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Abstract

Multimedia applications are very popular in the Inter-
net. The use of UDP in most of them may result in
network collapse due to the lack of congestion con-
trol. To solve this problem, a promissing protocol is
DCCP. DCCP1 is a new protocol to deliver multimedia
congestion-controlled unreliable datagrams.

This paper presents experimental results for DCCP in
the Linux kernel while competing with TCP and UDP.
DCCP behaves better than UDP, while it is fair with re-
spect to TCP. The goal in this work is to help develop-
ers choose the proper protocol to use, as well as dis-
seminate the DCCP Linux project. It was used with
four Nokia N800s, three WLAN access points, and one
router to emulate congestion. Some parameters were
evaluated: throughput, loss/delay, and effects of hand-
offs performed by mobile hosts.

1 Introduction

With the rapid growth in popularity of wireless data ser-
vices and the increasing demand for wireless connectiv-
ity, Wireless Local Area Networks (WLANs) have be-
come more widespread and are making their way into
commercial and public areas. They are available in al-
most everywhere including business, office and home
deployments. WLANs based on the IEEE 802.11 stan-
dards enjoy high popularity due to setup simplicity,
increased deployment flexibility, unlicensed frequency
band, low cost and connectivity with minimal infrastruc-
ture changes. Lately, the need for Real Time (RT) mul-
timedia services over WLANs have been dramatically
increased, including Voice over IP (VoIP), audio/video
(AV) streaming, Internet video conference, IPTV, enter-
tainment and gaming, and so forth.

1Datagram Congestion Control Protocol

In this scenario, companies are adopting this technology
to easily connect devices and offer new mobile services.
The main reasons for this growth are:

1. the improvements on the quality of wireless trans-
missions;

2. the provision of security mechanisms to safely
transmit application data, thus increasing the num-
ber of available services;

3. users can walk and still have their devices
connected—this can contribute to the new era of
mobile services;

4. efficient and seamless connection to a wireless net-
work, reducing the time for network setup and the
necessity of any kind of cable;

5. the increasing number of low-cost mobile
devices—allowing home users to have access to
the world of wireless Internet access; and

6. everytime/everywhere computing, enabling Inter-
net access in public spaces.

Based on this visible growth, multimedia applications
receive special attention due to the popularization of
high-speed residential Internet access and wireless con-
nections, considering also new standards such as IEEE
802.16 (WiMax). This enables network applications
that transmit and receive multimedia contents through
the Internet to become feasible once developers and in-
dustry invest money and software development efforts
in this area. They are developing specialized multime-
dia applications based on technologies such as Voice
over IP (e.g., Skype, GoogleTalk, Gizmo), Internet Ra-
dio (e.g., SHOUTcast, Rhapsody), online games (e.g.,
Half Life, World of Warcraft), video conferencing, and
others; these have also become popular in the context
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of mobile computing. These applications offer sophis-
ticated solutions that can approximate a face-to-face di-
alog for people, although they can be physically sep-
arated by hundreds or thousands of kilometers in dis-
tance.

There are at least three reasons for the growth of the
popularity on the usage of mobile multimedia appli-
cations. First, the availability of new development li-
braries for mobile multimedia applications focusing on
data processing optimizations. Second, the availability
of smaller mobile devices with higher processing power
and data storage capacities. And third, the necessity of
people to communicate considering cost and benefits.
For instance, VoIP applications can, at least, halve the
original costs of a voice call when compared to tradi-
tional means.

For these types of applications, non-functional require-
ments such as end-to-end delay (latency) and the varia-
tion of the delay (jitter) must be taken into account. Usu-
ally multimedia applications use TCP and UDP as their
transport protocol, but they may present many draw-
backs regarding these non-functional requirements, and
hence decrease the quality of the multimedia content be-
ing transmitted. In order to deal with those types of re-
quirements, IETF standardized the Datagram Conges-
tion Control Protocol (DCCP) [4], which appears as an
alternative to transport congestion controlled flows of
multimedia data, mainly for those applications focusing
on the Internet.

In this article we present the results of an experimental
evaluation using TCP, UDP, and DCCP to transmit mul-
timedia data over a test bed 802.11g wireless network,
considering wireless mobile scenarios. In these scenar-
ios, several parameters were evaluated, such as through-
put, packet loss, jitter, and the execution of hand-off.
Hand-off is a process of transferring a wireless connec-
tion in progress from one access point to another without
interrupting the data transmission.

The remainder of this article is organized as follows: in
Section 2, an overview of some characteristics available
in the DCCP protocol is presented. In Section 3, the
methods used to evaluate the experiments are explained.
Results of the experiments are discussed in Section 4.
Finally, we present conclusions and future works in Sec-
tion 5.

2 Overview and Background

DCCP [4] was first introduced by Kohler et al. in July,
2001, at the IETF transport group. It provides spe-
cific features designed to fulfill the gap between TCP
and UDP protocols for multimedia application require-
ments. It provides a connection-oriented transport layer
for congestion-controlled but unreliable data transmis-
sion. In addition, DCCP provides a framework that en-
ables addition of a new congestion control mechanism,
which may be used and specified during the connec-
tion handshake, or even negotiated in an already estab-
lished connection. DCCP also provides a mechanism to
get connection statistics, which contain useful informa-
tion about packet loss, a congestion control mechanism
with Explicit Congestion Notification (ECN) support,
and Path Maximum Transmission Unit (PMTU) discov-
ery.

