
SCSI Fault Injection Test

Kenichi Tanaka
NEC Corporation

k-tanaka@ce.jp.nec.com

Masayuki Hamaguchi
NEC Software Tohoku, Ltd.

m-hamaguchi@ys.jp.nec.com

Takatoshi Sato
NEC Software Tohoku, Ltd.
t-sato@wm.jp.nec.com

Kosuke Tatsukawa
NEC Corporation

tatsu@ab.jp.nec.com

Abstract

It has been widely recognized that the testing of Linux
kernel is important. However, error handling code is one
of the places where testing is difficult. In this paper, a
new block I/O test tool is introduced. This makes test-
ing of error handling codes easy. The new test tool has
driver level fault injectors which have flexible and fully
controllable interface for user level programs to simu-
late real device errors. This paper describes the detailed
design of the new test tool and a fault injector implemen-
tation for SCSI. Also, the usefulness of the new test tool
is shown by actual evaluation of Linux software RAID
drivers.

1 Introduction

There is an increasing opportunity to use Linux in en-
terprise systems, where the users expect very high relia-
bility. Storage is one of the areas for which the highest
reliability is required because its failure may cause sys-
tem downtime and data loss. For the case of hardware
failures, the operating system must provide high quality
error handling. That means thorough testing of the error
handling code is inevitable.

However, error handling code is one of the places where
testing is difficult. There are two reasons why evaluation
of error handling code is difficult;

• Error handling code is rarely executed. It can not
be tested just by running the system under normal
operation.

• Fault patterns vary. They can occur during various
timings, and it is difficult to thoroughly test each
combination.

Fault injection is a generally used technique to over-
come the difficulty by controlling the fault occurrence
and forcing the execution of error handling code. Sev-
eral fault injection methods are already available for
Linux but all of them lack either variety of fault pat-
terns or flexibility to inject faults as intended, which are
needed for systematic evaluation of error handling code.
For example, with the existing fault injection methods, it
is difficult to make a test program which tests error han-
dling code of a hard disk drive (HDD) access timeout
while the software RAID recovery is in progress.

In this paper, a new test tool with SCSI fault injection
is introduced. The test tool is capable of injecting SCSI
faults with realistic fault patterns and includes a set of
test programs to cover various combinations of fault
conditions. Since SCSI is the most widely used stor-
age subsystem in Linux, this test tool enables system-
atic evaluation of error handlings in Linux block device
drivers.

In section 2, design overview of the test tool and com-
parison with other existing fault injection tools are de-
scribed. Design and implementation details are ex-
plained in section 3. Section 4 shows an example of
evaluation using the test tool for Linux software RAID
drivers, that was the original motivation of developing
this test tool, and the result of the evaluation. We con-
clude in section 5 and explain possible future works.

2 Testing Error Handler Using SCSI Fault In-
jection

In order to systematically test error handling code using
fault injection for a target kernel component which is be-
ing tested, a set of test programs is necessary where each
individual test program checks whether a certain type of

• 205 •

206 • SCSI Fault Injection Test

fault occurring when the target kernel component is in a
certain state is handled correctly. It is necessary for the
test program to prepare the target kernel module to be in
the desired state, and then inject the desired fault on the
desired access which the test program will trigger, and
test if the result is correct.

In order to achieve this goal, the fault injector provides
an interface to specify the type of fault which will be
injected, and on which access will cause the injection.

2.1 Specifying the Type of Fault

The SCSI HDD fault patterns will be categorized to de-
termine the fault pattern which the fault injector has to
generate.

SCSI fault can be classified in two patterns. One is “The
SCSI device respond with an error” pattern, which is the
case when the drive explicitly returns an error condition
to the OS. The other is “The device does not respond”
pattern, which is the case when the drive does not return
any status to the OS resulting in a timeout. For example,
the former can be caused by media error and the latter
can be caused by SCSI cable fault.

