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Abstract

As multi-core and SMP systems become more gener-
ally available, energy management needs in LinuxTM

have also become more complex. Energy management
in Linux was primarily designed for interactive sys-
tems where relatively simple inactivity based strategies
worked effectively for most cases. Modern enterprise
class hardware needs a more complex power manage-
ment strategy to save energy with the least impact on the
performance of enterprise workloads. Traditionally, the
Linux kernel for servers has been optimized for through-
put and not power efficiency.

This paper discusses the behaviour of the current task
management subsystem (scheduler and loadbalancer)
on a multi-core SMP system and its effectiveness in sav-
ing energy consumption under several situations (idle,
moderate load). It then describes several techniques
such as timer migration, task wakeup biasing and related
heuristics for reducing energy consumption. The pa-
per also looks at possible methods to mitigate interrupts
for energy savings during different workloads and con-
cludes by discussing some results of these new strate-
gies.

1 Introduction

Traditionally, operating systems designers have fo-
cussed on optimizing for performance. The key design
goals have been to make maximum usage of resources
to get the most out of the underlying systems. On multi-
processor and multi-core systems, this approach led to

1With additional contributions from Suresh B. Siddha, Intel
Open Source Technology Center, suresh.b.siddha@intel.com

using all CPU resources in parallel as much as possible.
This approach to system design had to be re-evaluated
when battery operated low-power devices became im-
portant. Various system technologies like DVFS (Dy-
namic voltage and frequency scaling) and exploitation
of them in operating systems led to significant improve-
ment in power consumption [1][4]. Various operat-
ing system techniques were adopted to manage tasks
with a goal of reducing power consumption [17][6][18].
With the advent of multiprocessor systems, additional
techniques have been used to do CPU power manage-
ment [15]. With the cost of energy going up in recent
years, the need for energy efficiency has been acutely
felt across the entire spectrum of systems—small hand-
held computers to large multi-processor servers in data-
centers. Due to increased computation density of mod-
ern enterprise servers, the thermal limits of the design is
beginning to constrain the integration and performance.
Power management in enterprise servers primarily help
data centers improve their computation density by get-
ting more computation done without increasing power
consumption. The objective of power management in
laptops and other battery powered devices has been pri-
marily to extend the battery life, while on enterprise
server and datacenters, power management forms the
building blocks to provide higher level services like
power trending and power capping. Thermal manage-
ment, which is an interesting side effect of power man-
agement, and power capping are of great interest to en-
terprise customers. Fundamentally, enterprise customer
would like to control parameters that have been previ-
ously considered passive and hence ignored.

This paper investigates power management in two areas
to simplify the discussion, namely
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1. Idle system power management

2. Power management in under-utilized (or non-idle)
systems

An idle system is one where no useful work is done by
the system with respect to its workload and applications.
Such a system could be waiting for inputs from user or
requests on the network. On this kind of system, it is
usually the system house keeping jobs that are active.

On a non-idle system, the system is actively running the
workload or application but the overall system capacity
is under-utilised. This provides scope to perform sev-
eral run-time power management strategies such as fre-
quency and voltage scaling. In the Linux kernel, the
ondemand governor [11] does the job of selecting the
correct CPU capacity or frequency that would match the
current workload.

The new SPECPower benchmark [2] tries to charac-
terise performance-per-watt under various system loads.

Avoiding the periodic scheduler tick in an idle system
with the tickless kernel feature significantly helps to
save power in an idle system, while process scheduler
tweaks are needed to save power in an non-idle system.
The next section explains the problem space and exist-
ing solutions in detail.

2 Scheduler Overview

In a multi-processor system, an important goal for a
power-aware operating system is to consolidate all ac-
tivity (like execution of tasks, interrupt handling etc) on
fewer CPUs so that remaining CPUs can become idle
and enter low-power states. That implies a constant tug
between providing good throughput for applications and
providing good energy savings.

We now provide a brief overview of Linux CPU sched-
uler, how it is currently meeting the needs of a power-
aware operating system and some potential enhance-
ments to make it more energy-concious.

• CFS scheduler
From the primitive v2.4 scheduler, to the scalable
O(1) scheduler in v2.5, to the more recent scal-
able and responsive CFS scheduler, the Linux cpu
scheduler has significantly changed several times.

