
SELinux for Consumer Electronics Devices

Yuichi Nakamura
Hitachi Software Engineering
ynakam@hitachisoft.jp

Yoshiki Sameshima
Hitachi Software Engineering
same@hitachisoft.jp

Abstract

As the number of network-connect Consumer Electron-
ics (CE) devices has increased, the security of these de-
vices has become important. SELinux is widely used
for PC servers to prevent attacks from a network. How-
ever, there are problems in applying SELinux to CE de-
vices. SELinux kernel, userland, and policy consume
hardware resources unacceptably. This paper describes
tuning SELinux for use in CE devices. The tuning has
two features. The first is using our policy writing tool to
reduce the policy size. It facilitates writing small policy
by simplified policy syntax. The second is tuning the
SELinux kernel and userland. We have tuned permis-
sion check, removed needless features for CE devices,
and integrated userland to BusyBox. We have evaluated
tuned SELinux on a SuperH (SH) processor based de-
vice, and found the consumption of hardware resources
to be acceptable for CE devices.

1 Introduction

Linux is a leading OS for embedded systems [1], and
has also been adopted in CE devices such as TVs, DVD
recorders, set top boxes, mobile phones, and home gate-
ways. Because CE devices are connected to the Internet,
their security is now an important issue. Once vulnera-
bilities in CE devices are exploited by attackers, they
can destroy the system, steal information, and attack
others.

1.1 Requirements of security technologies for CE
devices

To counter security problems, security technologies are
necessary. However, security technologies for CE de-
vices have to meet the following three requirements.

1. Effective without update
The security technlogies have to be effective even

without security updates, because the process of
updating introduces several problems. Some CE
devices do not have a network updater. To fix vul-
nerabilities for such devices, manufacturers have to
recall devices, and re-write flash ROM. Even if de-
vices do have a network updater, security patches
tend to be delayed or not provided, because prepar-
ing updates is a heavy task for manufacturers. Up-
dates for CE devices are provided from the man-
ufacturers, not from OS distributors. The manu-
facturers have to track all vulnerabilities and de-
velop security patches as soon as possible; as a
result, manufacturers will likely give up providing
updates.

2. Architecture-independent
The security technologies have to be architecture-
independent, since many CPU architecures—such
as SuperH (SH), ARM, MIPS, PowerPC, and
x86—are used in CE devices. Moreover, there are
many variants within a CPU family. For example,
SH has SH2, SH3, SH4, and SH64 variants. To
port security technologies for such various CPUs,
the security technologies need to be architecture-
independent.

3. Small resource usage
The security technologies have to work in
resource-constrained environments. The architec-
ture of a CPU is focused on power consumption
rather than speed, thus the CPU clock is often slow
such as 200Mhz. Main memory is often less than
64Mbyte, and the file storage area is often less than
32Mbyte to reduce hardware cost.

1.2 Porting security technologies to CE devices

Many security technlogies are already used in the PC
environment. The most major ones are: buffer over-
run protection, network updater, and anti-virus software.

• 125 •

126 • SELinux for Consumer Electronics Devices

However, they do not meet the previously stated re-
quirements for CE devices. First, buffer overrun protec-
tions are architecture-dependent, because they depend
on memory management of the CPU. For example, Exec
Shield [3] is one of the most widely used buffer over-
run protection technologies. It modifies codes under the
arch directory in the kernel source tree. Second, net-
work updaters such as yum [2] obviously do not meet
the first requirement of being effective without update.
Finally, anti-virus software does not meet the third re-
quirement, because the pattern file consumes file stor-
age area, sometimes more than 30Mbyte in a PC envi-
ronment. In addition, the system becomes slow when a
virus scan is running.

