
Tux meets Radar O’Reilly—Linux in military telecom

Grant Likely
Secret Lab

grant.likely@secretlab.ca

Shawn Bienert
General Dynamics Canada

shawn.bienert@gdcanada.com

Abstract

Military telecom systems have evolved from simple
two-way radios to sophisticated LAN/WAN systems
supporting voice, video and data traffic. Commercial
technologies are being used to build these networks, but
regular off the shelf equipment usually isn’t able to sur-
vive the harsh environments of military field deploy-
ments.

This paper discusses the use of Linux in General
Dynamics’ vehicle mounted MESHnet communication
system. We will discuss how Linux is used in the sys-
tem to build ad-hoc networks and provide reliability for
the soldiers who depend on it.

1 Introduction

To say that good communication is critical to the mil-
itary is never an understatement. Wars have been won
and lost on the basis of who had the most accurate and
timely information. It is understandable then that the
military takes its telecom gear very seriously.

Just like the private sector, in order to survive, the
military has had to keep up with advances in technol-
ogy. Current military communications networks carry-
ing both voice and data traffic bear little resemblance to
the original analog radio systems of the past.

In most cases, however, regular commercial equipment
is not suitable for a military environment. Aside from
the obvious fact that most equipment isn’t painted green,
the military puts high reliability expectations on its
equipment. When your life depends on the proper op-
eration of your equipment reliability tends to be an im-
portant concern. For example, tank drivers typically do
not have a very good field of view from where they are
located in the vehicle, and thus are dependent on direc-
tions provided by the commander via the intercom sys-
tem to accurately direct the vehicle. An intercom failure

can very quickly result in problems like running over a
small car or driving through a building.

There is a natural conflict between reliability and the in-
creasingly complex services required by military users.
As complexity increases, so do the number of poten-
tial failure points which tends to reduce the stability
and reliability of the entire system. As new technolo-
gies such as WiFi, VoIP and Ad-Hoc mobile networking
are added, system engineers need to analyze the impact
on the rest of the system to ensure overall reliability is
maintained.

Within this environment, Linux and other Free and Open
Source Software (FOSS) components are being used as
building blocks for system design. As we discuss in this
paper, FOSS is proving to be a useful tool for solving
the conflicting requirements inherent in large military
telecom system designs.

2 Typical Military Telecom Network

For illustration purposes, Figure 1 is an example of a
typical military telecom deployment based on the next
generation of General Dynamics Canada’s MESHnet
platform. MESHnet equipment provides managed net-
work infrastructure for voice and data traffic within and
between military vehicles and provides voice services
which run on top of it. For example, a MESHnet user
in a vehicle has an audio headset and control panel that
give him intercom to his other crew mates, direct tele-
phone service to other users, and access to two-way ra-
dio channels. He also has an Ethernet port for attaching
his laptop or PDA to the network for configuration, sta-
tus monitoring, email, and other services. In the back-
ground, GPS and other sensors attached to each vehicle
use the radio service to automatically transmit position
and status reports back to headquarters [1].

• 19 •



20 • Tux meets Radar O’Reilly—Linux in military telecom

Comms
Vehicle

Comms
Vehicle

Comms
VehicleRadioNet-1

RadioNet-2

RadioNet-3

RadioNet-4 RadioNet-5

Command
Vehicle

Command
Vehicle

Remote
Vehicle

RadioNet-1

Remote
Vehicle

RadioNet-2

Remote
Vehicle

RadioNet-3

RadioNet-1

Figure 1: Example MESHnet Deployment with Headquarters and Remote Vehicles

2.1 Vehicle Platforms

At the heart of the MESHnet system are the vehicle in-
stallations. MESHnet equipped vehicles provide a user
terminal and headset for each crew member in the ve-
hicle, a set of interfaces to two-way radios, and a net-
work router for wired and wireless connections to ex-
ternal equipment. The whole vehicle is wired together
with an Ethernet LAN. Figure 2 shows an example ve-
hicle harness which includes 2 radios and a GPS sensor.
You’ll notice that the Ethernet topology (shown by the
bold lines) is a ring. The ring is for redundancy in the
event of a cable or equipment failure.