The most recent rewrite, termed CFS (Completely
Fair Scheduler), was authored by Ingo Molnar [8]
and has been adopted since v2.6.23 (July ’07). It
was mainly written to address several interactivity
woes that the Linux community complained about.
Its salient highlights are:

– More modular scheduler core by introducing
scheduler classes

– Time indexed rb-tree as runqueue for
SCHED_OTHER tasks

– Excellent interactivity for desktop users by
doing away with concept of fixed timeslice

– Scheduler tunables

– Group scheduler – divide bandwidth fairly
between task-groups first and then between
tasks in the group

• Power awaress existing in current Linux sched-
uler

socket0 socket1

Figure 1: Two socket quad-core system

socket0 socket1

T2

T0 T1

T3

Figure 2: Good task distribution from power perspective

socket0 socket1

T0 T1 T2 T3

Figure 3: Bad task distribution from power perspective

Linux CPU scheduler has options, both compile
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time and runtime [10], through which it can be
directed to consolidate tasks across fewer CPUs
rather than spreading them apart on all available
CPUs for improved throughput. This lets more
CPUs to become idle and thus enter low-power
states when system is not heavily loaded. Addi-
tionally, the Linux scheduler is aware of the under-
lying multi-core and NUMA topology. This makes
it possible for the scheduler to further optimize
power-savings. For example, consider a multi-core
system as shown in Figure 1. The system has two
sockets, each of which can accommodate a quad-
core chip. Typically in such systems, the granular-
ity at which frequency/voltage can be varied is at
each chip or package level [5]. In other words, the
frequency/voltage cannot be different for different
cores resident in the same chip. In such a scenario,
the CPU scheduler is required to recognize such
power domains and work towards not only consol-
idating tasks on just fewer cpus but also on fewer
power domains (in this case, the chips). As an ex-
ample consider that the system in Figure 1 had just
four tasks. Then it is better for a power-aware CPU
scheduler to consolidate these 4 tasks on the 4 cpus
in same chip (as in Figure 2) rather than on any 4
arbitrary cpus (as in Figure 3). Linux CPU sched-
uler has the capability to do this chip-wise consol-
idation of tasks when required.

• Areas for improving power-awareness in sched-
uler

Consolidating tasks on fewer cpus and chips relies
on accurate cpu load (number of tasks on a cpu)
calculation. Since cpu load is sampled periodically,
it is possible that short lived tasks (ex: daemon that
run periodically for short intervals of time) don’t
show up as cpu load, which can result in failure
to consolidate on fewer cpus/chips. This is dis-
cussed in detail in the Section 3.5. Typically the
total CPU time utilised by the daemons in an idle
system will be less than 1% but the distribution of
this jobs across all CPUs influence the CPU’s low
power sleep time thereby affecting the power con-
sumption at idle. Section 3 describes the idle sys-
tem in detail.

In addition, CPUs that are in their low-power states
can be interrupted prematurely by task wakeup
code, which attempts to schedule waking tasks on

the same cpu where they last slept.

3 Idle system power management

Apart from the applications or the workload, there are
a host of system daemons, device drivers, and interrupt
processing that happen in an idle system. If the oper-
ating system and hardware can be optimised to signif-
icantly reduce these house keeping tasks, then an idle
system can sleep for longer duration leading to power
savings. There are significant activities even on a tick-
less idle [12][7] system that reduce the duration of a
CPU’s low power sleep time leading to an increase in
the energy consumption at idle.

The objective of idle system power management in an
enterprise server is to consolidate daemon tasks and in-
terrupts to fewer CPUs or packages in an idle system.
Typically an enterprise server would have more than
one CPU in SMP configuration. Multi-core processors
have helped increase the number of cores in an enter-
prise system. Dual socket server can have dual core pro-
cessor modules thus forming a 4-way SMP configura-
tion. Optionally processor threading feature can be en-
abled which would further increase the number of logi-
cal CPUs to eight. In this sample configuration, (assume
no threading) we have 4 logical CPUs in two physical
packages.

Under low system utilisation or idle, if all the house-
keeping work can be consolidated to one package, then
the other package can continue to be in low power sleep
state, thus saving power. In general the SMP scheduler
will try to spread the workload across different package
for better throughput. This is the main design point in
power savings and performance trade off.

