
Virtualization of Linux servers
a comparative study

Fernando Laudares Camargos
Revolution Linux

fernando.laudares@revolutionlinux.com

Gabriel Girard
Université de Sherbrooke

gabriel.girard@usherbrooke.ca

Benoit des Ligneris
Revolution Linux

benoit.des.ligneris@revolutionlinux.com

Abstract

Virtualization of x86 servers has been a hot topic in the
last decade, culminating in changes in the architecture’s
design and the development of new technologies based
in different approaches to provide server virtualization.

In this paper, we present a comparative study of six vir-
tualization technologies released under the GPL license.
Our analysis is done in two steps. First we evaluate the
overhead imposed by the virtualization layers by execut-
ing a set of open source benchmarks in the Linux host
system and inside the virtual machines. Secondly we
analyze the scalability of those technologies by execut-
ing a benchmark suite concurrently in multiple virtual
machines. Our findings may help users choose the tech-
nology that better suits their needs.

1 Introduction

Virtualization is not a new idea [17, 18]. What has
changed is its practical purpose. In the begining, vir-
tualization was used as a way of providing multiple ac-
cess to mainframe systems by running multiple operat-
ing systems on the same machine concurrently [31, 30],
as well as a safe environment for software development.
At that time operating systems were designed for a sin-
gle user, so the solution to provide access to several
users was to run many operating systems in separate vir-
tual machines.

Today, the actual operating systems can provide mul-
tiple access to the same machine. There is no more
need for running multiple operating systems on the same
machine—unless we want them for other reasons. De-
velopment is still one use for virtualization, but now the

main focus has changed to other applications such as
server virtualization. The idea behind server virtualiza-
tion has always been to make a better use of the available
resources—this is being achieved today through a tech-
nique called server consolidation. Studies have shown
that the majority of data centers found in today’s en-
terprises are organized around a silo-oriented architec-
ture [24], in which each application has its own dedi-
cated physical server. This may have been the right de-
sign in the past but today the computational resources of
the average physical server exceeds the needs of most
server applications, which means a share of those re-
sources is being wasted, only around 15% of them be-
ing actually used on average [21, 25]. The solution to
avoid this waste of physical resources is then to con-
solidate a group of those servers in one physical ma-
chine. Doing this by virtualizing the underlying infras-
tructure warrants a greater level of isolation between
the servers as well as providing other advantages inher-
ent to server virtualization besides server consolidation,
which are covered by many other studies [12, 23, 32].
This concept is illustrated by Figure 1. In this scenario
four under-utilized physical servers were consolidated
in one.

The virtualization layer that allows the hosting of guest
operating systems may be provided by different virtual-
ization solutions. Each solution implements this layer in
a different way. One negative side-effect of this model
is that the existence of such a layer implies a possible
overhead that can affect the performance of applications
running inside a virtual machine[26]. Ideally this over-
head is minimized.

The main objective of this study is to evaluate six vir-
tualization solutions for Linux released under the GPL

• 63 •

64 • Virtualization of Linux servers

web
server

mail
server

print
server

web
server

file
server

mail
server

print
server

virtual servers

S1 S2

S3

S2

file
server

S4

Figure 1: Virtualization as a way to provide server con-
solidation

license and measure their efficiency. We borrow the
definition of efficiency from [33], which refers to it as
being the combination of performance and scalability.
The stated characteristics of virtualization solutions may
lead us to make bad choices if we base ourselves solely
on them. This study aims to be practical. We hope our
findings may help users to choose the virtualization so-
lutions that better suits their needs.

The rest of this article is structured as follows. Sec-
tion 2 presents the main points that have motivated us
to conduct this study. In Section 3 we present our way
of categorizing the different virtualization solutions in
groups of technologies that share similar characteristics.
Section 4 presents the methodology used to conduct our
evaluation. The obtained results are presented and dis-
cussed in Section 5. Finally, our conclusions and sug-
gestions for future work are presented in Section 6.

2 Motivation

A number of studies evaluating different virtualization
technologies have been published in the past. Table 1
presents some of them chronologically, indicating the
year of publication as well as the respective virtual-
ization technologies that were covered by each study.
While those studies have been of great value for our un-
derstanding of this article’s subject, none has covered
the main open source virtualization solutions side-by-
side and just a few of them were published by indepen-
dent sources. The main reason for this lack of coverage

is that such a work requires a great amount of time. Still
we were intrigued by this possibility and we believed
many others would be as well.

We have chosen to limit the scope of our study to open
source technologies because of the friendly nature of the
software user licence, which didn’t prevent us publish-
ing our findings nor required them to be scrutinized be-
fore a publication permission would eventually be is-
sued. The access to the source code of the software also
provides the freedom to adapt it as we need to, which
proved to be useful during our experiments.