From TCP, DCCP implements the connection-oriented
and congestion-controlled features, and from UDP,
DCCP provides an unreliable data transmission. The
main reasons to specify a connection-oriented protocol
is to facilitate the implementation of congestion control
algorithms and enable firewall traversal, a UDP limita-
tion that motivated network researchers to specify the
STUN [10] (Simple Traversal of UDP through NATs
(Network Address Translation)). STUN is a mechanism
that helps UDP applications to work over firewalled net-
works. An important feature of DCCP is the modular
congestion control framework. The congestion control
framework was designed to allow extending the con-
gestion control mechanism, as well as to load and un-
load new congestion control algorithms based on the
application requirements. All of these operations can
be performed before the connection setup or during an
already-established connection through the feature ne-
gotiation mechanism [4]. Each congestion control algo-
rithm has an identifier called Congestion Control Iden-
tifier (CCID).

Considering motivations to design a new protocol, one
of them is the way in which TCP provides conges-
tion control and reliable data transfer. When loss of
packets occurs, TCP decreases its transmission rate and
increases the transmission rate again when it success-
fully sends data packets. To implement a reliable data
transfer, when TCP losses packets, it retransmits them.
In this case, new data generated by the application is
queued until all lost packets have been sent. Because



2008 Linux Symposium, Volume Two • 165

of this way of implementing reliable data transfer, using
TCP may lead to a high level of flow delay. As a con-
sequence, the user may experience interruptions in the
multimedia content being transmitted. In addition, the
TCP congestion control mechanism limits the transmis-
sion rate for a given connection. This means that TCP is
fair with respect to other TCP flows and can be fair with
other congestion controlled flows, such as those trans-
mitted by DCCP. These characteristics of TCP make it
proper for those applications that require reliable data
transfers, such as web browsers, instant messengers, e-
mail, file sharing, and so forth.

On the other hand, UDP is a very simple protocol work-
ing on top of the best-effort IP protocol, implementing
minimal functions to transport data from one computer
to another. It provides a connectionless service and it
does not care about data packets’ delivery, nor about net-
work congestion control. In addition, it does not provide
packet reordering on the receiver end, if taking into ac-
count the original ordering of packets transmitted by the
sender. Due to the lack of any type of congestion con-
trol, UDP may lead to a network congestion collapse,
where TCP-based applications may also become unus-
able. Hence, a UDP application can send data as much
as it can, but much of that data may be lost or discarded
by the routers due to network congestion. Some exam-
ples of UDP applications are VoIP applications, video-
conferencing, and Internet radio.

When developing multimedia applications using TCP as
the transport protocol, end users may experience high
streaming delays due to high packet retransmission rates
caused by network congestion. On the other hand, the
use of UDP may lead to a network collapse or bad
streaming quality, since UDP does not provide any kind
of congestion control. The new option is DCCP, which
combines the good features of each protocol to provide
better quality for multimedia data streaming, as well as
to share network bandwidth with TCP.

2.1 DCCP Congestion Control Identifiers

Nowadays, DCCP provides two CCIDs already stan-
dardized: the TCP-Like Congestion Control (or CCID-
2) [5] and the TCP-Friendly Rate Control (or CCID-
3) [6]. The goal behind this feature is to provide a way
to control the flow of packets according to the type of
data being transmitted. A CCID may be used at any
time of a DCCP connection, and it is possible to have

one CCID running in one direction, and other in the op-
posite direction. The flexibility on the CCID usage is
important because the transmitted multimedia flow may
present different characteristics. For example, a VoIP
flow is characterized by a burst of small packets—when
one interlocutor says something—between periods of
silence—when this interlocutor stops talking and waits
the other peer to talk. Another example is the Video-
on-Demand traffic characteristic, which is smoothly and
generally based on a Constant Bit Rate (CBR).

Thus, considering different types of multimedia appli-
cations, DCCP designers defined the congestion control
framework for supporting the addition of new conges-
tion control algorithms, as well as the deletion of them
regardless of the core of the protocol. In addition to
the initial standardized CCIDs, the DCCP IETF is spec-
ifying the CCID-4 [7], which is a new congestion con-
trol algorithm for DCCP to be used by applications that
transmit small packets of data in a short period, such as
VoIP applications.

TCP-Like Congestion Control

CCID-2 [5] is based on window flow control and resem-
bles TCP congestion control. When a host receives a
DCCP packet, it sends an ACK back to the sender. Af-
ter receiving that packet, the sender adjusts the window
size and the expiration time. The CCID-2 algorithm
is based on the AIMD [1] algorithm for window-based
flow control. Similarly TCP, the window size used in
the algorithm is given as the congestion window size
(cwsize), which is equal to the maximum number of
in-transit packets allowed in the network at any time.

The sending host itself adjusts cwsize through conges-
tion estimation according to the sequence of the ACK
packet received. In this way, the cwsize is increased
by one packet in the following cases:

1. every acknowledged packet arrives in a slow-start
phase, and

2. every window of data is acknowledged without lost
packets in a congestion-avoidance phase.

On the other hand, the cwsize is halved when the
sender can infer that loss of packets occurs due to du-
plicate acknowledgments, which is equivalent to TCP.
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If an ACK packet does not arrive at the sender before
the timeout timer expires (i.e., when an entire window
of packets is lost), the sender sets cwsize to one. The
CCID-2 is proper for applications that want to use as
much bandwidth as possible and are able to adapt to sud-
den changes in the available bandwidth [2, 8].

TCP-Friendly Rate Control TFRC

The CCID-3 [5] implements a receiver-based conges-
tion control algorithm where the sender is rate-limited
by packets sent by the receiver with information such
as receive rate, loss intervals, and the time packets are
kept in queues before being acknowledged. This CCID
is intended for applications that smoothly support rate
changes. Since the changes are not abrupt, it responds
more slowly than TCP or TCP-like congestion controls.

The transmission rate is changed by varying the num-
ber of packets sent and is not suitable for applications
that prefer variation in the sending rate by changing the
packet size. In the CCID-3 implementation, the sending
rate is computed by analyzing the loss event rate based
on a throughput equation named TFRC Equation [5].
It supports Explicit Congestion Notification (ECN) and,
to verify whether the receiver reported an accurate loss
event, it also reports the ECN Nonce Sum [5] for all
packets reported as received.