Alternatively, HDD hardware fault can be divided into
temporary faults and permanent faults. A temporary
fault can be caused by an accidental and recoverable
HDD fault. A permanent fault can be caused by a se-
vere HDD fault.

Based on the type of access which will cause the fault
in each of the above four areas, we have categorized the
HDD faults into the following eight categories.

Temporary faults with error return can be classified into
the following two cases, based on the type of access.

1. Temporary read error – This type of fault is acciden-
tally caused by read access, which occurs just once.

2. Temporary write error – This type of fault is acci-
dentally caused by write access, which occurs just
once.

Permanent error with error return can be classified into
the following three cases.

3. Read error correctable by write – This type of fault is
a medium error which can be corrected by writing
data to the failed sector. After writing to the sector,
subsequent reads and writes will both succeed.

4. Permanent read error – This type of fault is a perma-
nent medium error on a particular sector. Any read
access to the sector fails, but write will succeed, be-
cause many disks can not detect errors while writ-
ing data to the medium.

5. Permanent read/write error – This type of fault is a
severe error. Both read and write fail permanently.

Temporary timeout errors can be classified into the fol-
lowing two cases, based on the type of request.

6. Temporary no response on read access – This type
of fault can be caused by congestion, resulting in
SCSI command timeout on a read access. After
the congestion disappears, both read and write ac-
cesses will succeed.

7. Temporary no response on write access – This type
of fault can be caused by congestion, resulting in
SCSI command timeout on a write access. After
the congestion disappears, both read and write ac-
cesses will succeed.

Practically, permanent timeout errors occur regardless
of the type of request, read or write. So we have only
one class for this type of error.

8. Permanent no response on either read or write access
– This type of fault is a device failure resulting in
SCSI command timeout. Both read and write re-
quests fail permanently.

2.2 Specifying the Access to Trigger the Fault

Fault location of a SCSI HDD can be identified by the
disk device and the failed sector within the disk. In
Linux, the disk device can be specified by the major
number and minor number of the block device.

The failed sector can be specified by the sector num-
ber. However it is difficult for a user-level test program
to be aware of the sector number. So, the fault injec-
tor also accepts either the file system block number or
the inode number to specify the fault location. Those
numbers will be automatically converted to the corre-
sponding sector number by the fault injector.

2008 Linux Symposium, Volume Two • 207

2.3 Design Comparison with Existing Methods

Several methods have already been proposed for inject-
ing faults into block I/O processing, which can be used
for evaluation of block I/O error handling code;

• Linux scsi_debug driver – This is a SCSI low
level driver used for debugging. This driver cre-
ates a simulated SCSI device using a ramdisk and
is capable of injecting various SCSI faults when ac-
cessed. However, the condition for injecting faults
is limited. For example medium error can only be
injected by accessing sector 0x1234 [6].

• Linux Fault Injection Framework – This kernel fea-
ture, which was merged into 2.6.20 kernel, is used
to inject various types of errors into Linux kernel.
The framework also supports I/O fault injection,
but the fault pattern it can simulate is very limited.
For example, it can not inject faults to simulate de-
vice timeouts.

• Using special hardware – This method uses special
hardware for fault injection such as failed HDD.
The most precise evaluation result can be obtained
since actual hardware is used to inject faults. How-
ever, the availability of such hardware is very lim-
ited and they are typically expensive.

These existing fault injection methods do not have
enough flexibility to inject various faults into the sys-
tem as intended, which is needed for systematic evalu-
ation of error handling code. The proposed SCSI fault
injector described in this paper has a following benefits
compared with existing methods.

• A flexible fault injection trigger – The SCSI fault
injector can trigger a fault on accessing the user
specified location of any SCSI device, which is
missing in the scsi_debug driver.

• A realistic fault simulation – The SCSI fault injec-
tor can simulate a realistic fault condition by in-
serting a fault generation code in the SCSI driver,
which is missing in the Linux Fault Injection
Framework.