As users of some of the virtualization technologies that
were subjected to our evaluation, our intention with this
project was to gain a better view of how they relate to
each other. We believe and hope that our feedback may
contribute to their continuous development in a positive
way.

We have not evaluated the features of the different virtu-
alization technologies on an individual basis. The main
characteristics of the majority of those technologies
have already been presented in other studies [20, 33, 6].

3 Overview of virtualization technologies

Virtualization technologies differ in the way the virtual-
ization layer is implemented. In 1974, Popek & Gold-
berg [26] published a paper that presented one way of
doing it, which was later referred to as classic virtual-
ization [1]. This paper became a reference in the subject
and presented a series of requirements for a control pro-
gram (which is known today as operating system, or su-
pervisor) to work as a virtual machine monitor (VMM,
also known today as hypervisor). Such requirements,
organized as a set of properties, limited the construction
of such VMMs to a specific machine generation or pro-
cessor instruction set architecture (ISA) “(. . .) in which
sensitive instructions1 are a subset of privileged instruc-
tions.” This characteristic allows the VMM to selec-
tively trap only the privileged instructions issued inside
the virtual machines by the guest operating systems and
let the remaining instructions be executed directly by the
processor. This procedure thus correlates with the stated
efficiency property, which is directly associated to a low
virtualization overhead.

1Instructions that may change the current state of the physical
machine (IO, for instance).

2008 Linux Symposium, Volume One • 65

Study Year Evaluated technologies Version Kernel version

[2] 2003

Xen - 2.4.21
VMware Workstation 3.2 2.4.21
UML - 2.4.21
VMware ESX Server - 2.4.21

[13] 2004 Xen - 2.4.26

[27] 2005
Linux-VServer 1.29 2.4.27
UML - 2.4.26 / 2.6.7
Xen - 2.6.9

[5] 2006

Linux-VServer 1.29 2.4.27
UML - 2.4.26 / 2.6.7
Xen 2.0 2.6.9
VMware Workstation 3.2 2.4.28
VMware GSX - -

[14] 2006

Linux-VServer 2.0.2rc9 / 2.1.0 2.6.15.4 / 2.6.14.4
MCR 2.5.1 2.6.15
OpenVZ 022stab064 2.6.8
Xen 3.0.1 2.6.12.6

[1] 2006 VMware Player 1.0.1 -
[10] 2006 VMWare ESX Server 3.0 -

[35] 2007 VMware ESX Server 3.0.1 GA -
Xen 3.0.3-0 -

[36] 2007 VMware ESX Server 3.0.1 2.6.9
XenEnterprise 3.2 2.6.9

[11] 2007 Xen 3.0.3 (unstable) -
OpenVZ stable 2.6

[33] 2007 Linux-VServer 2.0.1 2.6.17
Xen 3.0.2-testing 2.6.16

[16] 2007 Linux-VServer 2.2 2.6.20

[22] 2007 Xen - -
KVM 24 -

Table 1: Summary of studies evaluating virtualization technologies published between 2003 and 2007

Even then the researchers were aware of the fact that not
all architectures may be “virtualizable” this way. This
realization is specially true for today’s most popular ar-
chitecture, commonly known as x86. The original de-
sign of the x86 architecture did not included virtualiza-
tion [8]. A detailed account on this issue is reported in
[28]. In summary, not all sensitive instructions in the
x86’s architecture are a subset of its privileged instruc-
tions. In practice, this prevents the implementation of a
VMM capable of selectively trapping only the sensitive
instructions executed by the guest operating systems.
Instead, it would have to trap all instructions, incurring
a considerable system overhead.

Other virtualization technologies have been developed
to avoid this issue and implement alternative ways to vir-
tualize the x86 architecture. Some of them rely on the
complete or partial emulation of the underlying hard-

ware [36] and provide what is called full-virtualization.
QEMU [4] is a software emulator that emulates the en-
tire hardware stack of a machine and is used as the
base for various virtualization projects in this category,
like KQEMU (an “accelerator” for QEMU that may be
used to transform the latter in a virtualization solution
[3]), KVM and VirtualBox. Those solutions are ex-
tremely flexible, meaning they can theoretically support
any guest operating system developed for the x86 archi-
tecture, but are not among the most efficient ones due to
the hardware emulation.