2.2 Summary of TCP, UDP and DCCP features

According to Table 1, which shows a comparison be-
tween the features of TCP, UDP, and DCCP, one may
observe that DCCP is different from TCP in four points
that are highlighted in bold. The first of them is the
size of the header of each packet, which varies depend-
ing on the value of the X field presented in the header.
The X field represents the Extended Sequence Number.
If it is equals 0, the length of the packet is 12 bytes;
if X is equal to 1, the length of the packet is 16 bytes.
The second item is conceptual: while TCP sends seg-
ments, DCCP sends datagrams. The third difference
between TCP and DCCP is that DCCP does not guar-
antee the delivery of data transmitted, except when the
data transmitted is related to a feature negotiation pro-
vided by DCCP. The last difference is that DCCP does
not guarantee packet reordering, even though it uses a
sequence number in the packet header.

3 Methods and Experiments

In this section we describe two scenarios used to per-
form the experiments using the DCCP protocol, pre-
senting the parameters and methods adopted to obtain
the data for each metric collected during the experi-
ments, such as instantaneous throughput and latency.
We use a statistical method based on the probability the-
ory [3] to calculate how many times it is necessary to
repeat a given experiment to obtain an acceptable con-
fidence level for each collected metric. In this work, it
was considered 95% for the confidence level. By using
this mechanism, it is possible to compare each protocol
in terms of its respective performance while competing
with each other.

The network topology used to execute the experiments
was an 802.11g wireless network composed of both
computers and Internet Tablets, in this case, Nokia
N800. The experiments also examined the execution
of hand-offs, where the internet tablets performed hand-
offs at the link level of the 802.11g wireless network
during data transmission. After explaining the general
considerations adopted in the experiments, the network
topology is presented.

3.1 General Considerations

The DCCP implementation used to run the experiments
is available in the Linux kernel version 2.6.25, which
can be obtained from the DCCP development git tree.
Because the version of the Linux kernel for the Inter-
net Tablets was 2.6.21, we backported the DCCP imple-
mentation from Linux kernel version 2.6.25 to version
2.6.21. Therefore, all the devices used in the experi-
ments had the same DCCP implementation.

To generate TCP, UDP, and DCCP data flows, IPerf was
used; it provides statistical reports about the connec-
tion during data transmissions. This includes statistics
about packets lost and received, jitter, and throughput
for a given instant. We defined the scenarios of experi-
ments, which mean specifying values for IPerf parame-
ters and the devices to be used in each experiment con-
sidering confronts between two given protocols (TCP×
UDP, TCP × DCCP, and UDP × DCCP). Experiments
with packet sizes of 512 bytes and 1424 bytes were per-
formed. In this case, the idea was to verify whether
varying the packet size would produce any impact on
the protocol performance, since varying the packet size
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Table 1: Comparison of TCP, UDP and DCCP features

Feature UDP TCP DCCP
Packet size 8 bytes 20 bytes 12 or 16 bytes
Transport layer packet entity Datagram Segment Datagram
Port numbering Yes Yes Yes
Error detection Optional Yes Yes
Reliability: Error recovery by ARQ No Yes No
Sequence numbering and reordering No Yes Yes/No
Flow control No Yes Yes
Congestion Control No Yes Yes
ECN support No Yes Yes

during the transmission may lead to fragmentation of
packets in the IP layer. If this is the case, it may affect
the multimedia data quality being transmitted. Varying
the packet size during the multimedia data streaming is
one of the well-known techniques adopted by multime-
dia applications to adapt the quality of the flow in re-
sponse to network congestion.

Regarding congestion control algorithms for TCP and
DCCP, Reno, Cubic, and Veno were used for TCP; and
for DCCP, CCID-2 and CCID-3 were used. The device
used in the experiments was the Nokia N800, with an
ARM 330 MHz processor, 128 MB and a Texas Instru-
ments wireless network interface.

3.2 Network Topology

The goal was to study the performance of TCP, UDP,
and DCCP when running on resource-limited devices,
considering processor and memory capacities. An im-
portant point was to analyze the behavior of the proto-
cols studied when the user application performs hand-
offs between two consecutive 802.11g wireless access
points. In this case, two Internet Tablets working as
clients performed hand-offs, while the other two worked
as servers and did not perform hand-offs. The execution
time for each of the experiments was 300 s, where the
hand-offs were performed in 100 s and 200 s.

The network topology defined for this scenario is shown
in Figure 1. In this case we used three Internet Tablets
to transmit two UDP or DCCP flows—each flow in one
Internet Tablet—and the third one was used to transmit
one TCP flow. In practice, this means two multimedia
flows using UDP or DCCP (audio and video) against a
data-oriented application such as HTTP.

3.3 Parameters for the Experiments

Four parameters were considered for the experiments:
protocol confront; packet size; congestion control al-
gorithm; and the existence of hand-offs. As discussed
before, to transmit data in any scenario of a given ex-
periment, the protocols were combined between them
two-by-two. In Table 2, the quantity of flows transmit-
ted during the experiments for each protocol is shown,
according to each confront. The goal to define these
confronts is to analyze the fairness among the three pro-
tocols in terms of network bandwidth usage.

For each scenario, the packet size was varied. For each
confront of the protocols, the experiments were per-
formed with different packet sizes, either 512 bytes or
1424 bytes. The goal for variation is to analyze whether
the transmitted packet size impacts the performance of
the studied protocols. As discussed before, some appli-
cations perform adaptation in the quality of the flow be-
ing transmitted as a response to the network congestion.
To perform this task, codecs that support such a feature
are called VBR, which varies the bit rate for each gener-
ated packet—or for a small set of continuous packets—
according to the multimedia content being transmitted,
which dynamically changes the packet size during data
transmission.