If the number of tasks to run is less than the number
of cores, spreading the tasks to one core on each phys-
ical package will provide better throughput (assuming
the tasks do not share data), while consolidating them
on one physical package is better for power savings.

In the following subsections we shall discuss the chal-
lenges involved in consolidating daemon jobs in an idle
system to one physical package in a dual package sys-
tem.

3.1 Process, timers, and interrupts at idle

The daemon process that are running in an idle sys-
tem can be easily identified using ps or top commands.
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Other than the processes that use CPU time, there could
be interrupts from IO devices like ethernet and harddisk
that wakeup CPUs and consume power. Timers pro-
grammed by applications and device drivers are actually
interrupts that wakeup CPUs when the timer expires.

CPU utilisation and interrupt rate can give a good idea
of the idleness of the system. All these events are re-
quired for normal system operation, however in an idle
system, these events contribute to reduced sleep time of
the CPU.

In a typical distro installation,1 CPU utilisation from
top and process wakeup rate from powertop at idle are
shown in Table 3.1.

The number of interrupts observed during the 15-second
duration is listed in Table 1.

IRQ CPU0 CPU1 CPU2 CPU3 Description
17 21 ata_piix
214 61 eth0
LOC 66 55 95 71 Local timer

interrupts
TLB 1 1 TLB Shoot-

downs

Table 1: /proc/interrupts diff for 15 seconds

In order to improve CPU sleep time, idle polling ac-
tivities should be reduced and moved to asynchronous
notification. USB inherently needs to have time based
polling loops. USB auto suspend will work as long as
there are no devices connected, but if the USB port is
being connected even to an idle keyboard, the polling
loops are needed.

Since the introduction of powertop utility, the behaviour
of user space applications and drivers have significantly
improved and moved away from unnecessary polling.
On an enterprise hardware with multiple CPU packages,
the timers and interrupts that cannot be reduced can be
consolidated to one CPU package. This provides new
opportunity for power savings by allowing parts of the
system to be more idle. The objective of idle system
power management is to significantly increase the idle
time for some of the CPU packages in the system.

For our discussion lets assume idle time is the duration
over which a CPU is in tickless idle state. During this
time, no task is scheduled on the CPU. Thus, the CPU

1Fedora 9 beta was used in this experiment.
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Figure 4: Fedora 9 distro on 4 CPU system

can potentially go to low power sleep state and save
power. However in this state, the CPU can receive in-
terrupts. The interrupts can be from an IO device or
a programmed timer. Hence the idle time duration can
further be fragmented by interrupts and timers. Lets call
the time interval between such interrupts where the CPU
can really sleep in low power mode as sleep time. Tick-
less kernels that turn off periodic timer interrupts have a
significantly long idle time. However only the uninter-
rupted sleep time contributes to power savings. Hence,
to characterise various scenarios, we extract two param-
eters, namely the CPU idle time and sleep time. Sleep
time can be obtained by idle time divided by the number
of interrupts and timers received during the interval.

Idle time distribution can be obtained by instrumenting
tick_nohz_stop_sched_tick() and tick_nohz_

restart_sched_tick() code [13]. Figure 4 plots
the histogram of idle time obtained on one of the CPU
in a typical distro. Basically the idle time values for
120 seconds in an idle system has been converted to a
histogram for easy visualisation. The x-axis is the idle
time and y-axis is the sample count observed during 120
seconds. This gives an idea of expected sleep time for a
given CPU in a multi-cpu system. Actually this exper-
iment was done on a two socket dual core system and
such histograms are available for each of the four CPUs.
The distribution is similar in other CPUs and thus we
will not discuss the histogram for all four CPUs. As
observed in the histogram, the maximum idle time was
2 seconds while most of the samples are concentrated at
less than 10ms. There is a pattern of 1s idle time as well.

