
Coding Eye-Candy for Portable Linux Devices

Bob Murphy
ACCESS Systems Americas, Inc.

Bob.Murphy@access-company.com

Abstract

Linux is increasingly being used in portable devices
with unusual hardware display architectures. For in-
stance, recent OMAP and XScale CPUs support multi-
ple frame-buffer “overlays” whose contents can be com-
bined to form what the user sees on the screen.

As part of the ACCESS Linux Platform, ALP, ACCESS
has developed a set of kernel modifications, an X exten-
sion and driver, and additions to the GDK/GTK stack
to take advantage of the XScale CPU’s three-overlay ar-
chitecture. This paper provides an overview of these
modifications and how they have been used to achieve
a variety of “eye-candy” features, such as GTK widgets
that float translucently over an actively playing video.

1 Introduction

The evolution of display systems for computer graphics
has included a wide variety of features and architectures.
Some systems, like the vector displays used by Ivan
Sutherland in 1963, have largely wound up in the dust-
bin of history. For the last twenty years, framebuffer-
based raster displays have dominated the industry.

However, standardization on raster displays does not
mean progress has stood still. Early framebuffer sys-
tems used simple video RAM that corresponded to the
screen, and programs could modify what was displayed
by poking into memory-mapped addresses. Nowadays,
nobody would consider a desktop system that didn’t in-
clude a framebuffer card with enough RAM to permit
page flipping, and a floating point graphics process-
ing unit to accelerate 3D rendering using systems like
OpenGL.

In embedded devices such as cell phones, framebuffers
and related graphics hardware are often built into the
CPU or related chips. Cell phone users often don’t care

much about 3D first-person shooters, but they do want
to see photos and videos, and they want eye candy.

Cell phone manufacturers have gone to great lengths
to support eye candy, such as adding GPUs and us-
ing CPUs with vector integer capabilities. In fact, the
iPhone is reputed to use a CPU1 that has a vector float-
ing point coprocessor, which would allow a straightfor-
ward port of the Quartz graphics system used in Mac OS
X.

As a response, some embedded CPU vendors have be-
gun to support video overlays. These are multiple
framebuffers whose contents can be programmatically
combined to create the image the user sees. Video over-
lays can allow developers to provide a wide variety of
eye candy.

2 Video Overlays: Hardware Examples

2.1 TI OMAP

Texas Instruments’ OMAP 3430 rev. 2 is an ARM CPU
with three video overlay framebuffers, as shown in Ta-
ble 1.2

Overlay Pixel Formats
Graphics Palette RGB, direct RGB, and

RGB with alpha channel
Video 1 Direct RGB and YCbCr
Video 2 Direct RGB and YCbCr

Table 1: OMAP 3430 Overlays

Many common compressed raster formats, such as
MPEG, QuickTime, and JPEG, store images or frames

1A chip based on the ARM1176JZF design.
2The OMAP display architecture has other options and modes

not covered in this discussion.

• 115 •



116 • Coding Eye-Candy for Portable Linux Devices

Video 2 Video 1 Graphics

Figure 1: OMAP Normal Mode Overlays

Graphics Video 2 Video 1

Figure 2: OMAP Alpha Mode Overlays

in a YCbCr color space. YCbCr encodes colors as
a combination of luminance (brightness) and chromi-
nance (hue) values. The human eye is more sensitive to
luminance than chrominance, which makes YCbCr suit-
able for image compression. A codec can compress an
image’s chrominance and luminance separately, and ap-
ply a higher degree of compression to the chrominance
values without much perceptual difference.

However, JPEG rendering and MPEG playback usually
involve not only image decompression, but pixel color
space conversion from YCbCr to RGB. The OMAP
chip’s direct hardware support for YCbCr formats in the
Video 1 and Video 2 overlays allow high frame rates for
image and video display with lower CPU effort.

The OMAP chip supports two overlay layering modes:
normal and alpha.

In normal mode, the frame buffers are stacked as shown
in Figure 1 . A simple use of this mode would be to treat
the RGB-based graphics layer as a normal framebuffer,
and map X11 into it. A developer could then display
video or pictures “on top” of the X11 layer using one or
both of the video overlays.