Varying the congestion control algorithm allows the per-
formance analysis of each congestion control algorithm
during data transmission. Besides, fairness with respect
to the network bandwidth usage can be evaluated. Also,
by varying this parameter, is possible to study the behav-
ior of each protocol when network congestion occurs.

The last parameter taken into account is the existence or
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Figure 1: Network topology for the experiments.

# Confronts TCP flow UDP flows DCCP flows
1 TCP × UDP 1 2 0
2 TCP × DCCP 1 0 2
3 UDP × DCCP 0 2 1

Table 2: Number of flows used in each protocols confronts

not of hand-offs. Two of the four Internet Tablets per-
formed hand-offs. It is known that during hand-off there
are packet losses, but some congestion control algo-
rithms mistake these losses as congestion, such as TCP
Reno and the DCCP CCID-2. When a packet is lost,
these algorithms assume congestion on the network and
wrongly react by decreasing the allowed sending rate of
the connection, but theses losses are temporary—they
only occur during the hand-off. The goal in this case
is to study the behavior of the congestion control algo-
rithms in the existence of hand-off.

3.4 Collected Metrics and Derived Metrics

For all executed experiments, a TCP flow was first trans-
mitted, and after 20 s, the other flows were started. By
executing the experiments in this way, it was possible to
evaluate how fair the protocols are with each other when
new flows are introduced in the network. This enables
analyzing whether any of them can impact the perfor-
mance of the other—mainly whether DCCP and UDP
impact the performance of TCP. In addition, the idea is
to look for the most suitable TCP and DCCP congestion
control algorithms to transmit multimedia data over the
network.

To reach all of these goals, a set of metric values was
collected for the flows transmitted during the experi-
ments. The metrics were the throughput, packet loss,
and latency. Considering these metrics, it is possible to

obtain other two metrics: jitter and the rate of how many
packets reached the receiver, which can be obtained
from the quantity of transmitted packets. Through la-
tency, it is possible to calculate jitter for a given in-
stant; from throughput and the quantity of lost pack-
ets, it is possible to obtain the effective amount of data
transmitted—how much data effectively reached the re-
ceiver.

3.5 Obtaining Throughput, Jitter and the Amount
of Data Lost and Transmitted

The mean throughput and the amount of data transmit-
ted for TCP was obtained through the average of the
means in each repetition r of a given experiment. This
is shown in Equations 1 and 2, where n is the total of
repetitions.

µthoughput_tcp = ∑
n
r=1 throughput_meanr

n
(1)

µload_tcp = ∑
n
r=1 load_meanr

n
(2)

However, to obtain the means for the UDP and DCCP
throughput and amount of data transmitted, the proce-
dure was different. Considering that two UDP/DCCP
flows have been transmitted—taken regardless—against
a TCP flow, and considering also that the UDP/DCCP
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flows started only 20 s after the TCP flow started, it was
necessary to define a mechanism that does not penalize
both protocols in a confront. In this case the calculation
of the means would not be an arithmetic average of the
sum of the throughput and the amount of data transmit-
ted by the two UDP/DCCP flows. Instead, it should be
the mean throughput and the mean amount of data trans-
mitted of each flow. This observation is represented in
Equation 3, where each thoughput_meanr of this equa-
tion can be obtained from Equation 4.

µpartial_throughput(ud p/dccp) = ∑
n
r=1 thoughput_meanr

n
(3)

thoughput_meanr = ∑
F
k=1 thoughput_mean_flowk

F
(4)

Based on the same assumptions presented before, in
Equation 4, the term thoughput_mean_flowk is obtained
through the arithmetic means of the throughput in each
instant (per second) of the experiment. Therefore, the fi-
nal value for the throughput for a given transmitted flow
(connection) of UDP and DCCP can be obtained from
Equation 5.

µ f inal_throughput(ud p/dccp) =µpartial_throughput(ud p/dccp)+

S× (
µpartial_throughput(ud p/dccp)

T
)

(5)

where F is the number of flows, FUDP = FDCCP = 2 for
TCP × UDP/DCCP and FDCCP = 1 for UDP × DCCP;
S, is the await time to start the UDP or DCCP flows
(S = 20s); and T , is the total time of the experiments
(T = 100s without hand-offs or T = 300s with hand-
off).

The means were normalized according to Equation 5,
to avoid penalizing the protocols in the terms discussed
before.

In a similar way the latency and effective amount of
data transmitted can be obtained. Note that for UDP ×
DCCP confronts, the term FDCCP is equal to 1. In these
cases the throughput and amount of data transmitted are
obtained through Equations 1 and 2, respectively.

Jitter

The calculation to obtain the mean jitter for a transmit-
ted flow is very similar to the calculation of the mean
throughput. The value for the jitter can be obtained
through Equation 8 and it can be obtained as follows:

µpartial_jitter(udp/dccp) = ∑
n
r=1 jitter_meanr

n
(6)

and,

jitter_meanr =
∑

F
k=1(

∑
QI
k=1 VAk

QI )

F
(7)

then,

µfinal_jitter(udp/dccp) =µpartial_jitter(udp/dccp)+

S× (
µpartial_jitter(udp/dccp)

T
)

(8)

where: F is the number of flows used in the experi-
ments, FUDP = FDCCP = 2 for TCP × UDP/DCCP and
FDCCP = 1 for UDP × DCCP, QI, is the quantity of in-
tervals (QI = T − 1) for two consecutives read of col-
lected data, VA, is the variation of the delay between
packets of the same flow, for instance time1 = 10ms and
time2 = 11ms, VA = 1ms, T , is the total time of the ex-
periments (T = 100s without hand-off or T = 300s with
hand-off).