A second category contains virtualization solutions that
implement a technique called para-virtualization. The
most important consideration when running more than
one operating system concurrently on the same machine
is that this class of software is designed to control the
machine exclusively. That is why the use of emulation

66 • Virtualization of Linux servers

works so well—in this case, the guest operating sys-
tem is still the only one controlling the machine, but
the machine in question is not the physical machine, but
a virtual machine. The key for para-virtualizing a sys-
tem is to make the guest operating systems aware of the
fact that they are being virtualized [12]—and ask them
to collaborate. In exchange, the VMM provides an al-
most direct access to some of the physical resources of
the machine. This approach provides an efficient vir-
tualization technology but it is also an extremely inva-
sive technique since it requires important modifications
to the guest OS kernel structure. Xen is the most well
known para-virtualization solution.

The third and last of our categories focus on the virtual-
ization at the operating system level. The virtualization
layer in this particular implementation is set above the
operating system [23]. “Virtual machines” are soft parti-
tions [15], or containers [14], that replicate the environ-
ment of the host operating system. This is in theory the
most efficient kind of virtualization—yet the less flex-
ible. The efficiency comes from the fact that there is
only one kernel in execution at any time, and thus the
absence of hypervisor overhead. The lack of flexibility
comes from the same reason—one may even run differ-
ent flavors of Linux, but they will share the same ker-
nel. Linux-VServers and OpenVZ are two examples of
OS-level virtualization solutions. Both are available as
a patch that can be applied to the Linux kernel.

Recently, the x86 architecture received additional exten-
sions [34, 37] that allows the implementation of a clas-
sic VMM that responds to Popek & Goldberg’s crite-
ria. Whether the use of those extensions will assure the
development of more efficient virtualization solutions
is still arguable [1]. Nonetheless, since version 2.6.20
the Linux kernel comes with KVM, a simple yet robust
piece of software that uses those additional extensions to
transform Linux into a hypervisor [29, 19]. More recent
versions of Xen also use those extensions, as well as a
little dose of emulation, to allow for the virtualization of
“closed source” operating systems.

4 Methodology

There is no consensus in the scientific community nor
in the industry about what would be the best way to
evaluate virtualization solutions. The Standard Perfor-
mance Evaluation Corporation (SPEC) created a com-
mittee at the end of 2006 that is studying this matter

[7]. VMware and Intel, both members of the commit-
tee, stepped ahead and released two different bench-
mark suites (or workloads, since both suites are com-
posed of already existent and independent benchmarks),
named respectively VMmark [10] and vConsolidate [9].
The workloads that compose both suites are very sim-
ilar, the difference is in the way each company com-
bines the obtained results to define a scoring system.
Neither of these benchmark suites have been considered
in this study because they both rely on a benchmark for
mail servers called LoadSim, which works only with Mi-
crosoft’s Exchange Server.

The majority of the studies in Table 1 have used bench-
marks that target different parts of the system. We have
adopted a similar approach. Our analysis is done in two
steps. In the first step we evaluate the overhead imposed
by the virtualization layers by executing a set of open
source benchmarks in the Linux host system and inside
the virtual machines. In the second step, we analyze
the scalability of those technologies by executing Sys-
Bench, one of the benchmarks used in the first step, con-
currently in multiple virtual machines.

We decided to use Ubuntu 7.10 as the operating sys-
tem for the host system, as it comes with kernel version
2.6.22-14, which is well supported among all the eval-
uated virtualization solutions. For the virtual machines
we have chosen Ubuntu’s Long Time Supported version,
which at the time of this study was Ubuntu 6.10. This
proved to be a bad decision for a comparative study and
one of the major weaknesses of this work, since the ma-
jority of the OS utilities, like Rsync and Bzip2, have
different versions in each release, not to mention the dif-
ference in kernel versions.

The name and version of the benchmarks used in our
evaluation are shown in Table 2. Table 3 presents a
list of the evaluated virtualization solutions, showing the
kernel versions used in the host and guest operating sys-
tems.

The compilation of the results is done as follows. All ex-
periments are repeated four times. The first sample was
discarded, the presented results for each set of experi-
ments being the median of the second, third, and fourth
samples. The results of the experiments conducted in-
side the virtual machines are normalized using the re-
sults of the respective experiments conducted in the non-
virtualized environment as a base. The evaluation was
done in two steps. The first step focused on the overhead

2008 Linux Symposium, Volume One • 67

Benchmark Version (Host) Version (VMs) Unit of measure
Bzip2 1.0.3-0ubuntu2.1 1.0.4-0ubuntu2.1 time
Dbench 3.04 3.04 throughput
Dd (coreutils) 5.93-5ubuntu4 5.97-5.3ubuntu3 throughput
Kernel (build) linux-2.6.22.14 linux-2.6.22.14 time
Netperf 2.4.4 2.4.4 throughput
Rsync 2.6.6-1ubuntu2.1 2.6.9-5ubuntu1 time
SysBench 0.4.8 0.4.8 throughput