In alpha mode, the frame buffers are stacked as shown
in Figure 2. This places the video layers “under” the

Overlay 1 Overlay 2 Base Overlay

Figure 3: XScale Overlays

graphics layer. Alpha mode is more interesting from an
eye candy perspective because any alpha channel infor-
mation in the graphics overlay is applied as color blend-
ing. When X11 is mapped onto the graphics layer, pro-
grams can not only “punch holes” in the X11 layer to
display video from one of the underlying overlays, but
they can have parts of the X11 layer “float translucently”
on top of a playing video.

2.2 Marvell XScale

Beginning with the PXA270, the XScale ARM CPUs
have offered a version of overlays that is generally sim-
ilar to the OMAP alpha mode, but quite different in de-
tail. These chips provide three overlay frame buffers,
stacked as shown in Figure 3, and described in Table 2.3

Overlay Pixel Formats
Overlay 1 Direct RGB, and RGB with T bit
Overlay 2 Direct RGB and YCbCr

Base Overlay Palette RGB and direct RGB

Table 2: XScale PXA270 and PXA3XX Overlays

A simple use of this architecture would be to disable
Overlays 1 and 2, set the base overlay to a direct RGB
format, and map X11 to it. This would act like a very
standard framebuffer. And as with OMAP, the XScale
Overlay 2 is optimized for video and pictures due to its
YCbCr pixel format options.

But the T bit in Overlay 1 is rather odd: it is an alpha
channel of sorts, but not a normal one. A platform-wide
flag in hardware activates or deactivates its effects. And

3The XScale display architecture also has other options and
modes not covered in this discussion.



2008 Linux Symposium, Volume Two • 117

T Bit Pixel RGB Effect At That Pixel
0 Any Overlay 1 is opaque: only the Overlay 1 color appears; no contribution comes from

either of the other two overlays
1 Non-black Overlay 1 is color-blended: the RGB color from Overlay 1 for that pixel is color-

blended with the colors for that pixel from the topmost active underlying overlay,
using a platform-wide alpha value that can be varied from 0.125 to 1.0 in 0.125 unit
increments

1 Black Overlay 1 is transparent: the pixel color from the topmost active underlying overlay
is used

Table 3: T Bit Effect On A Pixel

if it is active, this one bit can have three effects on a
per-pixel basis, as described in Table 3.

ALP maps X11 to Overlay 1, and displays video and
pictures in Overlay 2. This permits GTK widgets that
“float translucently” over pictures and playing video.
ALP also can disable Overlay 2, and use the T bit in
conjunction with the base overlay to create a variety of
RGB-based eye candy effects.

3 Eye Candy Implementation in ALP

ACCESS engineers call alpha blending using the top-
most hardware overlay Overlay Transparency, usually
abbreviated OT, and distinguish three modes for each
pixel, paralleling the XScale modes:

• OT opaque means the user sees only the topmost,
X11 overlay’s color.

• OT transparent means the topmost, X11 overlay
contributes nothing. The user sees only the color
from an underlying overlay, such as one playing
video.

• OT blended means the user sees a color blended
from the color in the X11 overlay and one of the
underlying overlays.

Figure 4 summarizes the implementation of OT within
the ALP platform. A typical OT-aware application will
call into both GTK+ and the ALP OT API. The OT im-
plementation, in turn, affects the behavior and/or imple-
mentation of other components in the graphics pipeline,
including GTK+, GDK, X11, and the kernel video de-
vice drivers.

OTAware Application

A
LP

 
O

ve
rla

y 
Tr

an
sp

ar
en

cy GTK+

GDK

Pango

X11

Kernel

Figure 4: ALP Overlay Transparency Component Stack

3.1 Developer API

Developers can apply OT features using a GTK-based
API built into the ALP platform. The API paradigm is
that developers can set an 8-bit alpha value for various
parts of widgets that is applied as OT, or specify that
the alpha channel in a raster image be applied as OT.
This makes the API portable while insulating develop-
ers from needing to know anything about the underlying
hardware. Some hardware, such as OMAP, can support
this paradigm directly. Other hardware, such as XScale,



118 • Coding Eye-Candy for Portable Linux Devices

do not, but in such cases, the hardware-dependent im-
plementation is written to “do the right thing” and come
as close as possible to matching that paradigm.