3.6 Statistic Methodology for the Final Calculation
of the Collected Metrics

The results presented in this work—for instance, to de-
termine what protocol performed better than the other
in terms of bandwidth usage—were based on samples
of data collected while performing the experiments. The
methodology adopted was based on the concepts of con-
fidence interval [3], considering ρ = 95% (confidence
level) and therefore α = 5% (significance level, or er-
ror).
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Determining the Confidence Interval for ρ = 95%

The principle for the confidence interval is based on the
fact that it is impossible to determine a perfect mean
µ for a infinite population of N samples, considering a
finite number n of samples {x1, ...,xn}. However, it is
possible to determine in a probabilistic way an interval
where µ will belong to this interval, with probability
equals to ρ , and that will be not in this interval with
probability of α .

To determine the minimum value c1 and the maximum
value c2 for this interval, called a confidence interval, it
is considered the probability 1−α , where the µ value
will belong to this interval, for n repetitions of a certain
executed experiment. The Equation 9 summarizes this
consideration.

Probability{c1 ≤ µ ≤ c2}= 1−α (9)

where (c1, c2) is the confidence interval; α is the signif-
icance level, expressed by a fraction and typically close
to zero, for instance, 0.05 or 0.1; (1−α) coefficient of
confidence; and ρ = 100 * (1−α), is the confidence
level, traditionally expressed in percent and closer to
100 %; this work uses 95 %.

From the Central Limit Theorem2 [3], if a set of sam-
ples {x1, ...,xn} is independent, has a mean x̄, and be-
longs to the same population N, with mean µ and stan-
dard deviation σ , then the average of the samples is in
a normal distribution with x̄ = µ and standard deviation
σ/
√

n,x̄' N(µ, σ√
n).

Considering Relation 9 and the Central Limit Theorem,
the confidence interval (c1,c2) for ρ = 95% and α =
0.05 can be obtained as shown in Equation 10.

(µ− z1−α/2×
s√
n

,µ + z1−α/2×
s√
n
) (10)

where µ is the average for n repetition; z1−α/2 is equal to
1.96, this value determines 95 % of confidence level; n is
equal to the number of repetitions; and s is the standard
deviation of the means for n repetitions.

2Central Limit Theorem: the sum of a large number of indepen-
dent and identically-distributed random variables will be approxi-
mately normally distributed if the random variables have a finite
variance.

Regarding the value for z1−α/2, also named quantile, is
based on the Central Limit Theorem and since it is fre-
quently used, it can be found in a table named Quantile
Unit of the Normal Distribution. This table can be found
in the reference [3], Table A.2 of Appendix A. Using the
Relation 11, next it is explained how to determine the
value 1.96 for the term z1−α/2.

z1−α/2 = (1−0.05)/2 = 0.975 (11)

According to the table Quantile Unit of the Normal Dis-
tribution available in reference [3], the corresponding
value for the result of the Equation 11 is 1.96, which is
the value to be used as the variable z of the the Equa-
tion 10.

Therefore, based on the confidence interval of each av-
erage for each metric collected during the experiments
(see Section 3.5), it is possible to perform comparisons
with these values for the defined scenarios of experi-
ments for 95 % of confidence with 5 % of error.

Determining the Value for n to obtain ρ = 95%

The confidence level depends on the quantity of samples
n collected for a certain metric of a given experiment.
Thus, the higher the value of n is, the more precise the
confidence level will be. However, to obtain big samples
requires more effort and time. Therefore, it is important
to define a value for n and avoid repeating a specific
experiment unnecessarily, but maintaining the desired
confidence level ρ = 95%.

To start the process of the experiment performed in this
work, each experiment was repeated 3 times (nbase = 3).
For example, the initial throughput mean of a given
trasmitted flow was obtained from the means obtained
by running the experiment 3 times. This means that
firstly we obtain a high value for the variance, which
is used to determine the real value for n to obtain 95 %
of confidence level.

Based on Equation 10, the confidence interval for a
given value of n samples is defined by Equation 12.

µ± z× s√
n

(12)
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Thus, for the confidence level of ρ = 95% and α = 0.05,
the confidence interval is determined by Equation 13.

(µ(1−0.05),µ(1+0.05)) (13)

Then, equating the confidence interval specified in Ex-
pression 13 with the confidence interval specified in Ex-
pression 12 (general), Equation 14 is obtained.

µ± z× s√
n

= µ(1±0.05) (14)

Therefore, organizing the expression by isolating the
variable n, each experiment was repeated n times de-
termined in Equation 15, considering a confidence level
ρ = 95%, which implies in z = 1.96 (from Equation 11),
and the 3 initial times of experiment repetition (nbase).
For example, if the value for n is 12 for a given experi-
ment, it was repeated n = n−nbase, which is equal to 9,
and the three first means is also considered for the value
of the final average of a given metric.

n = (
1.96× s
0.05×µ

)2 (15)

4 Results

Using the definitions and methods presented in Sec-
tion 3, in this section the results and discussions about
the experiments are presented according to methods dis-
cussed in Section 3.

The results are organized in two tables considering the
packet size used in the transmission. The results for the
evaluated metrics for transmissions using packets of size
512 bytes are presented in Table 3. The results for trans-
missions using packets of size 1424 bytes are presented
in Table 4.

The values presented in these tables have a 95% confi-
dence level with a 5% margin of error. The confidence
interval is presented immediately below the value for
the corresponding metric. For the UDP and DCCP pro-
tocols the confidence interval for the metric Transmit-
ted / Lost corresponds to the effective load of transmit-
ted data, that is, the subtraction of Transmitted−Lost.
Also, consider that the values presented in the two ta-
bles correspond to the execution of the experiments fol-
lowing the process described in Section 3.1, consider-
ing that: the execution time is 300 s, the instants that

the hand-off was performed were at 100 s and 200 s, the
confront among protocols were TCP × UDP, TCP ×
DCCP, and UDP × DCCP. Also, the congestion con-
trol algorithms for TCP were: Reno, Cubic and Veno,
and for DCCP: CCID-2 and CCID-3. The metrics an-
alyzed were throughput, the amount of transmitted and
lost data, and latency/jitter.