Table 2: List of the benchmarks used in the first step of our evaluation and respective metrics

Virtualization solution Version Host Kernel Guest Kernel
KQEMU 1.3.0 pre11-6 2.6.22.14-kqemu 2.6.15-26-amd64
KVM 58 2.6.22-14-server 2.6.15-26-amd64
Linux-VServer 2.2.0.5 2.6.22.14 2.6.22.14
OpenVZ 5.1 2.6.22-ovz005 2.6.22-ovz005
VirtualBox 1.5.4_OSE/1.5.51_OSE 2.6.22-14-server 2.6.22.14
Xen 3.1.0 2.6.22-14-xen 2.6.22-14-xen

Table 3: Evaluated virtualization solutions and the respective kernel versions

of a single virtual machine. In the second step the exper-
iments are repeated concurrently in n virtual machines,
with n=1,2,4,8,16, and 32.

The experiments were conducted using an IBM/Lenovo
desktop configured with an Intel Core 2 Duo 6300 pro-
cessor, 4G of RAM, an 80GB SATA hard drive and two
gigabit network interfaces. The main network interface
is connected to a LAN and the other is attached with a
cross-over cable to a second machine, which was used
as a client for the experiments involving a network. This
second machine is a Dell Optiflex GX configured with
an Intel Pentium 2 processor, 123M of RAM, a 250GB
IDE hard drive and one gigabit interface.

The main machine was rebooted before the beginning of
each new set of tests. Before moving on to test the next
virtualization solution, the disk was re-formated and the
operational system was re-installed from scratch.

In the first step of the evaluation, the virtual machines
were configured with 2G of RAM. Table 4 shows the
memory allocation used in the second step. The top
limit was set to 2039M of RAM because this was the
maximum amount supported by QEMU-based virtual-
ization solutions during preliminary tests.

To run the scalability tests we have used Konsole’s Send
input to all sessions function to log in the n virtual ma-

Number of VMs Memory/VM (in M)
n=1 2039
n=2 1622
n=4 811
n=8 405
n=16 202
n=32 101

Table 4: Memory distribution used in the second step of
the evaluation

chines simultaneously from a third machine, connected
to the test machine through the LAN interface, and start
the benchmark in all VMs simultaneously.

Figure 2 presents the commands and respective param-
eters used to execute each one of the benchmarks.

5 Results and discussion

This section presents the results of our experiments. For
all charts but the ones representing our scalability eval-
uations, the results for the different virtualization solu-
tions have been normalized against the results when run-
ning without virtualization. Higher bars represent better

68 • Virtualization of Linux servers

Kernel Build

$ make defconfig
$ date +%s.%N && make && date +%s.%N
$ make clean

Dbench

$ /usr/local/bin/dbench -t 300 -D /var/tmp 100

Netperf

$ netserver # server side
$ netperf -H <server> # client side

Rsync

Experiment 1:
$ date +%s.%N && rsync -av <server>::kernel /var/tmp && date +%s.%N # client side

where ’kernel’ is the linux-2.6.22.14 file tree (294M)
$ rm -fr /var/tmp/*
Experiment 2:
$ date +%s.%N && rsync -av <server>::iso /var/tmp && date +%s.%N # client side

where ’iso’ is ubuntu-6.06.1-server-i386.iso (433M)
$ rm -fr /var/tmp/*

Dd

Experiment 1:
$ dd if=/opt/iso/ubuntu-6.06.1-server-i386.iso of=/var/tmp/out.iso
$ rm -fr /var/tmp/*
Experiment 2:
$ dd if=/dev/zero of=/dev/null count=117187560 # 117187560 = 60G

Bzip2

$ cp /opt/ubuntu-6.06.1-server-i386.iso .
$ date +%s.%N && bzip2 -9 ubuntu-6.06.1-server-i386.iso && date +%s.%N
$ rm ubuntu-6.06.1-server-i386.iso.bz2

SysBench

$ mysql> create database sbtest;
$ sysbench --test=oltp --mysql-user=root --mysql-host=localhost --debug=off prepare
$ sysbench --test=oltp --mysql-user=root --mysql-host=localhost --debug=off run

Figure 2: Commands and parameters used to execute the benchmarks

performance of the virtualization solution for the respec-
tive workload.

