
Systems Monitoring Shootout
Finding your way in the Maze of Monitoring tools

Kris Buytaert
Inuits

Kris.Buytaert@inuits.be

Tom De Cooman
Inuits

Tom.DeCooman@inuits.be

Frederic Descamps
Inuits

Frederic.Descamps@inuits.be

Bart Verwilst
Inuits

Bart.Verwilst@inuits.be

Abstract

The open source market is getting overcrowded with
different Network Monitoring solutions, and not with-
out reason: monitoring your infrastructure is becoming
more important each day. You have to know what’s go-
ing on for your boss, your customers, and for yourself.

Nagios started the evolution, but today OpenNMS,
Zabix, Zenoss, GroundWorks, Hyperic, and different
others are showing up in the market.

Do you want light-weight, or feature-full? How far do
you want to go with your monitoring, just on an OS
level, or do you want to dig into your applications, do
you want to know how many query per seconds your
MySQL database is serving, or do you want to know
about the internal state of your JBoss, or be alerted if
the OOM killer will start working soon?

This paper will provide guidance on the different alter-
natives, based on our experiences in the field. We will
be looking both at alerting and trending and how easy or
difficult it is to deploy such an environment.

1 Some Definitions

The monitoring business has its own set of terms, which
we will gladly explain.

How do you want your monitoring system being
“served?” A light version? Full-blown and feature-full?
The most important question is: how far do you want to
go with your monitoring? Just on the OS level, or do you
want to dig into your applications, do you want to know
how many query per seconds your MySQL database is

serving, do you want to know about the internal state of
your JBoss, or be triggered if the OOM killer will start
working soon? . . . As you see, there are several ways of
monitoring depending on the level of detail.

In our monitoring tool, we add hosts. This host can be
any device we would like to monitor. Next we need
to define what parameter on the host we would like to
check, how we are going to get the data, and at which
point we’d consider the values not within normal lim-
its anymore. The result is called a check. There are
several ways to ‘get’ the required data. Most monitor-
ing tools can use SNMP as a way to gather the required
data. Either the tool itself performs an SNMP-get, or it
receives data via an SNMP-trap. A lot of tools can also
work with external scripts that can be ‘plugged in.’ Most
of the time you can use a script in whichever language
you like (bash, perl, C, java, etc.), as long as it sticks
to certain rules set by the monitoring tool. These rules
make sure the tool can understand the data returned.
Checks that are performed by the monitoring tool itself
are called active checks. The monitoring tool ‘polls’
another device to get some data out of it. Checks per-
formed and submitted by external applications are called
passive checks. Passive checks are useful for monitor-
ing hosts and services on that host that are, e.g., not di-
rectly reachable for the monitoring server or where no
direct check is possible or available. An SNMP Trap
can be implemented in a monitoring solution via a pas-
sive check.

Alerting is the way to send a warning signal. Usually
this is an automatic signal warning of a danger. In mon-
itoring services, alerts can be sent via different methods
when available: an email is sent to one or many users
with the warning message and the result of the check

• 53 •

54 • Systems Monitoring Shootout

having a problem. A message is sent on the mobile
of one or many users with the description of the prob-
lem. The monitoring interface highlights the problem
in a user-friendly way, usually with colors depending
on the severity level of the problem. We obviously also
want Instant Messaging to be used. All the alerts are re-
lated to services that the monitoring system must check.
The level and the signal of the alerts can be setup in-
dependently by services. All good monitoring systems
are able to send different notifications depending on the
time frame. So for example during the night only the
on-call person will be notified via SMS of the problem.

The data the monitoring tool is gathering is also stored
for historical reference. This can be used to generate
reports, so one can view the status detail for a specific
host or service over a certain period. General availabil-
ity can be checked and reviewed. Custom availability
reports can be generated depending on the monitoring
tools capabilities. E.g., the uptime of a certain host or
service. How many times it went down, for how long,
also providing a time related percentage of downtime or
uptime. We then can report a summary of all events and
status linked to the services we are monitoring.

Next to reports themselves, some tools also provide a
way to chart the gathered data. Although monitoring
and trending are actually two different businesses, some
tools are combining them into a single interface. The
capabilities of the monitoring tool might be enough to
suite your historical data trending needs, still there are
other specific tools available which are pretty good in
performing only the trending task. These standalone
tools mostly provide more options, or might provide an
easier way to accomplish certain tasks than the monitor-
ing tools.