• No needs for external hardware – The SCSI fault
injector provides a realistic fault simulation with-
out any external hardware. Also it does not require
software modification including Linux kernel.

3 SCSI Fault Injector

In this section, the design and implementation of the
SCSI fault injector is explained in detail.

The SCSI fault injector is implemented as a set of Sys-
temTap scripts. SystemTap is used to track information
when an I/O request is passed between various layers
within the kernel, and to add a hook to inject a fault.

SystemTap provides infrastructure to embed a hook in
the kernel dynamically, and to change the value of vari-
ables or function return values. Also, SystemTap makes
it possible to keep these values in SystemTap variables.
By using SystemTap, a fake response from a SCSI de-
vice can be created as if a SCSI device had reported an
error to the OS [7].

The SCSI fault injector takes a fault pattern and a trig-
ger condition as arguments from a test program. Once
started, the injector tracks I/O requests and injects a fault
if the condition is met.

The fault injection works in 2 steps.

1. Identify the target SCSI command matching the
user-specified condition

2. Inject a fault in the processing of the target SCSI
command

3.1 Identifying the target SCSI command

The flow of block I/O processing from a user space test
program to the SCSI middle layer is described. Also it is
explained how the SCSI fault injector tracks the request
to identify the target SCSI command in the flow.

A test program can initiate an I/O request with a read or
write system call to the Linux kernel (see Figure 1).

The system call is sent to filesystem layer and eventually
translated into a struct bio, which is passed to the
block I/O layer by the submit_bio() function.

The bio contains the necessary information for per-
forming I/O. Especially, a bio has bi_sector and
bi_size, which represent the logical I/O destination
of the target block device and access length respectively
at the beginning of submit_bio().

208 • SCSI Fault Injection Test

user-space test program

submit_bio()

BIO

 md RAID1

BIO

generic_make_request()

SCSI Command

To low level driverscsi_dispatch_cmd()

The final destination
is found

Internally
allocated BIO

 SCSI middle
 layer

BIO

make_request()

BIOBIO

REQUEST

System call

SCSI Device

Figure 1: I/O flow from userspace to SCSI device

The software RAID driver resides in the middle of the
block I/O layer. If software RAID is used, a bio is also
generated by the software RAID driver, and the physical
I/O destination and access length are stored in the bio
accordingly.

Then, the bio is converted to a struct request.
At that time, the bi_sector and bi_size of bio
are stored in sector and nr_sector of request.
request also includes a rq_disk member which
links to struct gendisk representing the associ-
ated disk. The gendisk includes major and minor
number of the disk.

Next, the request is sent to the SCSI middle layer
from the I/O scheduler in a form of struct scsi_
cmnd, which represents a SCSI command and it is
linked to an associated request.

The physical I/O destination can be retrieved from
scsi_cmnd through associated request’s sector
member. A physical I/O access length can be retrieved
from scsi_cmnd’s request_bufflen member.

Also, the target device of the SCSI command is found
in the associated request’s rq_disk member.

The SCSI command is issued to SCSI devices through
SCSI lower level drivers. The command result is sent to
SCSI middle layer and handled accordingly. When the
command completed, the result is sent back to the block
I/O layer.

The target SCSI command corresponding to the I/O re-
quest needs to be identified to inject a SCSI fault trig-
gered by the I/O request represented by a bio. The
SCSI fault injector will find the bio which corresponds
with the trigger I/O request from the test program, find
the bio sent to the SCSI middle layer, and finally find
the SCSI command which corresponds to the bio re-
quested from the block I/O layer. The target SCSI com-
mand is found by tracking the bio in the I/O flow
described above, and comparing its members with a
scsi_cmnd (see Figure 2).

Linux block I/O is classified into two types; cached I/O
and direct I/O. Both types use submit_bio() func-
tion and struct bio to send a request to the block
layer. The inode number of the file corresponding to
the I/O request can be identified from struct bio
for cached I/O or from struct dio for direct I/O.