4.1 Discussions about the Experiments

The major point considered in the experiments is related
to:

1. the impact of changing the data packet size on the
performance of the protocol during transmissions;

2. the impact caused in terms of throughput and the
amount of data transmitted and lost when perform-
ing hand-off during data transmission; and

3. the behavior of TCP, UDP, and DCCP in terms of
fairness.

For the first item, there were no considerable changes
in the behavior of the transmitted flow for all protocols
taken regardless, mainly related to the metrics through-
put and jitter. But it is possible to observe changes in the
performance of TCP Reno, Cubic, and Veno algorithms
for TCP × UDP and TCP × DCCP.

For the TCP× UDP test, the amount of transmitted data
using the algorithms TCP Reno, Cubic, and Veno were
not satisfactory if the result of the experiments is di-
vided into two groups: one with experiments using a
packet size of 512 bytes (Table 3) and another with ex-
periments using packet size of 1424 bytes (Table 4). If
the throughput of the TCP and UDP protocols is almost
the same for the two groups of experiments (see lines 1,
2, and 3), we expect to observe that the bigger packet
size is, bigger the amount of transmitted data should be,
considering that there is no packet fragmentation in the
network layer, since the MTU for the 802.11g connec-
tion is 1500 bytes.

On the other hand, there are no changes for TCP ×
DCCP, regardless of the algorithm used. Comparing
the throughput values for the TCP × UDP and TCP
× DCCP confronts presented in Tables 3 and 4, a bal-
ance among these values can be observed. For instance,
in Tables 3 and 4 the mean throughput of TCP Reno
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# Confronts Throughput (Kbits/s) Transmitted / Lost
(KBytes) Jitter (ms) n

1
TCP Reno 3359,12 123006,72 2,11

11× (3202,15−3516,09) (117258,69−128754,75) (1,72−2,21)

UDP 2956,09 394825,25/293967,67 1,60
(2935,81−2976,36) (100164,37−101550,79) (1,57−1,64)

2
TCP Cubic 3364,12 121855,28 7,51

5× (3232,15−3496,09) (118258,44−125452,12) (6,32−8,7)

UDP 2919,76 419803,17/320187 1,71
(2893,96−2945,57) (98735,37−100496,97) (1,69−1,74)

3
TCP Veno 3121,69 114322,77 4,2

7× (3042,26−3201,13) (111412,94−117232,60) (3,4−5,0)

UDP 3002,75 378833,83/276384,92 1,5
(2994,15−3011,36) (102150,85−102746,97) (1,50−1,54)

4
TCP Reno 3042,90 111433,62 4,8

9× (2951,57−3134,23) (108090,21−114777,03) (4,36−5,24)

DCCP-2 2162,51 73688,67/287,51 5,4
(2138,56−2186,47) (73401,16−74234,14) (5,02−5,75)

5
TCP Cubic 3862,58 104830,49 3,32

9× (3775,82−3949,34) (101653,65−108007,32) (3,11−3,53)

DCCP-2 2119,10 72256,17/367,92 4,2
(2109,87−2128,33) (71888,25−72215,14) (4,02−4,48)

6
TCP Veno 2395,97 87744,27 7,81

20× (2289,27−2502,67) (83836,15−91652,39) (7,33−8,29)

DCCP-2 2899,25 64653,08/314,42 6,1
(2810,27−2988,24) (61289,36−67387,96) (5,50−6,64)

7
TCP Reno 3291,67 120549,10 3,6

6× (3265,40−3317,94) (119587,17−121511,03) (3,42−3,78)

DCCP-3 2851,59 97234/1181,92 0,85
(2841,67−2861,52) (95725,77−96378,39) (0,83−0,87)

8
TCP Cubic 3598,81 131790,21 4,13

8× (3496,79−3700,84) (128052,30−135528,13) (3,77−4,49)

DCCP-3 2665,55 90895/1533,67 1,18
(2571,62−2759,48) (86127,94−92594,72) (0,95−1,41)

9
TCP Veno 3734,55 136765,27 2,31

11× (3634,92−3834,18) (133115,41−140415,13) (2,15−2,47)

DCCP-3 2824,84 96381,08/1472,58 0,89
(2815,48−2834,20) (92753,94−97063,06) (0,85−0,93)

10
DCCP-2 1792,20 65194,33/303,33 4,91

11× (1749,55−1834,86) (62404,79−64891,03) (4,75−5,08)

UDP 2552,41 562465,08/475381 2,02
(2475,76−2629,06) (84469,96−89698,20) (1,87−2,18)

11
DCCP-3 2519,84 91559,83/1696,83 1,01

13× (2461,98−2577,70) (85041,99−94684,01) (0,91−1,12)

UDP 2898,34 427356,58/328470,17 1,82
(2841,75−2954,93) (96902,29−100870,53) (1,73−1,92)

Table 3: Summary for the results of phase 1 for ρ = 95%. Packet of size 512 bytes, execution of hand-off and
considering the confronts between two protocols among the protocols TCP, UDP and DCCP.

was 3359.12 Kbits/s and 3162.41 Kbits/s, respectively.
Moreover, if the throughput is almost the same, the big-
ger the packet size is, more data the flow should trans-
mit. This happened only for the TCP × DCCP. In
this case, TCP transmitted more data when the packet
size was 1424 bytes for all the congestion control al-
gorithms used. This was expected because DCCP also
implements congestion control and it allows TCP flow

to transmit more data when increasing the packet size,
considering that the maximum size for a packet is the
MTU value minus the space occupied by the headers of
protocols in the network, transport, and application lay-
ers.