Trending and reporting can definitely help in perfecting/
fine-tuning the monitoring task. Using trends we can ad-
just already implemented monitoring rules to situations
noticed in the trends/reports. Checks can be adjusted to
certain situations. We can disable a check during a cer-
tain time period, or we could loosen the limits a check
is set to trigger on during this time interval. . . . In other
words, it can help to make a check more accurate. So
in the end to establish a more accurate monitoring sys-
tem, which also gives us the ability to notice upcoming
issues and react on them, making the business of system
administration more proactive.

Trending is reading of the variation in the measure-

ment of data over several intervals. In your environment
you are interested in how many queries your databases
parses per second, and how this evolves over time.
You are also interested in figuring out how many traffic
passes over a certain switch port and if you have enough
bandwidth capacity left. Trending therefore is not so
much related to the uptime of certain services but to the
behavior of the service itself.

2 What are we looking for?

We started out asking ourselves what we want in a net-
work and infrastructure monitoring. Some interesting
topics came up. We look at an NMS from different
viewpoints, from a user viewpoint, from a sysadmin
viewpoint, and also from a developer viewpoint.

Note that we are experienced systems people, but often
new to the tools, and that’s probably the way you want it.
We want to know how fast you can get up to speed with
a tool while not having to spent hours and days tuning
the platform, or even read manuals.

Monitoring tools are typically set up by System Admin-
istrators or Infrastructure Architects and then handed
over to either Junior staff or Operations people. That
means that once it is up and running, everybody should
be able to use it. A good an clean GUI is a requirement.

However, as you are going to add over 100 servers at
once to a monitoring application, you do not want to
use a web-interface for that the process. You want to be
able to write a simple for-loop for a variety of servers
to create config-files, database-scripts, adjust them, and
add them. In a later stage, you want some administrators
to add hosts to the system through some GUI, but with a
template-based system so they can reuse what you pre-
pared.

When introducing a monitoring tool in a large environ-
ment, that also means that you are rather reluctant to in-
stall a daemon on all these hosts—unless you can fully
automate that installation.

SNMP is a great tool to manage/monitor just about any-
thing in your network. You can call this an advantage
because SNMP is a package available in every OS, does
not have many dependencies prior to installing, it is easy
to configure for simple setups, and most of all: quick re-
sult! (The ability to add SNMP-scripts of course is a
big plus.) However, unlike the name tells us, SNMP

2008 Linux Symposium, Volume One • 55

is everything but simple and requires in-depth think-
ing of how to provision our SNMP configuration at all
the hosts, so configuring SNMP might be as difficult as
adding a client specific to your monitoring, too.

We want to be able to automate as much as possible, so
we prefer a config-file-based approach. It doesn’t matter
whether it has its own syntax, as long as it is still human-
readable. A web interface of course is also a must; how-
ever, it should be supportive, not enforcing. You should
be able to create a configuration that the webinterface
doesn’t overrule. We have to realize that performing an
action on 3 hosts via GUI is feasible, but on 300, it isn’t.
So we would rather settle for less GUI features that we
never use.

We all have to please managers and customers, so we
want a tool that is capable of creating very clear and
complete reports and graphs. Ideally graphs that can
be mapped against each other to pinpoint concurrent
events, etc.

It goes without saying that a monitoring tool should be
stable. As the tool is monitoring events in our infrastruc-
ture, it needs to be up and running all the time in order
to be able to escalate issues. It also needs to be able to
scale; infrastructures grow at a terrific speed these days,
so the monitoring tool you are starting out with today
must be capable of either delegating groups of machines
or manage them itself.

When looking at the resources used in your infrastruc-
ture, you are interested in memory usage, IO perfor-
mance, etc. So you want your monitoring tool to be
almost invisible. We mentioned before that ideally no
plugins have to be installed, but if they have to be in-
stalled, we want them to be lightweight. A JVM requir-
ing a big chunk of your precious RAM just to see if a
process is still running might be overkill. A monitor-
ing tool should blend in with the infrastructure, not add
more requirements to it.

A good Monitoring Platform has capabilities of both
telling us how a machine performed in the past, how
much time a certain service was available and how long
it wasn’t. We want to see trends in usage—e.g., whether
disk and memory usage have been changing over time.

Ideally you also get a separate status page, no techni-
cal data, but a clean status page along with persons to
contact in case of problems.