1.3 SELinux for CE devices

The Linux kernel includes Security-Enhanced Linux
(SELinux) [4]. SELinux meets the first requirement,
because it is effective even when a security update is
not applied. SELinux provides label-based access con-
trol to Linux. Each process has a label called domain,
and each resource has a label called type. Access rules
between the domains and types are described in the se-
curity policy. Domains are configured to access only
types that they need; thus, processes have only limited
access rights. Assuming that a vulnerability exists in an
application and it is not fixed, attackers can take con-
trol of the application. However, attack attempts usually
fail due to lack of access rights; attackers obtain the do-
main of the application process that is allowed to access
only limited types. SELinux has actually been widely
used for PC servers and blocked attacks [5]. SELinux
also meets the second requirement of being architecture-
independent; there is no code modification under arch
directory. However, SELinux does not meet the third
requirement—small resource usage. SELinux was fo-
cused on PC usage, and many features were added. Con-
sequently, its resource consumption has become unac-
ceptable for CE devices.

The purpose of our work is to apply SELinux to CE de-
vices. SELinux is tuned to meet resource requirements
for that purpose. Our tuning has two features. The first
is reducing policy size by using our policy writing tool.
The tool facilitates writing small policy by simplifiying
policy syntax. The second is tuning the SELinux ker-
nel and userland. Permission checks are tuned, needless
features for CE devices are removed, and userland com-
mands are integrated to BusyBox [6]. Tuned SELinux

is evaluted on a SH-based device. SH is a CPU family
widely used for CE devices, including DVD recorders
and home gateways. The evaluation results show the
consumption of hardware resources is acceptable for CE
devices.

2 Problems in applying SELinux to CE devices

To apply SELinux to CE devices, SELinux has to meet
resource usage requirements. However, SELinux con-
sumes CPU, file size, and memory unacceptably when
used in CE devices. The detail is described in this sec-
tion.

2.1 CPU usage

SELinux has overhead for system calls (syscalls) be-
cause of its security checks. In the PC environment,
P. Loscocco et al. [4] measured the overhead and con-
cluded that it is insignificant. However, the overhead
is a problem when using SELinux on a CE device plat-
form. The SELinux overhead measured on a CE device
platform is shown in Table 1 and Table 2. We measured
them by lmbench [7] and Unixbench [8]. Values in the
tables are an average of 5 trials. The CE device plat-
form is SH7751R (SH4 architecture, 240Mhz) proces-
sor, Linux 2.6.22. In particular, the read/write overhead
is a problem, because they are executed frequently and
the overhead is big. Overhead more than 100% is ob-
served in null read/write; it is about 10% when measured
in a Pentium 4 PC. Moreover, 16% overhead remains in
reading a 4096-byte buffer. 4096 bytes are often used
for I/O buffer because it is the page size in many CPUs
for embedded systems, such as SH and ARM.

2.2 File size increase

The file size of the kernel and userland increases when
SELinux is ported because of components listed in Ta-
ble 3. The increase is about 2Mbyte if SELinux for PC
(SELinux included in Fedora Core 6) is ported without
tuning. However, the increase is not acceptable for CE
devices, because flash ROM less than 32Mbyte is of-
ten used to store a file system. If SELinux consumes
2Mbyte, it is too much.

2008 Linux Symposium, Volume Two • 127

lmbench Overhead(%)
Null read 130
Null write 147
Stat 97
Create 163
Unlink 86
Open/close 93
Pipe 67
UNIX socket 31
TCP 22
UDP 28

Table 1: System call overhead by SELinux on a CE de-
vice platform, measured by lmbench. To compute over-
head, the time to execute syscall in SELinux disabled
kernel is used as the baseline value.

Unixbench read/write Overhead(%)
256 byte read 66.6
256 byte write 66.8
1024 byte read 40.5
1024 byte write 43.9
4096 byte read 16.2
4096 byte write -3.1

Table 2: The SELinux overhead for read/write on a CE
device platform, measured by Unixbench. To compute
overhead, the throughput in SELinux disabled kernel is
used as the baseline value.