The system is designed to immediately provide intercom
service between crew members when the system is ini-
tially powered on. Each radio is detected and configured
as an abstract radio net. Solders can select from a vari-
ety of radio nets for monitoring with a single key press
and use their Push-to-Talk (PTT) key for transmitting.

Data equipment like Laptops, PDAs, and sensors can be
connected to the system via Ethernet, USB, and serial

ports, allowing the equipment to work together and pro-
viding access to digital data radios for low bandwidth
network traffic back to headquarters.

2.2 Headquarters

When a battlefield headquarters is established, several
vehicles are parked together and Ethernet is again used
to connect them in a mesh topology.1 The on-vehicle
router keeps internal and external Ethernet segments
separate. Services provided by each vehicle are bridged
onto the inter-vehicle LAN so that user terminals have
access to all radios and other equipment within the head-
quarters.

3 System Design Issues (and how Open Source
can solve them)

In this section we discuss the various aspects of the com-
munication system that need to be addressed by system

1Hence the name MESHnet.



2008 Linux Symposium, Volume Two • 21

Driver

Commander

Driver
Headset

Gunner

Commander
Headset

Radio-2

Gateway

Gunner
Headset

Radio-1

GPS

Figure 2: Example MESHnet Equipped Vehicle Installation

designers. Most of these issues bear close resemblance
to issues also faced in the commercial environment, but
there are some unique characteristics.

3.1 Open Architecture

Telecom systems have become so complex and varied
over the years that it is no longer feasible for a sin-
gle vendor to be capable of designing and supplying all
equipment used in a tactical network. Many different
vendors supply equipment which is expected to interop-
erate with the rest of the network. Military customers
are also wary of solutions which lock them into a single
vendors solution or which force the replacement of ex-
isting equipment. As such, there is significant pressure
by military customers to use common interfaces wher-
ever possible.

It is now taken for granted that Ethernet and 802.11
wireless are the common interconnect interfaces. The
historical proprietary interfaces used in military net-
works are rapidly giving way to established commercial
standards. Not only does it make interoperability easier,
it also allows military equipment to use readily available
commercial components which in turn reduces cost and
complexity.

Additionally, the protocols used by tactical applications
are rapidly moving toward common protocols published
by international standardization bodies like the Request
for Comments (RFC) documents published by the Inter-
net Engineering Task Force (IETF). The entire network
is based on the Internet Protocol (IP). Dynamic Host
Configuration Protocol (DHCP), Domain Name System
(DNS) and the Zeroconf protocol suite simplify and au-
tomate network configuration. SNMP is used for net-
work management. Session Initiated Protocol (SIP) and
Real Time Protocol (RTP) are natural choices for audio
services like radio net access, intercom, and of course,
telephony. Similarly, HTTP, SSL, SMB, and other com-
mon protocols are not just preferred, but demanded by
military customers.

Just like in the commercial world there is little eco-
nomic sense in developing all the software infrastructure
to support these protocols from scratch when the same
functionality is easily obtainable from third parties. In
particular, since development effort on FOSS operating
systems is measured in thousands of man years [2], the
functionality and quality FOSS offers is far broader than
any company can hope to develop over the course of a
single product development cycle.



22 • Tux meets Radar O’Reilly—Linux in military telecom

Of course, custom engineering is still required when
standard protocols are not suitable for a particular appli-
cation. Even so, it is still preferable to start with an ex-
isting protocol and build the extra functionality on top of
it; ideally while maintaining compliance with the origi-
nal protocol.