Figure 5 is a histogram of sleep time. Sleep time is much
smaller than the idle time and inversely proportional to
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Utilisation from top:

Cpu(s): 0.0%us, 0.1%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Output of powertop -d:

PowerTOP 1.8 (C) 2007 Intel Corporation

Collecting data for 15 seconds
< Detailed C-state information is only available on Mobile CPUs (laptops) >
P-states (frequencies)

2.40 Ghz 0.0%
2.13 Ghz 0.0%
1.87 Ghz 0.0%
1.60 Ghz 100.0%

Wakeups-from-idle per second : 10.8 interval: 15.0s
Top causes for wakeups:

28.7% ( 4.0) <kernel module> : usb_hcd_poll_rh_status (rh_timer_func)
27.3% ( 3.8) <interrupt> : eth0
10.0% ( 1.4) <interrupt> : ata_piix
7.2% ( 1.0) ip : bnx2_open (bnx2_timer)

the interrupt rate. The maximum sleep time was 400ms
while the typical sleep time was less than 10ms.
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Figure 5: Fedora 9 distro on 4 CPU system

In order to analyse the effect of various kernel tunables
and scheduler changes we need to derive a metric for
comparison. The obvious and simplest metric is the av-
erage idle time and average sleep time on each CPU. Ba-
sically the weighted average of samples obtained from
the histogram for each CPU in the system gives the av-
erage idle and sleep time values. The approximation in
assuming average value per CPU over long duration is
that even marginal change in average value could sig-
nificantly affect the power savings. The longer the CPU
is in sleep state, the more power is saved. Small num-
ber of long sleep intervals is better than large number

of small sleep intervals. Hence to improve the accu-
racy of the evaluation model and its correlation with
real power consumption, a weight factor may be needed
for each sleep duration corresponding to the processor’s
deep sleep state transition latency. Based on typical pro-
cessor sleep state transition latencies and power values,
we can perhaps assume that a sleep duration of more
than 100ms is good enough for the CPU to transition
into deep sleep state. We have omitted the power penalty
for transition into various sleep states as well. The aver-
age value has been marked in the histogram.

3.2 Multi core scheduler heuristics

One of the first tunables in the kernel to tweak in an
multi core, multi socket system is /sys/devices/

system/cpu/sched_mc_power_savings. When
the multi-core power saving mode [3] is enabled, the
scheduler’s load balancer is biased to keep workload
on single physical package. This has significant im-
pact when the number of tasks running in the system
is less than the number of cores. Figure 6 plots the to-
tal idle time for each CPU for a 120 second observa-
tion interval. The system topology was a two socket
dual core, with CPU0 and CPU1 sharing a package and
CPU2 and CPU3 sharing the other package. Power sav-
ings can be improved if CPU0-1 are idle or CPU2-3
are idle allowing the other package to go to low power
sleep state. Ebizzy is a simple cpu intensive bench-
marking tool. It was simple to use and demonstrate
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the effect of sched_mc_power_savings. Figure 7
shows that the idle time on first package has improved
by consolidating the workload on CPU2 and CPU3.
Ebizzy2 was run with two threads for a duration of 120
seconds. There is a power savings of 5.4% by en-
abling sched_mc_power_savings for such cpu in-
tensive tasks where the number of threads are less than
the total number of cores available in the system.
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Figure 6: ebizzy with sched_mc_power_savings=0
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Figure 7: ebizzy with sched_mc_power_savings=1

However, the tunable will bias the scheduler loadbal-
ancer and will not explicitly move tasks to different
package. The impact is that short running daemon jobs
that wakeup on various CPUs in the system will finish
execution before the loadbalancer is invoked or a CPU
load imbalance is detected. Hence they will continue to
wakeup idle CPUs in the system.

The ineffectiveness of sched_mc_power_savings

for short running jobs can be observed in case of ker-

2ebizzy -t 2 -s 4096 -S 120

nel compilation (kernbench) workload. Figure 8 shows
the idle time for make-j2 on the same box used
in the ebizzy experiment. When sched_mc_power_

savings is enabled as shown in Figure 9, there is not
much variation in the total idle time across all CPUs and
hence there is no influence in the power value. The
effectiveness of the heuristics is workload dependent.
Kernel compilation consist of large number of short run-
ning jobs and high rate of process creation and exit as
compared to pure CPU burn type workload. The vari-
ation in characteristics is mainly due to the mix of IO
operations.
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Figure 8: make -j2 with sched_mc_power_savings=0