2.3 Memory consumption

SELinux has data structures in the kernel to load the se-
curity policy. The memory consumption by the security
policy used in PC is about 5Mbyte. However, it is also
unacceptable for CE devices because the size of RAM
is often less than 64Mbyte and swap is not prepared.
If SELinux is used for CE devices, the possibility that
memory can not be allocated increases. If memory can
not be allocated, applications will not work correctly.

3 Tuning SELinux for CE devices

Tuning is needed because the resource consumption by
SELinux is not acceptable for CE devices, as described
above. Our tuning consists of two parts. The first is
reducing policy size by utilizing our policy writing tool.
The second part is tuning the kernel and userland.

Component Additional features
Kernel The SELinux access control fea-

ture, audit, and xattr support in
filesystem.

Library libselinux, libsepol, and libseman-
age

Command Commands to manage SELinux
such as load_policy. Additional op-
tions for existing commands, such
as -Z option for ls to view file label.

Policy file The security policy

Table 3: Files related to SELinux

3.1 Reducing policy size by policy writing tool

Since the security policy consumes both file storage area
and RAM, the security policy has to be small. Problems
in preparing a small policy and our approach to resolv-
ing them are described.

3.1.1 Problems in preparing small policy

To prepare policy, refpolicy [9] is usually used and cus-
tomized for the target system [10]. Refpolicy is a pol-
icy developed by the SELinux community, and is used
in distributions such as Red Hat and Fedora by default.
It is composed of sample configurations for many ap-
plications and a set of macros. Refpolicy works well
on PC systems, but it is hard to use for CE devices.
To prepare small policy based on refpolicy, one has to
remove unnecessary configurations, then add necessary
ones. However, there are three difficulties in the process.

1. Large amount of removal
The amount of removal is large, because configura-
tions for many distributions, applications, and use
cases are included. For example, configurations for
many Apache modules are included in refpolicy.
To configure Apache that serves simple home page
and CGI, configurations about unnecessary Apache
modules have to be removed. We removed about
400 lines for that. For each application, such re-
moval has to be done.

2. Many macros and labels
Refpolicy contains many macros and labels. More

128 • SELinux for Consumer Electronics Devices

than 2,000 macros are defined and used. More than
1,000 labels are declared. Policy developers have
to understand them in removing and adding config-
urations. Figure 1 is an example of configurations
in refpolicy. It is hard for policy developers to un-
derstand so many macros and labels.

policy_module(apache,1.3.16)
type httpd_t;
type httpd_exec_t;
init_daemon_domain(httpd_t,httpd_exec_t)
role system_r types httpd_t;
....
ifdef(‘targeted_policy’,‘
typealias httpd_sys_content_t

alias httpd_user_content_t;
typealias httpd_sys_script_exec_t

alias httpd_user_script_exec_t;
’)
allow httpd_t httpd_sys_content_t:
dir r_dir_perms;
...
corenet_tcp_sendrecv_all_if(httpd_t)
...

Figure 1: Example of configurations used in PC. This is
part of configuration of http server.

3. Dependency
Two kinds of dependencies that appear in remov-
ing and adding configurations increase the cost of
preparing policy.

(a) Labels and declarations
There are dependencies in labels (do-
main/type) and declaration. They make
removing configurations difficult. The major
part of SELinux configuration is allowing
domain to access some type, like below.
allow httpd_t sendmail_exec_t:

file execute;

This is part of configuration to allow web
server to send mails. In SELinux policy
syntax, all labels must be declared like
below.
type httpd_t;

type sendmail_exec_t;

Such text based policy configuratin is con-
verted to binary representation to be loaded
in the kernel. If the declaration is removed,
error is outputted and conversion fails. This

often happens in removing files. Refpolicy is
composed of many files. For example, in file
mta.te configurations related to sendmail is
described and sendmail_exec_t is declared.
If mta.te is removed, policy conversion fails
in allow httpd_t sendmail_exec_t:

file execute;. This line has to be
removed to convert policy successfully.