Therefore, it is possible to conclude that in transmis-
sions where the TCP and UDP protocols share the same
communication channel, to increase the packet size
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# Confronts Throughput (Kbits/s) Transmitted / Lost
(KBytes) Jitter (ms) n

1
TCP Reno 3162,41 112156,65 3,21

4× (2968,61−3156,21) (108719,62−115593,67) (3,09−3,33)

UDP 5773,26 730078,67/659256,67 2,37
(5493,16−6053,36) (67701,48−73942,52) (2,28−2,47)

2
TCP Cubic 3201,33 80614,73 4,51

6× (3063,57−3339,09) (75572,17−85657,29) (4,42−4,60)

UDP 2575,34 1213656,83/1182062,33 3,17
(2544,25−2606,43) (27053,38−36135,62) (3,05−3,29)

3
TCP Veno 3221,97 117998,49 5,12

8× (3072,96−3370,99) (112542,56−123454,43) (5,04−5,2)

UDP 2301,01 682801,67/605503,92 2,27
(2288,97−2313,06) (73433,54−81161,96) (2,20−2,35)

4
TCP Reno 3776,63 166004,14 6,3

4× (3717,94−3835,31) (163776,65−168231,63) (6,21−6,34)

DCCP-2 3372,64 141343,33/375,92 6,68
(3217,38−3527,90) (139722,68−142963,98) (5,40−7,97)

5
TCP Cubic 3969,39 172124,00 4,12

3× (3901,75−4037,04) (169648,29−174599,72) (4,03−4,21)

DCCP-2 3611,59 187001,58/1303,25 5,16
(3578,69−3644,49) (182247,13−189149,53) (4,90−5,43)

6
TCP Veno 4561,88 180149,85 6,51

3× (4218,12−4905,64) (178025,55−182274,15) (5,81−7,21)

DCCP-2 2685,21 13600,533/1150 6,25
(2442,01−2928,41) (133295,41−136415,25) (5,47−7,02)

7
TCP Reno 2735,82 100189,53 3,71

7× (2576,05−2895,60) (94338,37−106040,69) (3,28−4,14)

DCCP-3 3469,30 118268,52/5685,50 2,80
(3299,87−3638,73) (111483,27−113682,77) (2,56−3,05)

8
TCP Cubic 2980,47 109147,54 4,1

5× (2950,09−3010,85) (108034,15−110260,92) (3,49−4,71)

DCCP-3 3482,36 118835,16/1549,83 2,63
(3319,60−3645,13) (112236,44−122334,22) (2,34−2,92)

9
TCP Veno 2998,39 109806,54 2,33

6× (2867,97−3128,80) (105029,84−114583,24) (2,21−2,45)

DCCP-3 4831,47 184765,16/4835,08 1,69
(4576,48−5086,45) (175018,62−180930,08) (1,65−1,73)

10
DCCP-2 3452,93 125611,37/482,50 7,81

11× (3315,24−3590,62) (122601,76−127655,98) (7,55−8,07)

UDP 5236,62 806485,67/742278,17 4,30
(4892,45−5580,79) (62959,4−65455,6) (3,70−4,90)

11
DCCP-3 4053,65 147460,73/3415 1,84

13× (3904,76−4202,54) (142043,27−146048,19) (1,63−2,04)

UDP 5935,79 699595,58/626779,58 2,46
(5884,42−5987,15) (71211−74421) (2,42−2,51)

Table 4: Summary for the results of phase 1 for ρ = 95%. Packet of size 1424 bytes, execution of hand-off and
considering the confronts between two protocols among the protocols TCP, UDP and DCCP.

from 512 bytes to 1424 bytes does not lead to perfor-
mance improvement, even when considering the Veno
congestion control algorithm. This suggests that TCP
lost more data when packets with size 1424 bytes (with-
out considering the packet retransmission mechanism
implemented by TCP to provide reliability) were used.
In this case, a future work can evaluate what the best
packet size should be to minimize the amount of TCP

packets lost in this scenario. A discussion in this con-
text is presented in [12].

Regarding the hand-off executions, in Figure 2 the pro-
gression of the transmission for TCP Cubic × UDP is
depicted, which corresponds to line 2 of Table 3. In Fig-
ure 2(a), the mean throughput for the protocols TCP and
UDP are presented. In Figure 2(b), the relation between
the amount of transmitted and lost data for UDP in this
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transmission is shown. The values for each point plot-
ted in the graph shown in Figure 2 were calculated as
an average for the values of each point for all repetitions
of the experiment, in this case n = 5 (last column of the
line 2 of Table 3).

It is important to observe that in Figure 2(a) the through-
put for the TCP connection decreased due to hand-off,
where packet loss occurred; that is reflected in the con-
gestion control algorithms of TCP and DCCP. In the
case of UDP, the throughput remained constant during
all the transmission time. In Figure 2(b), it is possi-
ble to observe a high level of data loss when using UDP,
mainly during hand-off. Around second 35, it is possible
to observe another declining point for the TCP through-
put. This fact can be explained by the introduction of
the two UDP flows, where packet loss also happened.

In Figure 3, the transmission for TCP-Cubic× DCCP is
presented, which corresponds to line 5 of Table 4. The
values for each point were calculated in a similar way
of previous ones, with n = 9. This procedure was also
used for the other graphs in this section.

As it can be seen in Figure 3(a), the TCP throughput also
decreased due to the hand-off, for the same reasons as
in TCP × UDP. In the case of the DCCP protocol, there
was a small drop in the throughput during the hand-off.
Figure 3(b) shows the evolution for TCP×DCCP, and it
is possible to observe that DCCP lost a small amount of
data when compared to UDP in the confronts against to
TCP. In addition, it can be seen that during the transmis-
sion, the DCCP and TCP protocols shared the channel
in a fair way.