At submit_bio(), which is the entry of block layer,
the target struct bio can be distinguished by com-
paring block number, access length, inode number, and
access direction taken from bio or dio, with those
given by a test program. By tracking the bio in the
I/O flow, the bio which contains the physical I/O desti-
nation, can be identified.

Before issuing a SCSI command to SCSI devices, the
SCSI fault injector identifies the target SCSI command
by comparing information taken from scsi_cmnd
with that information given by the test program and
taken from target bio found in the previous step. The
compared information includes physical I/O destination,
access length, access direction, and device major/minor
number.

The struct scsi_cmnd representing the target
SCSI command identified in this process is saved in a
SystemTap variable for later use.

3.2 Injecting SCSI fault

First, the method to inject a fault for a single disk access
is explained. Next, we show how each fault pattern de-

2008 Linux Symposium, Volume Two • 209

submit_bio()

 md RAID1

 Filesystem

generic_make_request()

To low level driverscsi_dispatch_cmd()

 SCSI middle
 layer

make_request()

 Block I/O

scsi_cmnd
- maj/min num
- destination
- access len
- direction

- maj/min num
- inode num
- block num
- direction

BIO
 bi_sector
 bi_size
 bi_rw

inode number

given

Compare to find
target BIO

Compare to
find SCSI
command

Track a
corresponding
BIO

BIO
 bi_sector
 bi_size
 bi_rw

unplug_fn()

user-space test program

DIO
 BIO
 inode

BIO
 bi_sector
 bi_size
 bi_rw

Figure 2: Block I/O tracking from BIO to SCSI com-
mand

scribed in Section 2.1 can be generated by changing the
behavior in sequence.

3.2.1 Fault Injection Method

Once the target SCSI command is found, the SCSI fault
injector modifies the target SCSI command both before
issuing it to the lower layer driver and after returning the
result, to simulate a SCSI fault.

The implementation details of “The SCSI device re-
spond with an error” pattern and “The device does not
respond” pattern described in Section 2.1 are as follows.

Error Response Case

To simulate device error response, modification of the
result of the target SCSI command is needed to fake an
error response to the upper layer. Also, actual data trans-
fer generated by the SCSI command should not com-
plete because when a real SCSI fault occurs, the DMA
buffer may contain incomplete data (see Figure 3).

SCSI disk

 Upper layer

 SCSI middle layer

I/O request

SCSI Command

Issue a command

scsi_dispatch_cmd()

Receive a command
result from device

Replace
with a fake
result

reply from device

Changed
SCSI Command

Command Result

scsi_decide_dispos-
ition()

SCSI ERROR

Change data
length to 0

Changed
Command Result

I/O ERROR

Find the target
SCSI command

Error handling

Figure 3: Simulating a fault with error response

For simulating incomplete data transfer to test whether
the poisoned data is not sent to the upper layers, the
data transfer length of the SCSI command is modified
before issuing the SCSI command. When entering the
scsi_dispatch_cmd() function before issuing a
target SCSI command to lower layer driver, the data
transfer length in scsi_cmnd->cmnd is overwritten
to be zero. By this modification, the actual data transfer
will not happen as expected.

To simulate error response, the result of target SCSI
command needs to be modified before it is sent back
to the upper layer. The SCSI command result is
analyzed to be sent back to the upper layer in the
scsi_decide_disposition() function. At the
beginning of the function, to identify the target SCSI
command, a scsi_cmnd which is given as an argu-
ment of the function is compared with the scsi_cmnd
previously saved in a SystemTap variable. If it is the
target command, the result stored in scsi_cmnd
is modified using SystemTap so that the OS detects
a medium error which is the most common HDD

210 • SCSI Fault Injection Test

SCSI disk

 Upper layer

 SCSI middle layer

I/O request

No command is issued to the device

scsi_dispatch_cmd()