This is where the power of open architecture comes into
play. If a custom protocol is what is required, then rather
than creating an entirely new protocol from scratch, an
existing, standard protocol can be easily tweaked to ac-
commodate the designer’s needs. Or, better yet, multiple
standard protocols can be combined into a single, cus-
tom protocol which still maintains backward compati-
bility to each original protocol. For example, commu-
nicating over a remote radio net involves several tasks:
knowing that the radio exists and understanding the path
to get there, initiating a pressel-arbitrated session with
that radio, and finally transmitting digital audio over the
network to that radio. Using a combination of such stan-
dard protocols like Zeroconf, SIP, and RTP as building
blocks, a custom protocol can be created which will al-
low the user to perform this complicated operation in a
single, simple step with little additional engineering re-
quired.

3.2 Segmentation of Functionality

To manage complexity and keep system designers from
driving themselves insane with their own designs, it is
important to establish boundaries between areas of func-
tionality. Once again, this is not much different from
the issues faced by commercial system designers, but
the high reliability requirement brings the issue to the
forefront.

In the military environment, equipment failures are not
just planned for, they are expected. It is important that
when equipment does fail that the impact is minimal.
For example, imagine a network with 3 user terminals
named commander, driver, and gunner and connected
in a ring. If the gunner terminal fails, then it is expected
that any headsets or radios directly connected to the gun-
ner node would no longer work. However, that same
failure should not affect intercom between the comman-
der and driver nodes. In this case the system is designed
so that no service depends on a particular unit of hard-
ware that is otherwise unrelated to the service. So, while
the intercom between commander and driver may pass

through the gunner node, the system is designed to by-
pass it in the event of a failure.

In this example, several boundaries in functionality
work together to ensure the desired behaviour. First,
at the physical layer the units are at the very least con-
nected in a ring topology which insures that any sin-
gle point of failure will still retain a connection path
between the remaining nodes. A Rapid Spanning Tree
Protocol (RSTP) agent runs on each node and controls
the network fabric to eliminate Ethernet connectivity
loops in real time and ensures the layer 2 network en-
vironment is usable without any need for manual inter-
vention.

At layer 3, Zeroconf is used to provide a fallback mecha-
nism for assigning IP addresses in the absence of a prop-
erly configured DHCP server. Any two nodes are able
to establish a network connection in the absence of any
other hardware.

Similarly, the radio net service is logically separate from
the network layer and any other services in the network.
The radio server runs as a user space application on the
node to which a radio is attached and accepts connec-
tions from radio clients across the network. It also ad-
vertises itself via Multicast DNS (mDNS) which isolates
it from depending on a properly configured DNS server.
In turn, the radio clients are also user space processes
running on end user nodes. If the hardware hosting the
radio server fails, then only access to that particular ra-
dio is affected and will not bring down the rest of the
comm system.

Services and protocols that are decentralized, or are de-
signed to provide automatic failover are greatly pre-
ferred over services which do not. The intercom service
is provided by intercom agents running on each end user
devices. The intercom agents do not depend on a single
server node to mix all audio streams, but instead use
mDNS to discover each other and determine how to mix
the intercom traffic between them. Any one intercom
node failure shall not take down the entire intercom ser-
vice.

The Linux kernel plays a significant role here too as
the system is designed to tolerate software failures also.
With several applications executing on the same hard-
ware device, the failure of a single application must not
cause other unrelated applications to fail. The enforced
process separation provided by the Linux kernel pre-



2008 Linux Symposium, Volume Two • 23

vents a bug in one application from affecting the envi-
ronment of another. This feature in particular is a ben-
efit over traditional flat memory model RTOS systems
when providing complex services within a single hard-
ware platform.2

Finally, it can be argued that open source projects have
tended towards well defined boundaries between com-
ponents. There is the obvious boundary between kernel
and user space, but there are also well defined bound-
aries between the libraries composing the protocol and
application stacks. For example, the MESHnet user de-
vices make use of the GStreamer framework for pro-
cessing audio streams. The GStreamer core library de-
fines a strict API for plugins but implements very little
functionality inside the core library itself. The plugins
use the API to communicate with each other over a well
defined interface which isolates the two sides from in-
ternal implementation details. Separation at this level
doesn’t directly improve reliability and fault tolerance,
but a well defined and predictable API with few side ef-
fects makes the system design easier to comprehend and
therefore easier to audit for bugs.