VirtualBox is a virtualization solution that allows the
user to decide whether or not it should use the virtualiza-
tion extensions present in the processor. This fact lead
us to perform all experiments with this software twice,
with (--hwvirtex on) and without (--hwvirtex

off) the use of such extensions. As previously men-
tioned, QEMU is the base for a considerable number of
the virtualization solutions evaluated in this study. Since
the virtual machine image used by KVM and KQEMU
is also compatible with QEMU, we have also evaluated
the latter in the first step of our practical study and in-
cluded the results whenever we considered it to be ap-
propriate. Our main reason for doing this is to show how

2008 Linux Symposium, Volume One • 69

Figure 3: Relative performance of the virtualization so-
lutions for the kernel compilation experiment.

much a virtualization layer below QEMU (like KQEMU
and KVM) can benefit the performance of the applica-
tions running inside it.

Figure 3 shows the results for the kernel build exper-
iments. Kernel compilation is a CPU intensive task
which involves multiple threads and stress the filesystem
in both reading and writing small files. Those charac-
teristics make it for a good overall system performance
indication. As expected, virtualization solutions rely-
ing on both OS-level and para-virtualization technolo-
gies presented a performance close to Linux’s. Among
the full-virtualization solutions, KVM’s performance is
far superior.

This first graphic shows a unique situation in our study
in which the non-use of the virtualization extensions by
VirtualBox results in performance that is higher than
when VirtualBox makes use of such extensions to ac-
complish the same task. In all the other experiments,
such a difference in performance will be less significant.

The next experiment is a file compression using Bzip2.
This is also a CPU intensive task, but with low I/O re-
quirements. The -9 option used for maximum compres-
sion also demands more memory for the process to exe-
cute the compression. For this experiment, we have all
virtualization solutions performing close to Linux, ex-
cept for KQEMU and OpenVZ, as shown in Figure 4.
The low performance of OpenVZ was a surprise since
we expected it to perform close to Linux for all experi-

Figure 4: Evaluating the virtualization solutions with
Bzip2

ments.

Figure 5 shows the results for the experiments with
Dbench, a file system benchmark that simulates the load
placed on a file server. Here, the sole virtualization solu-
tion to match Linux closely was Linux-Vserver, the re-
maining solutions showing performance less than 30%
of Linux. This includes Xen, which has shown bet-
ter performances in other studies [2, 33] for a similar
workload. We were not able to successfully run this
benchmark with VirtualBox without it crashing for an
unknown reason.

The results for our experiments of disk performance
done with dd are presented in Figure 6. These exper-
iments do not stress the CPU but focus mainly on disk
I/O. For the first experiment, which copies a 433M iso
image file to the same ext3 partition, Linux-VServer
presented performance that considerably surpasses that
of Linux. VServer’s modifications to the kernel clearly
benefit this kind of task. Xen and KVM presented good
performance while OpenVZ was significantly slower.
In the second experiment, 60G of null characters are
read from /dev/zero and written to a scratch device
(/dev/null). Since the data is not actually written
to the disk this experiment focuses on the I/O opera-
tions of the OS without physically stressing the disk.
For this experiment, Xen shows a decrease in perfor-
mance while OpenVZ performs a lot better than in the
first experiment, but still shows a considerable overhead
when compared to Vserver and KVM. We were unable

70 • Virtualization of Linux servers

Figure 5: Evaluating the virtualization technologies
with Dbench, a file system benchmark

to correctly measure this experiment with KQEMU and
VirtualBox, the resultant values for time and through-
put being noticeably inaccurate when compared against
a wall clock.

Figure 7 shows our results for Netperf, a simple network
benchmark that uses a stream of TCP packets to evaluate
the performance of data exchange. We can clearly dif-
ferentiate two groups in this experiment: the technolo-
gies that are based on QEMU, presenting a poor per-
formance, and the others, which all presented excellent
performance. We highlight VirtualBox’s performance,
possibly due to the use of a special network driver im-
plementation that communicates closely with the physi-
cal network interface.

To complement our network evaluation, we have per-
formed two other experiments using Rsync to transfer
data from a server to a client machine. The first experi-
ment consisted in the transfer of the entire kernel source
tree, which is composed by 23741 small files for a total
of 294M. The second experiment consisted in the trans-
fer of the same iso image file used in the compression
benchmark. Figure 8 presents the results for both exper-
iments. They confirm the strength of OpenVZ for tasks
that include transfering data throughout the network. In
the opposite sense, these kinds of task reveal one of the
major weaknesses of KVM.

Figure 9 presents our results for the SysBench database
server performance benchmark (OLTP). The workload

Figure 7: Netperf uses a stream of TCP packets to eval-
uate the performance of the network

consisted of a set of 10000 transactions performed
against a MySQL database. For this workload, Linux-
VServer and Xen where the only virtualization solutions
to perform close to Linux, while KVM and OpenVZ
presented performance half as good.