 Command Result

 Timeout handler

Skip issuing the
SCSI command
to the device

I/O ERROR

Find the target
SCSI command

Error handling

SCSI Command

SCSI Command Timeout handling
including retry

A “real” SCSI
command timeout
occurs

Pretend issuing
success

 Command TIMEOUT

Figure 4: Simulating a fault with no response

error. More precisely, the following error values are
stored in scsi_cmnd respectively; (scsi_cmnd.

result, scsi_cmnd.sense_buffer[2], scsi_

cmnd.sense_buffer[12], scsi_cmnd.sense_

buffer[13]) = (2, 3, 11, 4). This means
“medium error, unrecovered read error, auto reallocated
fail” which is one of the medium errors. Then, the
changed status will be sent back to the upper layer.

No Response (Timeout) Case

The target SCSI command issued to the low level driver
is skipped to simulate no device response (see Figure 4).

All SCSI commands are sent to low level drivers by the
queuecommand operation in the Linux SCSI middle
layer. If the queuecommand operation is skipped, the
upper layer thinks that SCSI command is issued suc-
cessfully. But actually it is not issued, consequently the
SCSI command results in a timeout.

When the target scsi_cmnd is given as an argu-
ment of the scsi_dispatch_cmd() function, the
queuecommand operation is skipped by using Sys-
temTap.

3.2.2 Fault Patterns

A single error caused by a SCSI fault (medium error or
timeout) can be injected as previously explained. The
target SCSI command may be detected several times at
scsi_dispatch_cmd() after accessing the faulty
disk from the test program once, because the error han-
dling code of the upper layer may retry the failed I/O
request by an error handling code. The fault patterns
described in Section 2.1 can be created by changing
the SCSI command manipulation behavior at scsi_
dispatch_cmd() in sequence as follows.

1. Temporary read error

2. Temporary write error – When a target SCSI com-
mand is detected at scsi_dispatch_cmd(),
inject a fault just once. If the target SCSI command
is detected at scsi_dispatch_cmd() again,
the fault will not be injected any more.

3. Read error correctable by write – In this case,
a fault is injected for read access to the tar-
get sector until error handling code tries to write
data to the sector by tracking scsi_dispatch_
cmd(). After the error handling code writes to the
target sector, no fault will be injected because the
error sector is assumed to be corrected.

4. Permanent read error

5. Permanent read/write error – When a target
SCSI command is detected at scsi_dispatch_
cmd() the fault is injected every time.

6. Temporary no response on read access

7. Temporary no response on write access – If a target
SCSI command is detected at scsi_dispatch_
cmd(), inject a fault by using “No Response
(Timeout) Case” method. If the target SCSI com-
mand is detected at scsi_dispatch_cmd()
again, the fault will not be injected again.

2008 Linux Symposium, Volume Two • 211

8. Permanent no response on both read and write ac-
cess – A “No Response (Timeout) Case” fault will
be injected every time a target SCSI command is
detected at scsi_dispatch_cmd().

Thus, all HDD fault patterns can be simulated.

4 Linux Software RAID Evaluation Using
SCSI Fault Injection Test Tool

This section describes an example of evaluation using
the proposed test tool by applying it to test error han-
dling in the software RAID drivers.

The software RAID drivers were evaluated by injecting
various SCSI faults to various RAID drivers and check-
ing if SCSI middle layer and software RAID driver error
handling code work properly.

First, the expected behavior of the fault handling code is
explained for each fault pattern described in Section 2.1.
Next, the test environment and procedure are explained.
Finally, the test results and detected bugs are shown.

4.1 Expected Error Handling of Software RAID

The following are the expected error handling behavior
of normal RAID array for each of the HDD fault patterns
defined in Section 2.1. The test program will check if the
system will behave this way when the fault is injected.

1. Temporary read error – The SCSI layer detects a
read error and the error handler in the RAID driver
retries the failed sector. The I/O completes suc-
cessfully.

2. Temporary write error – The SCSI layer detects a
write error and the RAID driver’s error handler will
detach the failed disk immediately. The I/O com-
pletes successfully because the write access is is-
sued to both failed disk and redundant disk. The
error is recorded in syslog.