The API provides several levels of calls:

• Platform calls let programs query the system to
determine things like whether it supports OT at all.

• Window calls let programs enable or disable OT
support for an entire GtkWindow and its child wid-
gets. When OT support is disabled for a GtkWin-
dow, it and all its child widgets are OT opaque, no
matter what other OT settings have been applied to
those widgets. There is also an option to indicate
how the window manager should apply OT to the
window frame.

• Widget calls let a program apply an 8-bit alpha
value to an individual widget’s background or text.
They can also determine whether a widget contain-
ing a raster image with an alpha channel will have
those alpha values applied to OT.

• Container calls parallel the widget calls, and let
a program set default values for child widgets of a
container. For instance, a program could apply one
to a container to set a single OT background al-
pha value for all child widgets of a container. Pro-
grams can override these default values for individ-
ual widgets using the widget calls.

Figure 5 shows the widget portion of the API. Using an
enum-based approach makes the API readily extensible,
and provides backward compatibility since the system
ignores enum values it does not recognize.

3.2 GTK/GDK and Platform Support

ACCESS has added OT support to ALP without any
changes to GTK or GDK source code; instead, all sup-
port at the GDK level and above is written in platform-
specific code. ALP applications must call a platform-
specific initialization routine, which includes (among
other things) a variety of OT-related run-time modifica-
tions to GTK and GDK behaviors.

When an application calls one of the API routines on
a GTK widget, container, or window, the routine at-
taches OT-related state information to that GTK object

using g_object_set_data(). Later, when a widget
receives an expose event and draws itself, the OT code
applies that state information, climbing the container hi-
erarchy to determine default values if needed. Currently,
ALP applies OT alpha values to portions of widgets as
follows:

• Background alpha is applied to the widget’s entire
allocation.

• Text alpha is applied to the pixels actually ren-
dered as text.

• Foreground alpha determines whether a raster im-
age’s alpha channel is applied for OT purposes.

3.3 Xtransp Extension

ALP includes a new X extension called Xtransp, which
provides an interface to the OT features in the X server,
as summarized in Table 4. Xtransp provides OT features
on a per-Window basis, as well as calls that apply to the
entire screen or system, and override any Window-based
values to permit effects such as app transitions4.

Inside the X server, Xtransp uses the devPrivates mech-
anism to add OT-related information to X Screens and
Windows, including state information and an OT alpha
array. It also overrides several Screen methods for win-
dow handling and drawing. Xtransp always keeps the
screen consistent with OT changes to part of a Window
or Screen, by adding that area to the Screen’s damage
region.

In particular, Xtransp head-patches the Screen’s
PaintWindowBackground() method, so that when a
Window is painted, its OT alpha information is copied
to the Screen.

3.4 X Server

3.4.1 Extensions

The OT code in the X server works in conjunction with
several X extensions to provide features useful for cell
phones and other portable devices:

4The routines that set blending values are useful with XScale
hardware, which does not support different alpha blending values
on different pixels, but not with OMAP, which does.



2008 Linux Symposium, Volume Two • 119

enum _AlpVidOvlWidgetFeatures
{

// Widget alpha values; values range 0-255
ALP_VIDOVL_FTR_WIDGET_BG_ALPHA = 0x05000000, // Background
ALP_VIDOVL_FTR_WIDGET_FG_ALPHA, // Foreground
ALP_VIDOVL_FTR_WIDGET_TEXT_ALPHA // Text

};

/*
Get a feature value for a GtkWidget
[in] widget A GtkWidget
[in] selector A feature code from _AlpVidOvlWidgetFeatures
[in] outValue The value to be retrieved
return An error code, or ALP_STATUS_OK if no error

If the widget does not have an explicitly-set value, this will return
the corresponding default value from the widget’s container stack.