 0

 10

 20

 30

 40

 50

 60

 70

 80

CPU0 CPU1 CPU2 CPU3

T
ot

al
 id

le
 ti

m
e 

(s
ec

on
ds

)

CPU Number

No Power Savings

Idle time for make -j2 for 87.4s

Figure 9: make -j2 with sched_mc_power_savings=1

3.3 Interrupt Migration

Interrupts in the system can be routed to one or many
CPU cores in an SMP system. Default kernel routing
of interrupts is to broadcast to all available CPU if that
is supported by the hardware or else the interrupts stay
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with the boot-up CPU or logical CPU0. There are in-
kernel interrupt balancing thread and user space solu-
tions available. The user space solution to manage in-
terrupt routing in an SMP system is the irqbalance dae-
mon [16] which is already included by most distros. The
latest version 0.55 of the daemon includes power man-
agement feature where interrupts will be consolidated
to CPU0 at very low interrupt rate. Once the system
activity increases, the interrupt rate will increase and
then the daemon will re-calculate the load and distribute
the interrupts among different CPUs appropriately. The
irqbalance daemon takes into account the system topol-
ogy, threads, cores and packages while making the in-
terrupt routing decision. The class of interrupt is also
considered since cost of migrating ethernet interrupts is
higher than that of storage interrupts.

Why does interrupt routing matter for power savings?
Any CPU in its low power sleep state can be woken-up
by an interrupt. Interrupts are critical for system opera-
tion and they cannot be avoided. If the interrupts are dis-
tributed to all CPUs, then even at low interrupt rate (idle
system), more CPUs in the system need to wake-up for
a short duration and process the interrupt. Effectively
the low power sleep time of the CPU is reduced. In the
case of SMP system where many CPUs are available,
the interrupts can be routed to one of the CPU package
or core. This leads to only one CPU package in the sys-
tem to paying the power penalty for wake-up while rest
of the CPU packages in the system can continue to be in
low power sleep state for longer time.

Interrupt routing can be modified by writing the bitmask
corresponding to the destination CPU to /proc/irq/

<irq_nr>/smp_affinity.

echo2>/proc/irq/214/smp_affinity would
route eth0 interrupt to CPU1 in the experimental setup
described in Section 3.1, Table 1.

The user space irqbalance daemon controlls interrupt
routing by writing appropriate bitmask to /proc/irq/

<irq_nr>/smp_affinity. More than one bit can be
set in the bitmask which enables the hardware to dis-
tribute the interrupt to the subset of CPUs if such in-
terrupt broadcasting is supported by the platform and
chipset.

Interrupt migration helps to improve CPU sleep time on
some of the CPUs in an SMP system, but timers queued
by the device drivers and applications are not affected

since timers are triggered when the CPU receives an in-
terrupt from the per-cpu tick-device. Timers queued on
various CPUs in an SMP system significantly contribute
to CPU wake-up from deep sleep state.

3.4 Timer Migration

3.4.1 Timers—an Introduction

Device drivers and other subsystems keep a sense of
time in the kernel by means of timers. The kernel
provides APIs such as add_timer(), mod_timer(),
add_timer_on() that allow the subsystems to add or
modify a timer to expire sometime in the future. With
the introduction of High Resolution timer infrastruc-
ture, users can now opt for timers with finer granular-
ity should they need it. The APIs present in the Linux
kernel for the High-Resolution timers are hrtimer_

start() and hrtimer_forward().

When a timer expires, the timer subsystem will call the
associated handler function which will perform the re-
quired task.

At the time this paper was written, the Non-High-
Resolution timers in the Linux kernel can be classified
into two types:

1. Non-Deferrable Timers: These are normal timers
which expire when a specified amount of time
elapses

2. Deferrable Timers: These are timers, which on
a busy system behave the same way as a normal
timer. But on an idle system they can be ignored
while determining the next timer event. Thus they
will expire when the next non-deferrable timer on
the idle CPU expires. [9]

Most of these timers are initialized and queued for the
first time from the task context. However, the handler
function gets called from the softirq context. The re-
queuing of a timer can occur from the softirq context or
the task context. It is easy to observe that currently, the
timers which get requeued from the softirq context will
be pinned to the CPU where they had been first initial-
ized. However, those timers which are queued from the
task context can migrate as the tasks queueing them get
migrated. Thus the timer distribution on an SMP sys-
tem is currently dependent on which CPU did the timer
initialization happen and the load balancing.
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3.4.2 Effect of timers on Idle CPU

On an idle CPU which is in a NO_HZ state, we program
the timer hardware to interrupt the idle cpu to coincide
with the nearest non-deferrable timer expiry time. Thus
if there are device drivers which had initialized timers on
a CPU which is now mostly idle, we would nevertheless
have to wake up the idle cpu to service this timer.