For the second part of our evaluation, we have chosen
the SysBench benchmark to evaluate how the virtual-
ization solutions perform when having to manage and
share the physical resources of the server between multi-
ple virtual machines executing the same workload. Fig-
ure 10 presents our results for this scenario. The left
side of the picture (a) shows the aggregate throughput
for each set, which was calculated by multiplying the
average throughput of the virtual machines, shown in
the right side of the picture (b), by the number of virtual
machines executing concurrently.

For all virtualization solutions but KVM and Virtual-
Box, the biggest aggregate throughput appears when 4
VMs were running concurrently. Xen and KQEMU pre-
sented a similar behavior, producing an almost constant
aggregate throughput, but with opposite performances:
while Xen can be considered the most efficient virtu-
alization solution for this particular workload, the in-
ability of KQEMU to make a good use of the available
resources was evident.

The two most interesting results were achieved by Vir-
tualBox and Linux-VServer. The aggregate throughput
of the first grew smoothly until the number of running

2008 Linux Symposium, Volume One • 71

Figure 6: Using dd to evaluate disk performance

Figure 8: Evaluating data transfer in the network with Rsync

72 • Virtualization of Linux servers

Figure 10: Evaluating the capacity of the virtualization solutions to manage and share the physical available re-
sources with SysBench: the left side of the picture (a) shows the aggregate throughput (average throughput per VM
x number of VMs) while the right side of the picture (b) shows the average throughput per VM

Figure 9: Using the SysBench OLTP benchmark to eval-
uate the performance of a database server

virtual machines reached 8. When we doubled the num-
ber of virtual machines to 16, the average throughput per
VM remained the same, duplicating the total aggregate
throughput produced. We were not able, though, to exe-
cute the experiment with 32 VMs, as the available mem-
ory per VM was insufficient to run the benchmark. With
Linux-VServer, the aggregate throughput obtained for
two and eight VMs (or vservers) was almost the same,
but it fell considerably when running 16 and 32 vservers
concurrently.

This is not the behavior we are used to seeing in pro-
duction systems running this virtualization solution. We
have contacted the authors of [16], who pointed some
issues that could help explain Linux-VServer’s perfor-
mance for this particular workload at scale. In sum-
mary, they suggested to try different kernel I/O sched-
ulers and timer frequencies, and also executing the same
experiment directly in the host OS with and without
VServer’s kernel patch, and compare the results with
those of VServer. Figure 11 summarizes this analysis.
In the legend, the data between parenthesis are respec-
tively the Ubuntu version, the kernel timer frequency,
and the kernel I/O scheduler used in each experiment.

The Vserver patch used in the experiment did not

2008 Linux Symposium, Volume One • 73

Figure 11: Repeating the scalability evaluation with Linux-VServer, Xen, and Linux using different settings.

change the kernel standard timer frequency, set to 100
Hz, nor the I/O scheduler, deadline. Xen uses a differ-
ent configuration, setting the kernel timer frequency to
250 Hz and selecting a different I/O scheduler, called
Completely Fair Queuing(cfq). We have repeated the
experiment with VServer for n=32 VMs using different
combinations of timer frequency and I/O scheduler. We
have also experimented installing each vserver in indi-
vidual LVM partitions. Neither of those configurations
gave better results.

To eliminate the possibility of this being a kernel-related
issue we repeated the experiment with 1, 2, 4, 8, and 32
instances of SysBench running in the host system and
accessing the same database. The resulting performance
curve resembles more the one of Xen. The aggregate
throughput decreases slowly when there is more than
4 instances executing concurrently and does not follow
the pattern of VServer. We also repeated this experi-
ment running 32 instances of SysBench that connected
each to different databases, hosted by 32 mysqld servers
running on different ports of the host system. This con-
figuration achieved by far the best aggregate throughput
in our experiments.

The PlanetLab project uses Linux-VServer to share part
of the available resources of their clusters of machines
in “slices” [33]. We tried a patch used in the project that
fixes a CPU scheduler related bug present in the version
of VServer we used in our experiments, with no better
results. Finally, we decided to try a different workload,
the kernel build benchmark. For VServer and Xen ex-

Figure 12: Evaluation of the scalability of Linux-
VServer and Xen using the kernel build as benchmark
and Linux as reference

periments we used the same configuration as in our pre-
vious experiments. For the experiment in the host sys-
tem we have simply used multiple kernel source trees.
Figure 12 summarizes the results, showing the aggre-
gate time for each set of experiments.

For this particular workload, Linux-VServer performs
as well as the Linux host system, while Xen follows
closely but shows a small overhead that becomes more
significant when the experiment is done with 32 VMs.

74 • Virtualization of Linux servers

The results we had with this experiment helps to shown
how the nature of the workload affects the performance
of the virtualization solutions, and how Linux-VServer
can deliver the performance we expect from it.