(b) Labeling change
Dependencies also appear when labeling is
changed. Assume an application foo run-
ning as foo_t domain is allowed to access
foo_file_t type and under /foo direc-
tory are labeled as foo_file_t. Then
foo can access under /foo. What happens
an application bar running as bar_t do-
main needs configuration to access /foo/
bar? One will define new type such as bar_
file_t and labels /foo/bar as bar_
file_t type, then allow bar_t to access
bar_file_t. Problem is happenning here.
foo can not access /foo/bar, because
foo_t is not allowed to access bar_t. To
resolve that, configuration that allows foo_t
to access bar_t has to be described. In
adding new configuration, such dependency
have to be considered carefully.

3.1.2 Preparing policy by SELinux Policy Editor

Policy is prepared without using refpolicy to avoid
above difficulties. SELinux Policy Editor (SEEdit) [11]
is used for that. SEEdit was developed by the authors
to facilitate policy writing. The main feature is Simpli-
fied Policy Description Language (SPDL). Fig 2 is an
example of configuration written by SPDL. Type labels
are hidden; in other words, file names and port numbers
can be used to specify resources. SPDL is converted to
usual SELinux policy expression by converter, and pol-
icy is applied.

domain httpd_t;
program /usr/sbin/httpd;
allow /var/www/** r;
allownet -protocol tcp -port 80 server;

Figure 2: Example of SPDL, part of configuration for
http server

2008 Linux Symposium, Volume Two • 129

How difficulties described in Section 3.1.1 are resolved
by SEEdit is shown below.

1. Large amount of removal
Only configurations that are necessary for CE de-
vices are described by SEEdit. Obviously, there
is no need to remove unnecessary configurations.
One has to create necessary configurations, but the
number of lines to be described is small. For ex-
ample, we wrote about 20 lines for web server that
serves a simple homepage.

2. Macros and labels
Labels are hidden, and macros are not used in
SPDL. Syntax of SPDL appears instead of macros,
but it is much simpler than macros.

3. Dependencies
In SPDL, such dependencies are not included. De-
pendencies are resolved internally when SPDL is
converted to the original SELinux configuration
syntax.

3.2 Tuning the kernel and userland

SELinux was developed for PC usage, so there are un-
needed features, functions, and data structures for CE
devices. The SELinux overhead for syscalls, file size,
and memory usage can be reduced by removing them.
The removal strategy and implementation are described
in this section.

3.2.1 Reducing overhead

The SELinux overhead is reduced by removing un-
needed functions and redundant permission checks from
the kernel.

1. Removal of function calls from SELinux access de-
cision code
Function calls can be removed from SELinux ac-
cess decision function (avc_has_perm) by us-
ing inline functions and calling avc_audit only
when it is necessary. avc_has_perm is called in
all permission checks, thus the removal will reduce
overhead.

2. Removal of duplicated permission checks in file
open and read/write
There are duplicated permission checks in the pro-
cess of file open and read/write to the file descrip-
tor. For example, when a process opens a file to
read or write, read/write permission is checked.
Read/write permission is checked again in every
read/write system call to the file descriptor. The
check at read/write time is duplicated, because
read/write permission is already checked at open
time. Therefore, the permission check at read/write
time can be removed. There is one exception:
When security policy is changed between file open
and read/write time, permission has to be checked
at read/write time to reflect the change.

3. Removal of permission checks related to network
In the process of network communication,
SELinux permissions are checked for NIC, IP
address, and port number. Permission checks in
NIC and IP address are removed, because they
are rarely used. Note that if there is a domain
that wants to communicate with only a specific IP
address, they can not be removed.

3.2.2 Reducing file size

SELinux userland was intended for server usage, so
many features are unnecessary for CE devices. File size
can be reduced by choosing features that meet the fol-
lowing criteria.

• Access control feature of SELinux works.

• Security policy can be replaced.
Most of the troubles related to SELinux are caused
by a lack of policy configurations. To fix these is-
sues, we need a feature to replace policy.

