
Pathfinder—A new approach to Trust Management

Patrick Patterson
Carillon Information Security Inc.
ppatterson@carillon.ca

Dave Coombs
Carillon Information Security Inc.

dcoombs@carillon.ca

Abstract

PKI has long promised to solve the problem of scalable
identity management for us. Until now, that promise
has been rather empty, especially in the Free and Open-
Source Software (FOSS) space. Generally speaking,
the problem is that making the proper trust decisions
when presented with a certificate involves such esoteric
magic as checking CRLs and OCSP and validating trust
and policy chains, all of which are expressed as arcane
ASN.1 structures; usually this is not the application de-
veloper’s primary focus. Coupled with the lack of cen-
tral PKI management tools in the FOSS environment,
the result is a whole lot of applications that sort of do
PKI, but not in any truly useful fashion. That is, an
administrator cannot really replace username/password
systems with certificates, which is what PKI was sup-
posed to let us do. Microsoft has finally built a decent
certificate-handling framework into their products, and
we believe that Pathfinder adds this level of support to
FOSS products. This presentation will focus on what
Pathfinder is, how it can be used to deploy a scalable
trust management framework, and, most importantly,
will demonstrate how easy it is to make your own ap-
plication “Pathfinder aware.”

1 Introduction

Before we discuss Pathfinder in detail, it is useful to take
a look at Public Key Infrastructure in general, its his-
tory, and the current directions within this field. This
provides a backdrop and common reference for under-
standing why we have chosen the architecture for trust
management with Pathfinder that we have.

While PKI is, generally speaking, not new technology,
it has been quite slow to find mainstream adoption and
use. This is partly because of the difficulty in designing
an implementation that satisfies everybody’s require-
ments, and partly because of interoperability problems

arising from a range of implementations that interpret
the standards differently. Recent developments, how-
ever, show great promise in growing interoperable de-
ployments.

Formerly it was thought that the “holy grail” of PKI was
a single, global Certificate Authority, or small group of
such CAs, that would issue all the certificates, and that
everybody would trust these CAs. This would eventu-
ally prove to be impossible, and the biggest problem
is a political one: who runs the global CA? Who is,
therefore, the global trust authority, and why should one
group have so much power? These questions could not
be satisfactorily answered. Furthermore, many differ-
ent groups and interests are represented in such a sys-
tem, and it is probably impossible to create a meaningful
global PKI policy framework that is consistent with the
needs of these different groups and different industries
and different legal regulations.

In the past several years a new model has emerged, rep-
resented by interoperable communities of trust. Groups
of people or companies with similar requirements, be
they industry requirements, legal requirements or other-
wise, can define a community of trust and a set of poli-
cies and procedures that are suitable for that community,
which then can be adopted and followed by all partici-
pants.

The current way forward for these communities of trust
is to use Bridge Certificate Authorities. A Bridge CA
is one that doesn’t issue certificates to subscribers it-
self, but rather exists to facilitate the trust fabric within
a community. If a bridge CA is set up inside a
specific community, participating community members
with their own CAs can cross-certify with the bridge,
using policy mapping to create equivalence among as-
surance levels which can allow trust to flow through the
community. There are two principal benefits of using a
bridge. The first is that participant CAs do not have to
cross-certify with every other CA in the community, and
instead only manage a single audited trust relationship.

• 145 •

146 • Pathfinder—A new approach to Trust Management

The second benefit is that a user can declare an identity
to the community, and all the participants in the com-
munity can recognize that identity. The bridge CA can
also then cross-certify with other bridges, allowing trust
to flow to other communities as well.

Figure 1 shows the current status of certain intercon-
nected communities of trust that already exist. Currently
the US Federal Bridge CA is acting as a “super bridge,”
cross-certified with government departments, but also
cross-certified with an aerospace and defence bridge, a
pharmaceutical bridge, and a higher education bridge. It
is to be noted that each of these communities is stand-
alone, and each of the companies listed operates its own
PKI. The arrows only represent policy mapping between
each of the participants.