This highlights the importance of consolidation of
timers onto a fewer number of CPUs. Migration of these
timers in a idle system is possible. As of now, the timers
are migrated during CPU offline operation.

However CPU hotplug for the sake of idle system power
management is too heavy. We will need to implement
light weight timer migration framework that can be in-
voked in a idle system for power management purposes.

Typical distribution of timers in a distro3 at idle in a 120
second duration is detailed in Tables 2 and 3. These
results were obtained by instrumenting the timer code
__next_timer_interrupt in kernel/timer.c

and post processing the trace data [14].

As mentioned earlier, timers can re-queue themself in
task context or softirq context. Table 2 details the list
of timers that were queued in softirq context. They are
generally stuck to the same CPU until forcefully moved
or the application or device driver removes the timer.
Table 3 details the timers that were queued in task con-
text. These timers will generally be queued on the CPU
where the corresponding task has run. The idea behind
this data is to assess the percentage of timers that can be
consolidated by just moving or biasing the tasks. From
the data it can be observed that almost half of the timers
are from task context and they can be moved by moving
the task which is much easier than migrating the timer.
Migrating the timer may need notification and opportu-
nity for the task to cancel the timer all together.

3.5 Workload Migration and Consolidation

As mentioned in Section 2, the load consolidation al-
gorithm in the current scheduler relies on accurate cpu
load, i.e., the number of tasks on a cpu as an input pa-
rameter. This value is updated by sampling periodi-
cally. Since, every task running on a system need not
be CPU intensive, it is possible that techniques such

3Fedora 9 beta

as sched_mc_power_savings fail to capture the
characteristics of such tasks when it comes to workload
consolidation.

To prove this, consider an experiment where we have a
cpuset A, which has a bash shell as a member, that runs
make-j2 of a Linux kernel. The experiment is run on
a 2 socket dual core machine. The logical CPUs 0 and
1 are core siblings in the first socket and logical CPUs 2
and 3 are the core siblings in the other socket. We vary
the number of CPUs allocated to the cpuset by writing
different values to cpuset.cpus file. The time taken
to complete the make, the avg power consumed (nor-
malised value) during this interval, and the utilization of
the individual CPUs in the system are recorded. During
the experiment, sched_mc_power_savings is set
to 1 and the cpufreq governor is set to ondemand.
Table 4 details the result of this experiment.

Ideally, one would expect that running the job with only
two cpus would yield the same results as running the
job with all the four cpus with sched_mc_power_
savings enabled. However, from the experiment, we
observe that sched_mc_power_savings does not
seem to have much effect when we run with all the four
CPUs. There are only two active tasks in the system but
they get distributed across all the CPUs.

In the experiment, the energy consumed for the case
with only two CPUs is:

E2 = 71.751×1.045x
= 74.980xJ

(1)

Energy consumed for the case with all the four CPUs is:

E4 = 85.185×0.941x
= 80.159xJ

(2)

Thus, additional amount of energy spent would be:

Eextra = E4−E2
= 80.159x−74.980x
= 5.179xJ

(3)

Eextra% = Eextra
E2
×100

= 6.91%
(4)

From Table 4 we can also observe that the time taken
to complete the job is higher when all the 4 CPUs were
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Function_Name CPU0 CPU1 CPU2 CPU3 Total
rh_timer_func 483 483
delayed_work_timer_fn 62 59 60 71 252
bnx2_timer 119 119
neigh_periodic_timer 30 60 90
dev_watchdog 48 48
process_timeout 32 1 5 38
wb_timer_fn 24 24
peer_check_expire 4 4
neigh_timer_handler 4 4
hangcheck_fire 3 3
commit_timeout 1 2 3
addrconf_verify 3 3
Total 156 226 611 78 1071