*/
alp_status_t alp_vidovl_widget_get_feature(GtkWidget *widget,

guint32 selector, guint32 *outValue);

/*
Set a feature value for a GtkWidget
[in] widget A GtkWidget
[in] selector A feature code from _AlpVidOvlWidgetFeatures
[in] inValue The value to be set for the feature
return An error code, or ALP_STATUS_OK if no error

*/
alp_status_t alp_vidovl_widget_set_feature(GtkWidget *widget,

guint32 selector, guint32 inValue);

Figure 5: Typical ALP Overlay Transparency API

• The Shape extension, which supports non-
rectanglar Windows, also limits OT alpha value ap-
plication to Windows. That permits features such
as translucent dialogs and menus with rounded or
bevelled corners.

• Using the Shadow extension simplifies the
platform-dependent driver architecture.

• The OT-oriented hardware drivers support the
RandR extension, so that portable device displays
can be rotated. This is common in cell phones,
where phone dialing is usually done in portrait
mode, but camera features are used in landscape
mode.

3.4.2 PXA3XX Video Driver

A new video driver for the PXA3XX series CPUs5 pro-
vides the lowest level of support for OT in the X server.
This is a kdrive driver that was developed from Keith
Packard’s fbdev driver. The changes to fbdev include
things one would expect, such as setting up and main-
taining hardware-specific states, and limiting pixel for-
mats to those the hardware supports.

The heart of the driver changes are in the shadowbuffer-
to-framebuffer blitter, which is where per-pixel OT al-
pha values in the 0-255 range are converted to the three
states the XScale hardware supports. Its behavior is
summarized in Table 5.6

5These are the PXA300, PXA310, and PXA320 XScale ARM
CPUs from Marvell, code-named Monahans. The driver also sup-



120 • Coding Eye-Candy for Portable Linux Devices

Window Function Effect
XOverlayTransparencySetWindowAlpha Enable or disable OT support in a given X Window,

and set its behavior toward child Windows.
XOverlayTransparencyUpdateWindowAlphaMap Apply an array of 8-bit alpha values to a rectangle in

a Window.
XOverlayTransparencySetBlending Set a single set of RGB blending values to apply,

platform-wide, to all Window-based operations.
Screen or System Function Effect
XOverlayTransparencySetScreenAlpha Apply a single alpha value to a rectangle on the

screen, and disable any Window-based OT features.
XOverlayTransparencyDisableScreenAlpha Disable the effect of XOverlayTransparency-

SetScreenAlpha, and re-enable any Window-based
OT features.

XOverlayTransparencySetScreenBlending Set a single set of RGB blending values for screen-
based operations.

Table 4: Xtransp API Summary

Alpha Effect 32-bit TRGB Result
0 Transparent 0x01000000

1-254 Color-blended 0x01RRGGBB
255 Opaque 0x00RRGGBB

Table 5: Alpha Translation for XScale

3.4.3 Emulation in Xephyr

Embedded systems are notoriously difficult to develop
for: programmers require working hardware, and then
must use a cross-compiler, and flash or otherwise trans-
fer executables to the device.

To speed development, the ALP Development Suite in-
cludes the ALP Simulator: an x86-native version of ALP
that runs under User Mode Linux and mimics a device
display via Xephyr. This lets in-house and third-party
developers write and test code quickly on a Linux x86-
based host computer. Then, when code works well on
the host, they can cross-compile and transfer code for
testing on an ARM device.

The ALP Simulator provides limited support for
OT via changes to Xephyr, primarily replacing the

ports the PXA270 CPU, which shares the same overlay architecture.
6When color-blending, black is converted to 0x01000001 (very

slightly blue) to avoid accidental transparency.

shadowUpdateRotatePacked() blitter with one
that is OT-aware. Since this is intended for initial devel-
opment and testing, no attempt is made to simulate the
XScale or OMAP video or base overlays. Instead, pix-
els that would be OT transparent are rendered as light
aqua, and pixels that would be OT blended are rendered
as a 50% average with light aqua. This lets developers
quickly see whether their use of the GTK-based OT API
is generally correct.