Pathfinder was conceived as a method to allow FOSS
projects to seamlessly handle the complexities inherent
in this cross-certified “community PKI” framework.

2 Technical Expressions of Trust

IETF RFC3280 describes a detailed, standard profile
for expressing an identity in a PKI context, and meth-
ods for ascertaining the status and current validity of
such an identity. X.509 certificates have a Subject
field, which can hold some representation of “identity,”
and the RFC3280 standard Internet profile also includes
Subject Alternative Names that can express email ad-
dresses, DNS names, any many other forms (some peo-
ple think that too many things can be expressed here!)
There is also the Authority Information Access exten-
sion, which can contain an LDAP or HTTP pointer to
download the signing certificate of the CA that issued
and signed a given certificate, as well as a pointer to
the Online Certificate Status Protocol (OCSP) service
that can give revocation status about this certificate. If
the CA doesn’t support OCSP, a relying party can fall
back to checking the Certificate Revocation List (CRL),
a pointer to which can be found in the certificate’s CRL
Distribution Points extension. We can check the pol-
icy under which a certificate was issued, as found in
the Certificate Policies extension. In a bridged environ-
ment, we may encounter Policy Mapping, so we will
have to check that extension as well. And we mustn’t
forget Name Constraints, which, within a bridged (or
even a hierarchical) PKI allow delegation of authority
over name spaces such as email, DNS, and X.500, to
particular Certificate Authorities.

Given the above, we can identify several hurdles. First
of all, performing certificate validation correctly pretty
much requires one to be a PKI expert, as there is a high
degree of complexity involved. We shouldn’t necessar-
ily expect application programmers, who are experts in
building web servers, mail servers, RADIUS servers, or
other applications where using certificates for authen-
tication may be desirable, to stop and learn how to do
this validation correctly. It probably isn’t their primary
concern. Secondly, we shouldn’t necessarily expect li-
braries commonly used for functions like TLS to help us
out of this, at least not fully. For instance, OpenSSL and
libNSS are very good security libraries, but there are
just too many details involved in building a trust path
to expect these libraries to possess all of the required
capability. As a specific example, we rather strongly
doubt that the OpenSSL maintainers will ever want to
integrate an HTTP and LDAP client in their library and
provide all the hooks necessary to synchronously and/or
asynchronously fetch certificates, CRLs, and OCSP in-
formation from Certificate Authorities.

2.1 So, where does this leave us?

The situation today is that most applications that imple-
ment any form of certificate support do a rather poor job
of it. Most commonly, they implement the capability to
act as the server portion of a TLS connection, and either
stop there or offer very rudimentary (in our experience)
client authentication support, often limited to checking
whether the certificate presented is signed by a known
and trusted CA and is in its validity period. The need to
somehow check certificate status, for example by CRL
or OCSP, is mostly ignored, as is the requirement in
some communities to only accept certificates issued to
a certain policy. There is certainly no thought given to
how to deploy such an application in an environment
with a complex trust fabric, such as the above cross-
certified domains, where the aforementioned name con-
straints and policy mappings need to be evaluated. Fur-
thermore, client side validation of server certificates is
almost never properly implemented, which is under-
standable in that it is very difficult to communicate to
an end user what to do when, for example, the server’s
certificate is revoked.

To solve these issues, it is unrealistic to expect each ap-
plication developer to be a PKI expert and correctly im-
plement all the complexity and nuance of the Path Dis-

2008 Linux Symposium, Volume Two • 147

FBCA CERTIPATH

BOEING

Raytheon

Lockheed
Mar t in

Nor thrup
Grumman

EADS

SITA

ARINC

EXOSTAR

SAFE

HEBCA

CANADA

UK

Treasury
Dept .

DHS DoD

Sta te Dept . DoE

Colleges

Universi t ies

Research
Centers

Merck GSK etc .

Higher Educat ion

Aerospace

Pharmaceut ica l

Figure 1: Interconnected Communities of trust, present and planned

covery and Validation algorithm described in RFC 3280.
Therefore, another solution is needed.