Regarding the fairness of the protocols in terms of net-
work bandwidth usage, a congestion in the network
caused by UDP was expected, but this did not happen.
Therefore, it is possible to conclude that there is data
contention in the source, in this case the Internet Tablets
(N800 devices). As the processing power of such de-
vices is limited, there is a throughput limitation of data
processing and transmission, considering that the pro-
cess (at the operating system level) of the IPerf applica-
tion used less CPU clocks compared to a desktop com-
puter, for instance. In Section 5 a discussion on this
subject is presented, where a different behavior is ob-
served: the wireless network presented a high level of
congestion caused by the UDP protocol and in some
cases avoiding TCP and DCCP protocols to transmit
data.

It is also important to comment on two additional facts
observed in the experiments.

• Sudden wireless disconnections of the Internet
Tablet were observed. This is probably associated
with the processing and management capacity of
the applications executing in this device, particu-
larly the wireless interface driver running in the
device. In order to have a more elaborate explana-
tion of this, a deeper study is suggested; the focus
should be to analyze situations where the processor
is overloaded, leading to a malfunction of the wire-
less interface driver. In addition, the study should
examine whether the disconnections were caused
by hand-offs;

• In addition to the weak performance of the UDP
protocol for wireless data transmission in terms of
packet loss, in all transmissions using the UDP pro-
tocol, it was observed that the protocol delivered
out-of-order packets. The out-of-order data deliv-
ery also occurred with the DCCP protocol, but in
smaller proportion compared to UDP. This propor-
tion is equivalent to the packet loss with the DCCP
protocol in the TCP × DCCP confronts—Tables 3
and 4, field Transmitted/Lost, lines 4 to 9 (inclu-
sive).

5 Conclusion

In this article, an experimental evaluation of the DCCP
protocol over a 802.11g testbed wireless network is pre-
sented. We presented an overview of DCCP, an ex-
planation of how the experiments were performed, and
explored the methods adopted to calculate each metric
studied in this work. An important issue in this case is
the use of a statistical method based on probability the-
ory to achieve a 95% confidence level in all the values of
the studied metrics. The results obtained by executing
the experiments are presented. The experiments used
only resource-limited devices.

Considering the results discussed in Section 4, some
conclusions can be presented. First, the UDP protocol
when used in resource limited devices is not capable of
generating high network traffic resulting in congestion.
This is due to data generation contention on the Internet
Tablets.
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It is important to point out that even though the UDP
protocol was unable to cause network congestion, its
use to transmit multimedia flows is not recommended,
at least in the network topology used in this work. This
recommendation is based on the observations that UDP
lost a lot of packets when compared to DCCP, mostly
in a network congestion period. This directly reflects in
the multimedia quality being transmitted. In addition to
the high level of packet loss, UDP interferes with the
performance of other protocols that implement network
congestion control, such as TCP and DCCP.

Unlike the discussion in [11], the hand-off execution
during data transmission did not affect either the TCP or
DCCP congestion control algorithms. In the results pre-
sented in this previous work, laptops were used, rather
than resource-limited devices. There are two hypotheses
to explain the non-effect of hand-offs using resource-
limited devices: first, by using devices such as the N800,
the hand-off occurs very fast and hence few packets are
lost, if compared with hand-offs performed using com-
puters (such as laptops) and considering that they are not
manufactured with this type of service in mind, unlike
the mobile devices. Thus, since the amount of the packet
loss is small and considering that resource-limited de-
vices are not capable of generating a big set of data in
a short period (due to the short slice of time allocated
to each application by the operating system), the small
amount of data lost does not affect the congestion con-
trol algorithms. The second hypothesis completes the
first one. Since N800-like devices are manufactured to
work in wireless networks, the network driver is opti-
mized for hand-off executions, unlike those available for
the network interface of the laptops. For this point, it is
necessary to conduct a more specific study to provide a
more accurate conclusion.

Another important conclusion is that when the packet
size for TCP was varied in data transmission against
UDP flows, the results were not satisfactory. As ob-
served in the results presented in Section 4, there is not a
significant improvement in the amount of data transmit-
ted when using 1424-byte (rather than 512-byte) pack-
ets. But for TCP × DCCP confronts, one may con-
clude that if the packet size is increased from 512 bytes
to 1424 bytes, it is possible to improve the performance
of both TCP and DCCP. Therefore, this procedure is en-
couraged. Although it was possible to observe this, it
is necessary to run more experiments with packet size
other than 1424 bytes and 512 bytes.

The current congestion control algorithms for DCCP
performed worse than TCP when used to compete
against UDP flows (except in the TCP Reno × UDP,
where DCCP performed better than TCP in the DCCP
CCID-3 × UDP), although DCCP seems to reach one
of its goals: to be fair in respect to TCP. For this case
DCCP performed very well, properly sharing the net-
work bandwidth with TCP.

Supposing that the other part of the wireless and Inter-
net traffic is TCP Veno, or TCP Cubic, the default con-
gestion control algorithm for Linux, the UDP protocol
must be fair in respect to TCP, since TCP Cubic and
Veno performed very well in terms of the available net-
work bandwidth. Until the end of this work, no refer-
ences were found that explored possible congestion con-
trol algorithms for UDP, nor official comparative studies
between TCP Cubic/Veno against UDP, since our work
focused in the DCCP point of view. According to the
results presented in this work, it is not recommended to
use TCP Reno for data transmission mainly over wire-
less links and in the Internet. Moreover, based on the
results presented in this work, for TCP transmissions it
is recommended to use of TCP Cubic than TCP Veno,
even though the official documentation for TCP Veno
indicates that its main focus is on wireless networks.
It is necessary to analyze the congestion control algo-
rithms for DCCP in order to optimize them or provide
new congestion control algorithms for it, equivalent to
TCP Cubic and TCP Veno, preferentially.

The current work we are developing is a mVoIP appli-
cation based on DCCP for mobile devices, focusing on
the maemoTMplatform [9].
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