A good monitoring tool has plenty of alternative notifi-
cation methods. SMS and mail are primary methods, but
Instant Messaging solutions are more and more a stan-
dard requirement, too. And you want to be able to con-
figure these notifications, select different methods based
on the time, how critical an incident is, and so on. Also
you don’t want to be spammed by the tool, you want rel-
evant escalation when appropriate, but you don’t want a
message flooding your inbox that you will filter away
anyhow.

A great framework is a good start, but without an ac-
tive community it is probably as bad as a commercial
tool that also requires you to buy a lot of extra features.
You need a plugin model that allows you to add checks
and functionalities in different languages: PHP, bash,
perl, C, etc. So having a clear and powerful API is a
must. That way your community will be able to write
new checks for services that you either don’t know yet
or haven’t heard about yet.

3 Nagios

Nagios is considered by many to be the godfather of host
and service monitoring on Linux. It is without doubt the
best known monitoring tool out there, and is available by
default in all major Linux distributions. Nagios version
3.0 was released in March 2008, but will only be picked
up by most distributions in the next 6-12 months. In the
meantime, version 2.11 is the most common in today’s
distributions. Nagios was created by Ethan Galstad and
is licensed under the GPL v2. Many others contributed
to Nagios since its conception through plugins, add-ons,
bugfixes, suggestions, testing, bug reporting, ideas, and
feature requests. Where as Nagios was incepted in 1999,
Ethan only recently started Nagios Enterprises to com-
mercially support the Open Source project.

One of the greatest features of Nagios is the great script-
ability of its configuration. Nagios is fully configured
with text files, which can easily be generated on the
fly to perfectly fit into your network. Everything from
hosts, services, contacts to groups and alert escalation
plans can be configured in this way. Configuring Na-
gios comes with a pretty steep learning curve, though,
for first-time users. At frequent intervals the Nagios
monitoring deamon will run checks on hosts and ser-
vices you specify via a mechanism of external plugins
that then return status information.

56 • Systems Monitoring Shootout

Problems can be reported to the administrators by means
of SMS, email, instant messages, or a variety of other
ways. Escalation is also supported, so that when the
first contact doesn’t acknowledge the problem within a
predefined time frame, another person or group can be
notified in order to get the problem resolved. Nagios
works by running predefined checks on a configurable
interval through a plethora of external plugins that return
status information to the Nagios service itself. Since
Nagios is solely an alerting tool, and lacks a fancy GUI
with graphs, trending, and other monitoring features, it
is usually accompanied by a separate tool that handles
those features, such as Cacti. The Nagios/Cacti combo
is the most popular one. Several independent projects
also try to improve and extend the pretty rudimentary
and boring looks of the Nagios web interface by imple-
menting a new web-based frontend on top of the Nagios
data and configuration, thus merging the reporting and
monitoring/trending features into one single rich web in-
terface.

Nagios by itself is pretty lightweight, with a C-based
backend and a cgi-based frontend (web GUI), and re-
quires hardly any dependencies to get it in a working
state, and can be used on a very modest (virtual) ma-
chine.

4 GroundWorks Open Source

A couple of months ago we decided to testrun the
GroundWorks Open Source 1.6 RPM. We didn’t get
far as we immediately had to with our efforts, because
GroundWorks decided that their RPM should modify
our httpd initscripts and point to its own httpd instal-
lation in /usr/local/groundworks, hence break-
ing other tools we had on the platform.

So this was our second encounter with the GroundWorks
platform. GroundWorks expects you to untar a tarball,
then run its installation script which comes to ask you
if it can install a bunch of RPMs. Or you can just try to
install these RPMs manually, which fails as the RPM ex-
pects you to have set your JAVA home. I’ve never seen
an RPM that failed in the preinstall because of lacking
environment settings, and this obviously shouldn’t hap-
pen as people expect to be able to install RPMs from
a repository during boot time, obviously lacking those
environment variables.

So we opted for the installer. It requires SELinux to be
disabled, complains about lack of memory (it expects

one GB and I only have 256MB). It also tells me I need
40GB of disk space rather than telling me how much
disk space I really need, it explains on failing me with
200MB short on my rootfs. The installer failed multi-
ple times on me, first telling me I need a different java-
1.5.06 java version than the java-1.5.06 version I had
installed.

The installer knows that mysql isn’t started, but doesn’t
try starting it itself—it tells me to start it before contin-
uing, which I do in another console, and then it aborts
because mysql isn’t started. Error handling seems to be
a feature for the next installer version as the installer to-
day fails on you without errors. Although the underlying
RPM installation process gave clean and clear errors, the
GroundWorks Monitor 5.2 failed to capture them, not
even in its logfile.