Features in SELinux userland can be classified like Ta-
ble 4. Features 1 , 2, and 3 are chosen according to cri-
teria above. Feature 1 is necessary to use access control;
Features 2 and 3 are needed to replace policy.

Features 1 through 3 are chosen and implemented. In
the implementation, commands are integrated to Busy-
Box, and libselinux is modified. By using BusyBox, the
size can be reduced more. Libselinux was also tuned.

130 • SELinux for Consumer Electronics Devices

Feature Description Related packages
1 Load policy Load security policy file to the kernel libselinux
2 Change labels View and change domains and types libselinux

policycoreutils
coreutils
procps

3 Switch mode Switch permissive/enforcing mode libselinux
4 User space AVC Use the access control feature of SELinux libselinux

from userland applications
5 Analyze policy Access data structure of policy libsepol
6 Manage conditional policy Change parameters of conditional libselinux

policy feature libsepol
libsemanage

7 Manage policy module framework Install and remove policy modules libsemanage

Table 4: Features included in SELinux userland. We use 1,2, and 3 for CE devices.

Unnecessary features were removed and the dependency
on libsepol, whose size is about 300Kbytes, was re-
moved.

3.2.3 Reducing memory usage

To reduce memory usage, unnecessary data structures
are removed from the kernel. The biggest data structure
in SELinux is the hash table in struct avtab. Two
avtabs are used in the kernel. Access control rules in
the security policy are stored in hash tables of struct
avtab. 32,768 hash slots are prepared for each hash
table; they consume about 260Kbyte. Hash slots were
shrunk to reduce the size of avtabs. In addition, hash
slots are allocated dynamically based on number of ac-
cess control rules in policy, i.e. the number of allocated
hash slots is 1/4 of the number of rules. That change
creates a concern about performance, because the hash
chain length will increase. However, although the chain
length becomes longer, regressions in performance were
not observed.

4 Evaluation

To evaluate our tuning, we ported SELinux to an evalu-
ation board and measured performance both before and
after tuning.

4.1 Target device and software

The specification of the device and version of the soft-
ware used in the evaluation are shown.

1. Target device
The Renesas Technology R0P751RLC001RL
(R2DPLUS) board was used as our target device.
This board is often used to evaluate software for
CE devices. The specification is shown below.

• CPU: SH7751R(SH4) 240Mhz

• RAM: 64Mbyte

• Compact flash: 512Mbyte

• Flash ROM: 64Mbyte (32Mbyte available for
root file system)

SELinux can be ported to both compact flash and
flash ROM. We measured the benchmark on a com-
pact flash system for convenience.

2. Software and policy
The version of the software and policy used in the
evaluation are listed below.

• Kernel: Linux 2.6.22

• SELinux userland: Obtained from SELinux
svn tree (selinux.svn.sourceforge.net) as of
Aug 1, 2007

2008 Linux Symposium, Volume Two • 131

• Security policy (before tuning): policy.21 and
file_contexts file were taken from selinux-
policy-targeted-2.4.6-80.fc6 (included in Fe-
dora 6).

• Security policy (after tuning): Written by
SELinux Policy Editor, including configura-
tions for 10 applications. Not all applications
are confined, similar to targeted policy [12].

4.2 Benchmark results

We ported SELinux to the target board and measured
the benchmark before and after tuning. The benchmark
results for syscall overhead, file size, and memory usage
are shown.

4.2.1 Syscall overhead

Syscall overhead was measured by lmbench and
unixbench. The result is shown in Table 5 and Table
6. The SELinux overhead for read/write was significant
before tuning. Null read/write overhead is reduced to
1/10 of the previous overhead. The overhead in read-
ing a 4096 buffer was especially problematic, but it is
almost eliminated by our tuning.

lmbench Overhead before Overhead after
tuning(%) tuning(%)

Null read 130 13
Null write 147 15
Stat 97 59
Create 163 146
Unlink 86 70
Open/close 93 62
Pipe 67 31
UNIX socket 31 6
TCP 22 11
UDP 28 12

Table 5: The SELinux overhead for system call on the
evaluation board, measured by lmbench. Average of 5
trials.