6 Conclusion

This paper evaluated the efficiency of six open source
virtualization solutions for Linux. In the first part of
our study, we used several benchmarks to analyze the
performance of different virtualisation solutions under
different types of load and related it to the raw perfor-
mance of Linux, observing the resulting overhead. In
the second part of our study, we evaluated the scalabil-
ity of those virtualization solutions by running the same
benchmark concurrently in multiple virtual machines.

For the first part of our evaluation, Linux-VServer per-
formed close to Linux in all experiments, showing lit-
tle to no overhead in all situations but one, in which it
surpassed Linux’s own performance for disk I/O. When
executing SysBench at scale, thought, VServer failed
to deliver the expected aggregate throughput, specially
when the benchmark was running in more than four vir-
tual machines concurrently. A closer look at the prob-
lem indicates that it is not directly related to Linux’s
kernel. We tried different combinations of kernel I/O
schedulers and timer frequencies with no better results.
To be fair, we repeated the experiment with Linux, Xen,
and Linux-VServer using the kernel build benchmark
instead of SysBench. This time VServer’s performance
was comparable to Linux’s while Xen showed a small
overhead that became more significant when running the
experiment concurrently in 32 VMs.

Xen performed fairly well in all experiments but the
one using the file system benchmark Dbench. In fact,
no other virtualization solution had good results for this
benchmark, with the exception of Linux-Vserver. Xen
was also the solution that presented the best aggregate
throughput when executing SysBench at scale.

KVM performed quite well for a full-virtualization so-
lution. Although it makes for a good development tool,
our results indicate it should be avoided for running
application services that rely heavily on network I/O.
On the other hand, the performance of OpenVZ was
disappointing, except when the workload included data
transfer throughout the network, which proved to be a
strength of this virtualization solution. VirtualBox also

showed good results for experiments that focused on the
network but did not performed as well as the others, with
the exception of the file compression benchmark. Fi-
nally, KQEMU may also be a good candidate in the area
of development but for now its use should be avoided in
production systems.

For the consolidation of Linux servers, virtualization
technologies such as para-virtualization and OS-level
virtualization seem to make more efficient use of the
available physical resources. However, our findings in-
dicate that the scalability of virtualization solutions may
be directly related to the nature of the workload. Except
for Linux-VServer and Xen, we have not used different
workloads in the second part of our work and we suggest
that this should be took in consideration for future stud-
ies. It would also be interesting to repeat the scalability
experiments using a mix of different workloads. With
the exception of web hosting centers, there are few pro-
duction systems interested in running multiple instances
of the same workload in the same physical server.

References

[1] Keith Adams and Ole Agesen. A comparison of
software and hardware techniques for x86
virtualization. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural
support for programming languages and
operating systems, pages 2–13, New York, NY,
USA, 2006. ACM Press.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[3] Daniel Bartholomew. Qemu: a multihost,
multitarget emulator. Linux J., 2006(145):3, May
2006.

[4] Fabrice Bellard. Qemu, a fast and portable
dynamic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual
Technical Conference, pages 41–41, Berkeley,
CA, USA, 2005. USENIX Association.

[5] Franck Cappello Benjamin Quetier, Vincent Neri.
Selecting a virtualization system for grid/p2p

2008 Linux Symposium, Volume One • 75

large scale emulation. In Proc of the Workshop on
Experimental Grid testbeds for the assessment of
large-scale distributed applications and tools
(EXPGRID’06), Paris, France, 19-23 june, 2006.

[6] Lucas Bonnet. Etat de l’art des solutions libres de
virtualisation pour une petite entreprise. Livre
blanc, Bearstech, Decembre 2007.
http://bearstech.com/files/

LB-virtualisationEntrepriseBearstech.pdf.

[7] Standard Performance Evaluation Corporation.
Spec virtualization committee, April 2008.
http://www.spec.org/
specvirtualization/.

[8] Simon Crosby and David Brown. The
virtualization reality. Queue, 4(10):34–41, 2007.

[9] Casazza et al. Redefining server performance
characterization for virtualization benchmarking.
Intel Technology Journal, 10(3):243–252, 2006.

[10] Makhija et al. Vmmark: A scalable benchmark
for virtualized systems. Tech reaport, VMware,
Inc., 2006.

[11] Padala et al. Performance evaluation of
virtualization technologies for server
consolidation. Tech Reaport HPL-2007-59, HP
Laboratories Palo Alto, 2007.

[12] Justin M. Forbes. Why virtualization
fragmentation sucks. In Proceedings of the Linux
Symposium, volume 1, pages 125–129, Ottawa,
ON, Canada, June 2007.