Pathfinder solves the above problem by providing two
components. The first is a series of client libraries that
provide callbacks for certificate validation for all ma-
jor security libraries (currently OpenSSL and libNSS,
but hooks to the Java CryptoAPI and GNUTLS are also
planned), and which imposes on applications only one
additional dependency: the need to link with DBus,
which the client uses to talk to the daemon

The second component is a system daemon that pro-
vides all of the certificate validation functions in a trans-
parent and centrally manageable fashion. This approach
allows an application to grow the capability of handling
a complex trust environment simply, usually by only re-
placing a single line of code, and perhaps by adding an
option for the policy to be set for that application by its
configuration. All of the hard work is done in the dae-
mon.

3 Advantages of Pathfinder

Pathfinder was written with the credo “Do the hard stuff
once, let everyone benefit” in mind.

In a complex trust environment such as a bridged PKI,
it is critical that any Policy Mapping and Name Con-
straints extensions are correctly handled. As illustrated
by Figure 2, Policy Mapping enables a company to de-
clare that its policy for issuing certificates is equiva-
lent to another company’s policy, often via a central,
community-endorsed policy (that of the bridge.) Differ-
entiation by policy, when evaluating a given certificate,
is also useful as it is now fairly common not to include
policy information in the Distinguished Name, includ-
ing it instead only where it belongs, in the Certificate
Policies extension. So, it would be possible to have two
certificates with the same Distinguished Name (they re-
fer to the same security principal after all), but issued
according to a different policy. Without a way to tell an
application only to accept certificates issued according
to a certain policy, we have a security issue if the user
presents a certificate issued according to a less stringent
policy.

148 • Pathfinder—A new approach to Trust Management

Cert i f icate
Author i ty

Company A

Cert i f icate
Author i ty

Company B

Bridge
Cert i f icate
Author i ty

A Pol icy 1 .2 .3 .4 == Br idge Pol icy 2 .3 .4 .5
Bridge Signs Company A’s Cert i f icate
Company A Signs Bridge’s Cert i f icate

B Pol icy 5 .6 .7 .8 == Br idge Pol icy 2 .3 .4 .5
Bridge Signs Company B’s Cert i f icate
Company B Signs Bridge’s Cert i f icate

After both X-Cert :
A Pol icy 1 .2 .3 .4 == B Pol icy 5 .6 .7 .8

Company can trust cert i f icates issued
by Company B wi thout having to have a

separate audi t wi th Company B

Figure 2: Policy Mapping in a bridge environment

Name constraints are required to ensure that only a sin-
gle organisation in the trust fabric can be authoritative
for a particular instance of a security principal (in plain
terms, you usually only want John Doe who works at
Company A to have a certificate issued by Company
A.) Another way to put this is that name constraints can
be used to state that a given CA can only issue certifi-
cates to Subjects inside a given namespace (for instance,
email domain), and can be used to state that no other
CA, for example across the bridge, can issue certificates
in that namespace.

The procedures for correctly handling policy mapping
and name constraints run to several dozens of pages
within various RFCs and specifications, and it is cer-
tainly a sufficiently tricky task that one would hope it
is only done once on a given platform. As more and
more applications are being deployed into the, rather
large, communities mentioned in the introduction, it is
becoming more and more desirable for applications to
all handle these complex issues, and to handle them in a
consistent manner.

It is equally important that the status of a certificate
be validated, to ensure that the certificate has not been
revoked. And, perhaps most interesting for those de-
ploying an application in a complex trust environment,
?missing? certificates must be obtained, and a trust
path between the client certificate and the configured
trust anchor must be built. These transactions may in-
volve round trips to external LDAP, HTTP, and OCSP

servers, and thus, unless done very efficiently, may in-
duce transaction delays and substantially impact server
performance.

Which leads us to the question of providing a scalable
caching layer.