3. Read error correctable by write – After detecting
a read error, the RAID driver retries once, which
also fails, the RAID driver may try to write data to
the failed sector and re-read from the failed sector.
The failed sector will be corrected and the subse-
quent reads will succeed. The write fix behavior is
recorded in syslog.

4. Permanent read error – This is the case that a read
access fails even after sector correction attempts.
As a result, the RAID driver will detach the failed
device, read access is issued to another mirror disk,
and the I/O completes successfully. The error is
recorded in syslog.

5. Permanent read /write error – When a fault is trig-
gered by read access, the error handling behavior
is same as “Permanent read error.” When a fault is
caused by write access, it is the same as “Tempo-
rary write error.”

6. Temporary no response on a read access – The
SCSI layer detects timeout on target read access
and the error handler of the SCSI layer retries the
SCSI command. After the SCSI layer gives up, the
read error is sent to the RAID driver. After that,
the behavior is the same as “Temporary read error”
and the I/O completes successfully.

7. Temporary no response on a write access – In this
case, timeout detection and error handling by SCSI
layer is same as “Temporary no response on a read
access.” After the write access error is sent to the
RAID driver, the behavior is the same as “Tempo-
rary write error” and the failed disk is detached and
the I/O completes successfully.

8. Permanent no response on both read and write ac-
cess – This case is the same as “Temporary no re-
sponse on a read access” for timeout detection and
error handling by SCSI layer, and the read/write
request error is sent to the RAID driver. After that
the behavior is the same as “Permanent read/write
error” and the failed disk is detached and the I/O
completes successfully.

4.2 Test Environment

The following test environment was used for the evalu-
ation.

• A server with a single Xeon CPU, 4GB of RAM,
and six 36GB SCSI HDDs.

• Fedora 7(i386) running Linux kernel 2.6.22.6

• The tested software RAID drivers were md RAID1,
md RAID10, md RAID5, md RAID6, and dm-
mirror in the following array conditions.

212 • SCSI Fault Injection Test

The hardware fault can occur on any of the disks con-
stituting a software RAID volume. Evaluation was done
for each case where the fault was injected when access-
ing each of the following disks in the software RAID
volume.

1. Active disk of redundant (normally working) array
with spare disks – In this case the failure occurs in
one of the disks constructing a RAID array, which
has redundancy with spare disks. If a disk is de-
tached from this array as a result of the fault, the
RAID array will start recovery using a spare disk.

2. Active disk of redundant array without spare disks
– In this case, failure occurs in one of the disks
constructing a RAID array, which has redundancy,
but no spare disk. If a disk is detached from this
RAID array as a result of the fault, it will lose its
redundancy and become a degraded array.

3. Active disk of degraded array – In this case, fail-
ure occurs in one of the disks constructing a RAID
array, which has no redundancy. If a disk is de-
tached from this array as a result of the fault, the
RAID array will collapse because this array has no
redundancy.

4. Active disk of recovering array – In this case, fail-
ure occurs in one of the disks constructing a RAID
array, on which the recovery process of the de-
graded array is running.

5. Resyncing disk of recovering array – In this case,
failure occurs in a disk which is currently resyncing
in the recovery process of the degraded array.

4.3 Test Procedure

The following procedure was performed in the evalua-
tion.

• Install the OS on one of the SCSI disks. Using the
rest of the SCSI disks, each of which has a single
8GB ext3 partition, construct a software RAID ar-
ray.

• Inject various patterns of HDD fault defined in Sec-
tion 2.1 to various conditions of software RAID ar-
ray defined in Section 4.2. The fault injections are
triggered by accessing a file located in the tested
RAID device.

• Check if the target I/O request results in a SCSI er-
ror and inspect if the SCSI error is treated properly
by error handler of the SCSI layer and the software
RAID driver.

Since a set of operations needs to be repeated for all
of the many test patterns, the evaluation used the test
program to automatically perform the following works.