Table 2: Timer in SOFTIRQ context at idle for 120s

Function_Name CPU0 CPU1 CPU2 CPU3 Total
hrtick 159 132 107 81 479
delayed_work_timer_fn 62 60 60 72 254
ide_timer_expiry 34 30 33 29 126
scsi_times_out 40 1 3 1 45
process_timeout 31 2 6 39
wb_timer_fn 24 24
blk_unplug_timeout 19 1 3 1 24
hrtimer_wakeup 2 2
commit_timeout 2 2
tcp_write_timer 1 1
it_real_fn 1 1
Total 374 225 208 190 997

Table 3: Timer in task context at idle for 120s

Experiment ’make -j2’ of linux-2.6.25-rc7
CPUs allocated Time taken Power Consumed % Utilization of the CPUs

0 120.678 s 1.000x W 99, 02, 00, 00
0-1 71.751 s 1.045x W 83, 89, 01, 01
0-3 85.185 s 0.941x W 34, 33, 59, 57

Table 4: ’make -j2’ with varying number of cpus
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used, when compared to the case where only 2 CPUs
were used. Since the ondemand governor changes the
processor frequency based on the processor utilization,
when 2 threads were bouncing across all 4 processors,
the system utilization was not high enough to increase
the frequency to the maximum, and hence it took longer
time. However, in the case of allocating just 2 proces-
sors, we note that the utilization is sufficiently high for
the ondemand governor to run the job at the maximum
frequency, thus finishing it faster.

Thus we observe that by allocating more processors than
what is required, we’re not only degrading the power
savings, but also the performance in this case. Hence
there is scope for power savings by improving the power
aware task/workload consolidation in an under utilised
system.

One of the possible solutions could be to consider the
following parameters during scheduler load balancing
or consolidation decision apart from just counting the
number of waiting tasks:

• The nature of each task, whether it is CPU intensive
or IO bound

• The overall utilization of the system.

• Any hints from the tasks themselves

Using some of these parameters, it is also possible to
bias the wake up of a task onto a non-idle CPU, thereby
avoiding waking up an idle CPU when the number of
tasks on a particular runqueue is nonzero.

4 Sleep states

Coming to the core of the issue, why do we want the
CPUs to be idle for long duration. Modern processors
supports multiple idle states that vary from high power
low latency idle states to low power high latency idle
states.

With CPUs being idle for extended period, they can be
put into low power high latency idle state, conserving
significant power in the process. On the other end, fre-
quently waking up CPUs cannot use deepest idle state,
as if they do, they end up paying significant overhead
due to higher transition latency in and out of the deepest
idle state.

Other factors to keep note of with regard to idle CPUs
are:

• Most of the current generation CPUs control the
CPU voltage at the socket level. This means, if
some cores in a socket are idle and other cores are
busy, idle cores may not be at optimal power state
due to the higher voltage on the socket leading to
higher leakage power.

• Most of the current generation multi-core CPUs
have some shared resources across all the cores,
like last level cache. This shared resource will not
be able to go to low power state unless all cores in
the socket are idle.

This means it is important to keep as many cores and
as many sockets in idle state as long as possible. That
helps the CPUs to be at the most optimal power state.

The current Linux kernel has cpuidle governor that takes
care of entering the right idle state based on the indi-
vidual CPU activity and requirements. The scheduler
power savings tunable takes care of keeping the entire
socket idle in case of long running tasks. Newer ver-
sions of irqbalance take care of routing interrupts to one
CPU while the system is relatively idle.

The things that are missing include:

• power-aware scheduling for short-running tasks

• smart routing of timers interrupts in the idle sce-
narios, and

• making the CPU latency requirements per CPU (in-
stead of system-wide) so that processes and inter-
rupts with critical latency requirements continue to
have good response time in partially idle case, with
other idle cores being in deepest idle state.

5 Conclusion

Every watt saved is a watt that doesn’t have to be gen-
erated! Doing more computation with less power helps
the environment and every power management feature
makes the world greener. System power management
helps to improve compute density and manage power as
a resource by matching the power consumption to work-
load just as in an automobile.
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The Linux kernel already takes advantage of various
power management features available in the platform,
however there is still scope for improvement as new
platform features will become available in future.
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