When performing Path Discovery and Validation, there
are several potential bottlenecks. Clearing these bottle-
necks is highly desirable, since performing the certifi-
cate validation is a blocking function in the establish-
ment of protocols such as IPsec and TLS. That is, there
is no opportunity to send the request in an asynchronous
manner. A Certificate is presented, and it must be vali-
dated there, on the spot, before proceeding with the rest
of the establishment of the session. The functions where
caching is most desirable are Authority Information Ac-
cess (AIA) chasing, CRL downloading, and making an
OCSP request. For all of these we have to worry about,
from a performance point of view, the latency of per-
forming the query, and the DNS or TCP timeouts if the
host listed is not available. For CRLs, we have the addi-
tional problem that what we download is of an unknown,
arbitrary size, and may be quite large (for instance, the
US Department of Defence CRL was over 50MB at one
point).

Optimization of the above functions is perhaps one of
the greatest reasons for choosing a centralized daemon
model for Pathfinder. By performing everything in the
daemon, we can optimise these functions in a single lo-

2008 Linux Symposium, Volume Two • 149

Apache:

Before:
Incomplete support for complex trust environments:
No support for Policy Mapping
Must supply all intermediate certificates, which is undesirable in a
properly configured bridge environment.
No support for Name Constraints, as a matter of fact, if they are present
and critical, the certificate will not validate at all, which is correct
behaviour, but it means that Apache can’t be deployed using Certificate
based authentication in much of the aerospace industry).
No support for OCSP
No support for certificate validation based on Certificate Policy
CRL update requires re-starting the server.
Per server configuration of trust anchors

After:
Support for full RFC3280 Path Discovery and Validation
Full support for CRL and OCSP.
Specification of policy against which a certificate would be validated.
Full support for policy mapping.
All servers within a farm may be configured at once, and trust anchors
updated to all.

Time to implement:
2 days

Biggest Challenge:
Dealing with the apache configure/makefile system.

Additional Dependencies:
libdbus

Figure 3: A concrete example

cation to minimise a very critical performance bottle-
neck, and we also have the greatest opportunity to re-use
information already obtained. For instance, if applica-
tion A requests the certificate chain W->X -> Y -> Z ,
and we need to fetch X and Y, then we can cache those
certificates for the duration of their lifetimes, and can
therefore avoid having to re-fetch the same certificates,
thus saving time for application B that requests the same
chain at some future date. Changes to the chain can be
managed by having a maintenance thread which periodi-
cally checks the chain for any changes, such as refreshed
certificates with different CRL or OCSP URIs, or differ-
ent lifetimes. The same can be done with the CRL and
OCSP responses, although, of course, the maintenance
thread will have to refresh more frequently, due to the
shorter lifetimes of these artifacts.

Performing these functions in one location also offers
the option of a graceful “offline” mode, in case the vali-
dation is performed offline, such as a user validating an
S/MIME signature while on a flight. Instead of each ap-
plication needing built-in logic for permissible failure
modes, Pathfinder can be centrally configured to per-
form the appropriate level of validation, thereby ensur-
ing that each application handles offline validation in
a consistent manner. An example of such a validation
scheme is to have three settings, the first of which is to
require full validation, which will fail to validate the sig-
nature because it can’t find the revocation information
when offline, and may not be able to chase AIA infor-
mation. The second setting is to require a valid trust
chain but not necessarily fresh revocation info, which
may work, depending on how fresh the cache is, and

150 • Pathfinder—A new approach to Trust Management

the the third setting is to blindly accept all certificates
if offline, which will always validate, assuming that the
certificate hasn’t expired.

This last feature is not yet implemented, but is definitely
on the roadmap.

4 Conclusion

Proper handling of certain X.509 certificate extensions
when performing certificate validation is essential in or-
der to maintain a viable trust fabric in a bridged PKI
framework serving a community of trust. In such a
community, each participant need only be responsi-
ble for one trust relationship: its relationship with the
bridge. The bridge, then, brokers trust among the com-
munity participants who have agreed to a common pol-
icy framework. However, in order for this to work, there
is a substantial requirement on the various server soft-
ware packages used in the community to correctly pro-
cess the trust path and policy tree. Until now, due to
the complexity of handling this processing, it has been
difficult for application developers to deploy full PKI
support in their applications. Pathfinder not only makes
this simple, it provides a scalable and manageable way
to deploy true PKI-enabled applications using only open
source software.

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