4.2.2 File size

The file size related to SELinux is summarized in Ta-
ble 7. As a result of tuning, the file size increase is re-

Unixbench Overhead before Overhead after
read/write tuning(%) tuning(%)
256 byte read 66.6 16.2
256 byte write 66.8 26.8
1024 byte read 40.5 13.1
1024 byte write 43.9 19.0
4096 byte read 16.2 3.3
4096 byte write -3.1 0

Table 6: The SELinux overhead for read/write on the
evaluation board, measured by Unixbench. Average of
5 trials.

duced to 211Kbyte. In the evaluation board, flash ROM
available for root file system is 32Mbyte. The size of
SELinux is less than 1%, so it is acceptable for the eval-
uation board.

Component File size before File size after
tuning(Kbyte) tuning(Kbyte)

Kernel(zimage) 74 74
size increase
Library 482 66
Command 375 11
Policy file 1,356 60
Total 2,287 211

Table 7: File size related to SELinux. Userlands are
built with -Os flag and stripped.

4.2.3 Memory usage

We measured memory usage by using the free com-
mand. The usage by SELinux was measured as follows.

A = The result of free when SELinux enabled kernel
booted.
B = The result of free command when SELinux
disabled kernel booted.
Memory usage by SELinux = A - B

The memory usage by SELinux was measured for both
before tuning and after tuning. We also measured mem-
ory usage of a hash table in struct avtab to see
the effect of tuning. We inserted code that shows the

132 • SELinux for Consumer Electronics Devices

size of allocated tables for that purpose. The result is
shown in Table 8. The memory consumption after tun-
ing is 465Kbyte. In the evaluation board, memory size
is 64Mbyte. The consumption by SELinux is less than
1%—small enough.

Component Memory usage Memory usage
before tuning after tuning

(Kbyte) (Kbyte)
Hash tables in 252 1
struct avtab
SELinux program 5,113 464
and policy
Total 5,365 465

Table 8: Memory usage by SELinux

5 Related works

R. Coker [13] ported SELinux to an ARM-based device,
but SELinux was Linux 2.4 based. Since then, SELinux
has changed a lot. Implementation has changed, many
features were added, and policy development process
has changed. KaiGai [14] ported xattr support to jffs2
and was merged to Linux 2.6.18. We are using his
work when we run SELinux on a flash ROM system.
The seBusyBox project in the Japan SELinux Users
Group worked to port SELinux commands and options
to BusyBox. We joined this project and did the porting
together. Applets ported in this project were merged to
BusyBox. In this project H. Shinji [15] also worked to
assign different domains to applets, and his work was
merged to BusyBox 1.8.0. H. Nahari [16] presented a
design of a secure embedded system. He also mentioned
SELinux for embedded devices, but the detail was not
described.

6 Conclusion

There are problems in applying SELinux to CE de-
vices. SELinux kernel, userland, and the security policy
consume hardware resources unacceptably. We tuned
SELinux to meet the resource requirements of CE de-
vices. The tuning has two features. The first is using
our policy writing tool to reduce policy size. It facil-
itates writing small policy by simplifying policy syn-
tax. The second is tuning SELinux kernel and user-
land. Permission checking was tuned, needless features

for CE devices were removed, and userland was inte-
grated to BusyBox. Tuned SELinux was evaluated on a
SH-based CE device evaluation board. The benchmark
result shows that the SELinux overhead for read/write
is almost negligible. File size is about 200 Kbyte, and
memory usage is about 500Kbyte, about 1% of the flash
ROM and RAM of the evaluation board. We conclude
that SELinux can be applied to CE devices easier as the
result of our work.

7 Future works

There are remaining issues to be done in the future.