[13] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian
Pratt, Andrew Warfield, and Mark Williamson.
Safe hardware access with the xen vir tual
machine monitor. In Proceedings of the 1st
Workshop on Operating System and Architectural
Support for On-Demand IT In frastructure,
Boston, MA, USA, October 2004.

[14] Cedric Le Goater, Daniel Lezcano, Clement
Calmels, Dave Hansen, Serge E. Hallyn, and
Hubertus Franke. Making applications mobile
under linux. In Proceedings of the Linux
Symposium, volume 1, pages 347–368, Ottawa,
ON, Canada, July 2006.

[15] Risto Haukioja and Neil Dunbar. Introduction to
linux virtualization solutions. Technical report,
Hewlett-Packard Development Company, L.P.,
September 2006.

[16] Marc E. Fiuczynski Herbert Potzl. Linux-vserver:
Resource efficient os-level virtualization. In
Proceedings of the Linux Symposium, volume 2,
pages 151–160, Ottawa, ON, Canada, June 2007.

[17] IBM. Driving business value with a virtualized
infrastructure. Technical report, International
Business Machines Corporation, March 2007.

[18] M. Tim Jones. Virtual linux, December 2006.
http:
//www.ibm.com/developerworks/
library/l-linuxvirt/index.htlm.

[19] M. Tim Jones. Discover the linux kernel virtual
machine, April 2007. http:
//www.ibm.com/developerworks/
linux/library/l-linux-kvm/.

[20] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,
and Anthony Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, Ottawa,
ON, Canada, June 2007.

[21] Tim Klassel and Jeffrey Peck. The rise of the
virtual machine and the real impact it will have.
Technical report, Thomas Eisel Partners, 2006.

[22] Jun Nakajima and Asit K. Mallick.
Hybrid-virtualization: Enhanced virtualization for
linux. In Proceedings of the Linux Symposium,
volume 2, pages 87–96, Ottawa, ON, Canada,
June 2007.

[23] Susanta Nanda and Tzi cker Chiueh. A Survey on
Virtualization Technologies. Rpe report, State
University of New York, 2005.

[24] Pradeep Padala. Adaptive control of virtualized
resources in utility computing environments. In
Proc of the EUROSYS (EUROSYS’07), Lisboa,
Portugal, March 21-23, 2007.

[25] John Pflueger and Sharon Hanson. Data center
efficiency in the scalable enterprise. Dell Power
Solutions, pages 08–14, February 2007.

76 • Virtualization of Linux servers

[26] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421,
1974.

[27] Benjamin Quetier and Vincent Neri. V-meter:
Microbenchmark pour evaluer les utilitaires de
virtualisation dans la perspective de systemes
d’emulation a grande echelle. In 16eme
Rencontres Francophones du Parallelisme
(RenPar’16), Le Croisic, France, Avril 2005.

[28] J. Robin and C. Irvine. Analysis of the intel
pentium’s ability to support a secure virtual
machine monitor, 2000.

[29] Michael D. Day Ryan A. Harper and Anthony N.
Liguori. Using kvm to run xen guests without
xen. In Proceedings of the Linux Symposium,
volume 1, pages 179–188, Ottawa, ON, Canada,
June 2007.

[30] Love H. Seawright and Richard A. MacKinnon.
Vm/370 - a study of multiplicity and usefulness.
IBM Systems Journal, 18(1):4–17, 1979.

[31] B. D. Shriver, J. W. Anderson, L. J. Waguespack,
D. M. Hyams, and R. A. Bombet. An
implementation scheme for a virtual machine
monitor to be realized on user -
microprogrammable minicomputers. In ACM 76:
Proceedings of the annual conference, pages
226–232, New York, NY, USA, 1976. ACM Press.

[32] Amit Singh. An introduction to virtualization,
2006. http://www.kernelthread.com/
publications/virtualization/.

[33] Stephen Soltesz, Herbert Potzl, Marc E.
Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization:
A scalable, high-performance alternative to
hypervisors. In Proc of the EUROSYS
(EUROSYS’07), Lisboa, Portugal, March 21-23,
2007.

[34] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L.
Santoni, Fernando C. M. Martins, Andrew V.
Anderson, Steven M. Bennett, Alain Kagi,
Felix H. Leung, and Larry Smith. Intel
virtualization technology. Computer,
38(5):48–56, 2005.

[35] VMware. A performance comparison of
hypervisors. Technical report, VMware, Inc.,
2007.

[36] XenSource. A performance comparison of
commercial hypervisors. Technical report,
XenSource, Inc., 2007.

[37] Alan Zeichick. Processor-based virtualization,
amd64 style, part i. Technical report, Advanced
Micro Devices, 2006. http://developer.
amd.com/article_print.jsp?id=14.

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