• Configure one of the five software RAID types (md
RAID1, md RAID10, md RAID5, md RAID6, and
dm mirror.)

• Set one of the five status of a RAID condition de-
scribed in Section 4.2.

• Invoke one of eight SystemTap scripts correspond-
ing to one of the HDD fault patterns defined in Sec-
tion 2.1.

• Generate a SCSI I/O to inject a fault and log the
results.

• Loop through all combinations to cover all patterns
automatically.

The test program was implemented as a set of shell
scripts.

4.4 Bugs Detected in the Software RAID Drivers
Evaluation

All combinations of RAID volume types, fault patterns,
and RAID volume conditions were tested. The evalu-
ation revealed the following bugs related to error han-
dling of software RAID.

md RAID1 issue is as follows:

• The kernel thread of md RAID1 could cause a
deadlock when the error handler of md RAID1
contends with the write access to the md RAID1
array [2].

md RAID10 issues are as follows:

• The kernel thread of md RAID10 could cause a
deadlock when the error handler of md RAID10
contends with the write access to the md RAID10
array [2].

2008 Linux Symposium, Volume Two • 213

• When a SCSI command timeout occurs dur-
ing RAID10 recovery, the kernel threads of md
RAID10 could cause a md RAID10 array deadlock
[3].

• When a SCSI error results in disabling a disk dur-
ing RAID10 recovery, the resync threads of md
RAID10 could stall [4].

dm-mirror issue is as follows:

• dm-mirror’s redundancy doesn’t work. A read er-
ror detected on a disk constructing the array will be
directly passed to the upper layer, without reading
from the other mirror. It turns out that this was a
known issue, but the patch was not merged [1].

All these bugs have already been reported to the com-
munity and a fix will be incorporated into future ker-
nels. Many bugs found in our evaluation were caused by
race conditions between the normal I/O operation and
threads in the RAID driver. Probably such bugs were
hard to detect. However the proposed test tool using
SCSI fault injection was able to find such issues.

5 Conclusion and Future Works

The evaluation result proves that the proposed test tool,
which is a combination of the SCSI fault injector and
test programs, has the powerful functionality to inject
various patterns of HDD fault on various configurations
of a software RAID volume to be used for error handler
testing. Especially, the flexible user interface of the pro-
posed SCSI fault injector, which existing test methods
do not have, realizes a user-controllable fault injection.
Also, by applying the proposed test tool, some delicate
timing issues in Linux software RAID drivers are found,
which are difficult to detect without thorough testing.
Therefore, it can be concluded that the proposed test
tool using SCSI fault injection is useful for systematic
SCSI block I/O test.

The authors are planning to propose the SCSI fault in-
jector to SystemTap community so that the injector be-
comes available as a SystemTap-embedded tool. Con-
tribution of the injectors for other drivers are welcome
as the wider set of fault injectors can form a more gen-
eralized block I/O test framework.

Acknowledgments

This project is supported by the Information Technology
Promotion Agency (IPA), Japan.

References

[1] Announcement of SCSI fault injection test
framework (mail archive).
http://marc.info/?l=linux-raid&m=
120036612032066&w=2.

[2] Bug report of md RAID1 deadlock problem (mail
archive). http://marc.info/?l=
linux-raid&m=120036652032432&w=2.

[3] Bug report of md RAID10 kernel thread deadlock
(mail archive). http://marc.info/?l=
linux-raid&m=120289135430654&w=2.

[4] Bug report of md RAID10 resync thread deadlock
(mail archive). http://marc.info/?l=
linux-raid&m=120416727002584&w=2.

[5] Fault Injection Test project site on SourceForge.
https://sourceforge.net/projects/
scsifaultinjtst/.

[6] scsi_debug adapter driver. http:
//sg.torque.net/sg/sdebug26.html.

[7] SystemTap project site. http://sourceware.
org/systemtap/index.html.

214 • SCSI Fault Injection Test

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