3.3 Capability and Quality

Military customers are also unapologetic in their ap-
petite for rich features in their equipment. They want all
the features available in comparable commercial equip-
ment, without sacrificing the reliability requirements
discussed above. As already stated, the budgets of most
military equipment development projects are not large
enough to fund the development of all the required com-
ponents from scratch, so system designers must look to
third party software to use as the starting point. This
means either licensing a proprietary application or se-
lecting a FOSS component.

When evaluating third party components, quite a few
questions tend to be asked: How well does it work?
Does it support all the features we need? Is it under ac-
tive development? Do we get access to the source code?
Can it be customized? How much does it cost? How
much work is required to integrate it into the rest of the
project?

FOSS components do not always come out on top in the
tradeoff analysis. For some of the questions, FOSS has

2Granted with the tradeoff that embedded Linux system are typ-
ically larger and more resource-hungry than the equivalent RTOS
implementation. There are no claims of something for nothing here.

a natural advantage over its proprietary counterparts; ac-
cess to source code and favorable licencing terms being
the most significant. For others a lot depends on the type
of application and what FOSS components exist in that
sphere.

For example, within the operating environment sphere
there are the Linux and BSD kernels, several other open
source RTOSes, and various commercial offerings like
vxWorks and QNX. In most cases, Linux comes out on
top; active development is high which inspires confi-
dence that the kernel will be around for a long time. It
boasts a large feature set, the code quality is excellent,
and is easy to port to new embedded platforms.

However, there are still areas where Linux is not cho-
sen as the solutions for good reason. Systems with tight
memory constraints are still the domain of traditional
RTOSes or even bare metal implementations. Despite
large strides being made in the area of Linux real time,
some applications require guarantees provided by tra-
ditional RTOSes. The existence of legacy code for a
particular environment is also a significant factor.

Emotional and legal influences also have an impact on
what decision is made. Emotions come into play when
designers already have a bias either for or against a par-
ticular solution. Misunderstanding or mistrust of the
open source development model can also dissuade de-
signers from selecting a FOSS component. And there is
always ongoing debate over legal implications of using
a GPL licensed work as part of an embedded product.

No single aspect can be pinpointed as the most impor-
tant factor in selecting a component for use. However,
if a FOSS component does provide the functionality
needed, and it is shown to be both reliable and actively
used in other applications, then there is a greater chance
that it will be selected. Well established projects with
a broad and active developer base tend to have an ad-
vantage in this regard. Not only does this typically indi-
cate that development will continue over the long term,
it also suggests (but doesn’t guarantee) that it will be
possible to obtain support for the component as the need
arises. It is also often assumed that a large existing user
base will contribute to code quality in the form of bug
fixes and real world testing.

Smaller and less popular FOSS projects are at a bit of
a disadvantage in this regard and can be viewed as a bit
of a risk. If the project developers stop working on it



24 • Tux meets Radar O’Reilly—Linux in military telecom

for one reason or another, then the system vendor may
be forced to assume the full burden of supporting the
software in-house. That being said, the risk associated
with small FOSS components is still often lower than
the risk associated with a proprietary component being
dropped with no recourse by its vendor.

3.4 Maintenance

Unlike the consumer electronics market with high vol-
umes and short product life cycles, the military equip-
ment market tends towards low volume production runs
and equipment which must be supported for decades af-
ter being deployed. Equipment vendors, especially of
large integrated systems, often also enter into long term
support contracts for the equipment they have supplied.

Knowing this, it is prudent to start the design process in
the mindset that any chosen components such as CPUs
and memory chips must be replaceable for the entire
expected lifetime of the equipment. One way to do
this is to restrict component choices to ones that have
a long term production commitment from the manufac-
turer. Another way is to do a lifetime buyout for the
quantity of chips required over the expected support pe-
riod.