3.5 Kernel

The kernel sources require very few changes to support
OT for XScale. They largely fall into three groups:

• A new ioctl lets the X server set the platform-wide
color blending level that is used when a pixel has
the T bit set and the pixel is not black.

• The video drivers include pxafb_overlay.c, an
Intel-developed open-source driver for XScale
overlays 1 and 2 (/dev/fb1 and /dev/fb2).

• The open-source pxafb video driver for the base
overlay (/dev/fb0) includes support for new
pixel formats and other features supported by the
XScale PXA270 and PXA3XX chips.



2008 Linux Symposium, Volume Two • 121

3.6 Video Playback

The current version of ALP includes a GStreamer-based
media framework that plays video by activating XScale
Overlay 2 as a YCbCr framebuffer, and blitting frames
to it. Media playback occurs in a separate thread of exe-
cution, so while GTK-based programs can start and stop
video playback, they otherwise proceed independently
of the media framework.

4 Results

4.1 Transition Effects

One common form of eye candy is transition effects:
items sliding on and off screen, zooming around, chang-
ing colors, and fading in and out.

The ALP platform achieves some of its transition effects
by a combination of OT features in the X11 overlay and
raster images in the base overlay. For instance, fade-in
at app launch is done in several steps:

1. Fill the bottom (base) overlay with a solid color,
typically a light gray.

2. Use the OT screen feature to make the entire X11
(top) overlay transparent. This makes the whole
screen light gray.

3. When the app has finished displaying its user in-
terface, gradually increase the opacity of the X11
overlay until it is fully opaque.

4.2 Floating Widgets

Another fun form of eye candy is translucency. ALP’s
OT implementation allows widgets to float transparently
or translucently above playing video. Figures 6 through
11 show this in action. These are screen shots from an
XScale development system, showing a sample applica-
tion which plays a Hawaii travelogue video in the back-
ground on Overlay 2.

In Figure 6, the sample application is shown at entry.
The main window and all its child widgets have been
initialized with a variety of OT alpha values. However,
OT support has not been activated on the main window,
so it and its child widgets remain opaque. Although the

Figure 6: Application on entry

Figure 7: After pressing the Transparent Window but-
ton



122 • Coding Eye-Candy for Portable Linux Devices

Figure 8: After pressing the Translucent Dialog button

video is playing in the background on Overlay 2, none
of it is visible.

Pressing the Transparent Window button toggles OT
support on the main window; Figure 7 shows the result.
The playing video is visible through the window’s trans-
parent background and the translucent buttons; however,
all the text is opaque. Above the main application win-
dow, the status bar remains opaque because it belongs to
a different process.

Figure 8 shows what happens after toggling the main
window’s OT support off, and then pressing the Translu-
cent Dialog button. The dialog contents, except for the
opaque text, are translucent. However, the dialog frame
has been set to opaque.

After dismissing the dialog and pressing the Full Screen
Transp. Window button, Figure 9 shows a full-screen
transparent window. In the center, there is a translucent
button with opaque text.

Figure 10 shows the same Transparent Window result
as Figure 7, with an opaque menu on top. The menu’s
rounded corners show the effect of the Shape extension
on OT.7

7The screenshot shows a menu layout bug; the system was still
under development when this paper was written.

Figure 9: After pressing the Full Screen Transp. Win-
dow button

Figure 10: Opaque menu over transparent / translucent
widgets



2008 Linux Symposium, Volume Two • 123

Figure 11: Landscape Mode

After selecting 90 deg CCW from the menu in Figure 10,
Figure 11 shows the result of rotating the entire X layer
to landscape mode, while leaving the video playing in
portrait mode.

5 References

Texas Instruments, OMAP3430 Multimedia Device
Silicon Revision 2.0 Technical Reference Manual, 2007.

Marvell, Monahans L Processor and Monahans LV
Processor Developers Manual, 2006.



124 • Coding Eye-Candy for Portable Linux Devices



Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