1. Xattr for file systems on flash ROMs
There are several files systems for flash ROMs,
including jffs2, yaffs2, and logfs. Jffs2 supports
xattr; yaffs2 and logfs do not support xattr. The
porting of xattr is needed to use SELinux on such
file systems.

2. Strict policy
We adopted targeted policy in this paper. We have
to write strict policy for more security. That is to
say, domains for every program are prepared. The
number of access control rules and policy size will
be large. To write small strict policy is a remaining
problem.

8 Availability

We have submitted related patches to Linux, Busy-
Box and SELinux community. The merged works are
shown in Table 9. The links to patches can be seen on
the Embedded Linux Wiki, http://elinux.org/
SELinux. The SELinux Policy Editor is available on
the SELinux Policy Editor Website [11]. 2.2.0 supports
the writing of policy for CE devices.

Work Merged version
Reducing read/write overhead Linux 2.6.24
Reducing size of avtab Linux 2.6.24
Reducing size of libselinux libselinux 2.0.35
Integrating SELinux commands BusyBox 1.9.0

Table 9: Availability of our work

2008 Linux Symposium, Volume Two • 133

9 Acknowledgements

We are helped by many people during the work. We
would like to thank them. seBusyBox project commu-
nity members and KaiGai Kohei (NEC) gave us useful
comments. People in the SELinux community gave us
feedback, Stephen Smalley gave us ideas for the imple-
mentation of tuning. People in the BusyBox commu-
nity, especially Denys Vlasenko, reviewed patches and
gave us feedback. Yusuke Goda (Renesas Solutions)
provided a driver for flash ROM.

References

[1] Linux Devices.com: Linux to remain a leading
embedded OS, says analyst (2007),
http://www.linuxdevices.com/news/
NS2335393489.html

[2] Yum: Yellow dog Update, Modified: http:
//linux.duke.edu/projects/yum/

[3] A. van de Ven: Limiting buffer overflows with
ExecShield, Red Hat Magazine, July 2005 (2005),
http://www.redhat.com/magazine/
009jul05/features/execshield/

[4] P. Loscocco and S. Smalley: Integrating Flexible
Support for Security Policies into the Linux
Operating System: the Proceedings of the
FREENIX Track of the 2001 USENIX Annual
Technical Conference (2001)

[5] D. Marti: A seatbelt for server software: SELinux
blocks real-world exploits, Linuxworld.com
(2008), http://www.linuxworld.com/
news/2008/022408-selinux.html

[6] BusyBox, http://www.busybox.net/

[7] L. McVoy and C. Staelin: lmbench: Portable tools
for performance analysis: the Proceedings of
USENIX 1996 Annual Technical Conference
(1996)

[8] UNIX Bench, http://www.tux.org/pub/
tux/benchmarks/System/unixbench/

[9] Refpolicy, http://oss.tresys.com/
projects/refpolicy

[10] F. Mayer, K. MacMillan and D. Caplan: SELinux
by Example, Prentice Hall (2006)

[11] SELinux Policy Editor,
http://seedit.sourceforge.net/

[12] F. Coker and R. Coker: Taking advantage of
SELinux in Red Hat R© Enterprise Linux R©, Red Hat
Magazine, April 2005 (2005),
http://www.redhat.com/magazine/
006apr05/features/selinux/

[13] R. Coker: Porting NSA Security Enhanced Linux
to Hand-held devices, Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada (2003)

[14] KaiGai: Migration of XATTR on JFFS2 and
SELinux, CELF Jamboree 11(2006), http://
tree.celinuxforum.org/CelfPubWiki/
JapanTechnicalJamboree11

[15] H. Shinji: Domain assignment support for
SELinux/AppArmor/LIDS, BusyBox mailing list,
http://www.busybox.net/lists/
busybox/2007-August/028481.html

[16] H. Narari: Trusted Secure Embedded Linux:
From Hardware Root of Trust to Mandatory
Access Control, Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada (2007)

134 • SELinux for Consumer Electronics Devices

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

