004, can be quite a
task by itself. Combining several instances of bench-
marks like this can be daunting at first. We propose
leveraging the concept of virtual appliances for both the
server under test and the client driver system. Main-
taining a library of virtual appliances allows the user to
spend more time on evaluation and analysis of the total
solution instead of dealing with details of service imple-
mentation, OS configuration, and related tasks.

4.2 New Workload types

Our strategy here is to test more of the emerging fea-
tures that virtualization provides. Currently we have



224 e A Survey of Virtualization Workloads

embarked on just one of the common scenarios for vir-
tualization but have not fully explored that area yet. For
example, most of the server consolidation workloads use
benchmarks that have a fixed load level. However, in
real-world situations, all guests do not run a constant
load all the time. The dynamic nature of guests’ re-
source requirements needs to be explored. A hypervi-
sor’s ability to accommodate these changes may vary
greatly from one solution to another.

Another area to look into could center around the RAS
features that virtualization offers. Scenarios that in-
clude BIOS and other software updates, requiring the
live migration of guests during such operations, could
be tested. Other serviceability scenarios could be con-
sidered, like impact of guest provisioning on hosts that
have active guests. Benchmarking scenarios like these
may not be traditionally covered, but with a much more
dynamic data-center, these situations need to be studied
more closely.

In addition, one might want to explore the concept
of whole data-center management using virtualization.
This builds on previous concepts like server consolida-
tion and availability, but takes it further. For example,
a benchmark may evaluate the performance per watt of
an entire data-center. A virtualization management So-
lution and the hypervisors in use can significantly im-
pact the performance and power consumption, espe-
cially when the load is dynamic, driving actions like
migration to and from hosts to meet quality of service
guarantees while conserving the most energy possible.

Another area that probably needs attention is the desk-
top virtualization scenario. This solution is quickly
becoming very competitive, and drawing any conclu-
sions from a server consolidation benchmark may not
be prudent. Desktop virtualization has significantly dif-
ferent characteristics than a server consolidation sce-
nario. Desktop users’ perceived performance, rather
than throughput, may be far more important to this so-
lution.

5 Conclusions

This paper surveys various virtualization benchmarks,
comparing their strengths and weaknesses. The art of
virtualization benchmarks is in its infancy, however, we
believe it is making progress. We are still seeing grow-
ing pains in most implementations, as we try to go

beyond what traditional benchmarking scenarios have
done. Issues such as overall complexity, heterogeneous
workload control, quality of service guarantees, and ver-
ification all need improvement. These benchmarks have
also just begun to simulate the vast number of present
and future usage cases that virtualization introduces. We
are confident, as long as there is a need for improv-
ing virtualization, there will be a drive to improve these
benchmarks.

6 Trademarks and Disclaimer

Copyright (© 2008 IBM.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered trade-
marks of International Business Machines Corporation in the
United States and/or other countries.

Xen is a trademark of XenSource, Inc. in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Intel is a registered trademark of Intel Corporation in the
United States and other countries.

Microsoft and Windows are registered trademarks of Mi-
crosoft Corporation in the United States and other countries.

BEA and JRockit are registered trademarks of BEA Systems,
Inc.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered
trademarks of Oracle Corporation and/or its affiliates.

VMware is a registered trademark of VMware, Inc.

Other company, product, and service names may be trade-
marks or service marks of others. References in this publi-
cation to IBM products or services do not imply that IBM
intends to make them available in all countries in which IBM
operates.

This document is provided “AS IS,” with no express or im-
plied warranties. Use the information in this document at
your own risk.

References

[1] IBM Corporation, Virtualization,
http://www-03.ibm.com/servers/
eserver/zseries/virtualization/
features.html



2008 Linux Symposium, Volume Two e 225

(2]

[4]

[7]

[10]

[11]

[12]

VMware Corporation, Build the Foundation of a
Responsive Data Center, http:
//www.vmware.com/products/vi/esx/

Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, lan
Pratt, Andrew Warfield, Xen and the Art of
Virtualization SOSP’03, October 19-22, 2003,
Bolton Landing, New York, USA.

Ian Pratt, Keir Fraser, Steven Hand, Christain
Limpach, Andrew Warfield, Xen 3.0 and the Art
of Virtualization, Ottawa Linux Symposium 2005

Microsoft Corporation, Virtualization and
Consolidation, http://www.microsoft.
com/windowsserver2008/en/us/
virtualization-consolidation.aspx

Jeffrey P. Casazza, Michael Greenfield, Kan Shi,
Redefining Server Performance Characterization
for Virtualization Benchmarking,
http://http://www.intel.com/
technology/it3/2006/v10i3/
7-benchmarking/6-vconsolidate.htm

Ziff Davis Media, PC Magazine benchmarks,
http://www.lionbridge.com/
lionbridge/en-US/services/
outsourced-testing/zdm—eula.htm

Microsoft Exchange Server 2003 Load Simulator,
http://www.microsoft.com/downloads/
details.aspx?FamilyId=
92EB2EDC-3433-47CA-ALSF8-0483C7DDEA8S
&displaylang=en

Alexey Kopytov, SysBench: a system
performance benchmark,
http://sysbench.sourceforge.net

Standard Performance Evaluation Corporation
(SPEC), SPECjbb2005,
http://www.spec.org/jbb2005

CMS Eventcorder,
http://www.eventcorder.com

Vikram Makhija, Bruce Herndon, Paula Smith,
Lisa Roderick, Eric Zamost, Jennifer Anderson,
VMmark: A Scalable Benchmark for Virtualized
Systems, http://www.vmware.com/pdf/
vmmark_intro.pdf

[13]

[14]

[15]

[16]

[17]

[18]

Standard Performance Evaluation Corporation
(SPEC), SPECweb2005,
http://www.spec.org/web2005/

Oracle Corporation, SwingBench,
http://www.dominicgiles.com/
swingbench.html

Andrew Tridgell, dbench benchmark, http:
//samba.org/ftp/tridge/dbench/

VMware, Measure Virtualization Performance
with Industry’s First Benchmark, http:
//www.vmware.com/products/vmmark/

Yong Cai, Andrew Theurer, Mark Peloquin Server
Consolidation Using Advanced POWER
Virtualizatin and Linux, http://www—03.
ibm.com/systems/p/software/
whitepapers/scon_apv_linux.html

Andrew Theurer, Karl Rister, Orran Krieger, Ryan
Harper, Steve Dobbelstein, Virtual Scalability:
Charting the Performance of Linux in a Virtual
World, Ottawa Linux Symposium 2006



226 e A Survey of Virtualization Workloads




Proceedings of the
Linux Symposium

Volume Two

July 23rd-26th, 2008
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.

Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net

Robyn Bergeron

Dave Boutcher, /IBM

Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