Similarly, software components have the same support
requirement. Each component must be supportable over
the long term. FOSS components have a natural advan-
tage in this area. Unlike with proprietary components, a
third party FOSS vendor cannot impose restrictions on
the use and maintenance of a FOSS component. Nor can
business or financial changes with a third party vendor
affect the ability to maintain the product.3

3.5 Redundancy and Fault Tolerance

In this section and the next we get into the real areas
where military equipment vendors differentiate them-
selves from their competition. Pretty much all of the
functionality required for tactical telecom systems al-
ready exist to a large degree in both the FOSS and pro-
prietary ecosystems. How well the components are in-
tegrated together onto a hardware platform is a big part
of whether or not the system is suitable for military use,
and that depends on strong system engineering.

3Unless, of course, you’ve also subcontracted support to said
third party vendor, then you could be stuck with a manpower prob-
lem.

Fault tolerance is an excellent example. Looking at in-
dividual components does not tell you much about the
system as a whole. To design a reliable system requires
looking at the entire system requirements and designing
architectures that provide those functions in a reliable
and fault tolerant way. Some of those decisions are sim-
ple and only affect a small aspect of the design. For ex-
ample, a typical requirement is for equipment to stand
up to the kind of abuse inflicted by solders. A common
solution is to enclose the electronics in cast aluminum
chassis and to use MIL-STD-38999 connectors instead
of RJ-45 jacks for cable connections.

Other issues affect the design of more than one subsys-
tem. Designing a reliable Ethernet layer has an impact
on multiple layers of the system design. It has already
been discussed that using a mesh topology of Ethernet
connections requires the design of each node to include
a managed Ethernet switch and requires an RSTP agent
to run on each box. In addition, the system must be able
to report any relevant changes to the network topology
to the system users in a useful form. For example, on
a vehicle with three nodes connected in a ring, if the
system detects that one of the three links is not con-
nected, then that probably indicates that an equipment
failure has already occurred and that there is no remain-
ing backup connections in the event of a second failure.
This is information that the soldier needs to know so that
a decision can be made about whether or not to continue
using the damaged equipment. Therefore, the reliability
of the Ethernet layer also has an impact on the design
of the user interface so that changes in equipment status
can be reported.

While individual components have little influence on the
system design as a whole, using well designed compo-
nents with predictable behaviour simplifies the job of
the system designer just by requiring less effort to un-
derstand the low level intricacies.

3.6 User Interface and Configuration

Finally, even the most feature rich and capable a system
is just an expensive doorstop if nobody is able to under-
stand how to use it. On the whole, solders are mostly
uninterested in the details of a telecom system and only
care about whether or not the system lets them talk to
who they need to talk to and provide the network con-
nections they need. Even if the system is quite complex



2008 Linux Symposium, Volume Two • 25

the system designer should strive to make it have the
appearance of simplicity for the vast majority of users.

For example, if the network consists of user devices with
attached headsets and two units are wired together and
powered up without any kind of network configuration,
then it is appropriate for the devices to self configure
themselves and enable intercom between the two head-
sets without any manual intervention. Similarly, select-
ing basic services should strive to only require a single
key press. For the few users who do need greater con-
trol, like network managers, it is appropriate to provide
a different control interface that doesn’t hide the details
or complexity of the system.

4 Conclusion

The military sector faces significant challenges when
designing a communication system that meets the de-
mand for increasingly complex functionality while still
retaining the robustness and reliability required by life-
critical equipment. With its open architecture and high
level of functionality, quality, availability, and maintain-
ability, Linux and other Free and Open Source Software
is often well suited to providing the building blocks on
which to base the next generation of sophisticated yet
stable and operationally simple military communication
systems.

References

[1] Mark Adcock, Russell Heal, A Land Tactical
Internet Architecture for Battlespace
Communications, http://www.gdcanada.
com/documents/Battlespace%
20Networking%20MA%203.pdf, Retrieved
on Apr 10, 2008

[2] David A. Wheeler, More Than a Gigabuck:
Estimating GNU/Linux’s Size,
http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.html,
Retrieved on Apr 10, 2008



26 • Tux meets Radar O’Reilly—Linux in military telecom



Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