So we were pretty disappointed with the install process.
Sadly GroundWorks still didn’t fix the Apache problem
mentioned before, either.

As we are setting up different test platforms in a remote
isolated lab, we often tunnel port 80 of the monitoring
tool to another port on our own machine. GroundWorks
was the first tool that complained about having tunneled
its port 80 to my local port 8888, and insisted on refresh-
ing itself to localhost:80—hence a totally differ-
ent environment, although a problem I could solve. In
this case, you are often forced to tunnel your monitoring
tool and map it on different ports, and a web application
should be unaware of that.

The next problem was the documentation. The installer
process points you to a Bookshelf in the application, a
Bookshelf you can’t access unless you are logged on to
the system, which doesn’t work, as you never got any
information about a default username or password com-
bination.

After 3 days, the forum came back with the obvious
admin:admin answer that didn’t work for me at first.
It worked now.

The auto discovery seemed to work only partly, it found
some hosts, but it seems it doesn’t update the Nagios
config files, so I couldn’t figure out how to get them in
the Nagios overview.

For a Nagios-based tool, you would expect a good and
easy installation procedure and great documentation.
You’d expect to build around a great tool and make it
better.

2008 Linux Symposium, Volume One • 57

5 Zenoss

Bill Karpovich, Mark Hinkle, and Erik Dahl are start-
ing to become regular names in the Open Manage-
ment industry; they bring us Zenoss. Zenoss gives
you a single, integrated solution for monitoring your
entire infrastructure—network, servers, and applica-
tions. They claim to support inventory, configuration,
availability, performance, and events of your services.
Zenoss comes in a Free community edition and a differ-
ent commercially supported version. Its Free version in-
cludes Availability Monitoring, Performance Monitor-
ing, Event Management, and core reporting functional-
ity.

Zenoss likes to compare itself to both proprietary and
open source tools, claiming that unlike the others it is
both easy to install and configure, and it’s affordable. It
is more open, brings no vendor lock-in and has better
community collaboration.

The Zenoss architecture breaks down into three parts.
A user part with the WebConsole/Portal, a Data Layer
(where all the data lives), and the Process Layer that
collects the data via standard protocols. Zenoss is one
integrated package, not some different packages glued
together into a bigger whole. You can configure tem-
plates and map instances to those templates.

In the data layer, Zenoss uses three places to store its
data, its CMDB (Configuration Management DataBase)
is an object model stored in Zope (ZODB). It is obvious
that for historical data they use RRDTool, and the events
are being stored in a MySQL database. A nice mix-and-
match to store everything they need.

The actual work is done by a series of daemons and
control services that provide node discovery, configu-
ration modeling, availability monitoring, performance
monitoring, event collection, and automated responses.
Each of these services can run as a single local instance
or be distributed, hence providing a scalable solution.
Zendisc stands for the device discovery; Zenmodeller
is used to get configuration details and map resources
to the resource model; whereas ZenWinmodeler uses
WMI to discover windows-based services. Different
plugins such as ZenPin, ZenStatus, ZenPerfSNMP, and
ZenProcess are used to check services. ZenSyslog, Zen-
Eventlog, and ZenTrap are used to collect events, and as
the names already show, they respectively collect sys-
log events, WMI events, and SNMP traps. And let’s not

forget ZenActions, which is responsible for notifications
and automated action scripts.

Zenoss is heavily based on Zope and Python for its web
framework, which classifies is as a rather lightweight
platform.

Zenoss has a prebuild VMware Applicance; RHEL,
Fedora, and CentOS packages; and source tarballs
available for SuSE, Debian/Ubuntu, Gentoo, OSX,
FreeBSD, and Solaris.

We downloaded the zenoss-2.1.3-0.el5 RPM from SF.
net.

Upon initial startup, it populates the database and starts
building parts of itself. It almost performs a clean install
in /opt, although different files in its directory don’t
belong to the package ;(

From there it is on to the webbrowser to use the web-
GUI to configure everything. Its autodiscovery func-
tionality uses SNMP. So any host with SNMP will be
autodetected. Others will remain unknown. Autodis-
covery seems to work, but only partially; it detects all
of the devices that use SNMP, but fails to recognize de-
tails as configured in our snmpd config (process lists,
diskspace usage, etc.). We flooded our root partition on
one of the machines on purpose; snmpd was configured
to start alerting at 10% left. Zenoss failed to recognize
that. Shouldn’t we expect this to be working? In the
Main Views, Zenoss has a nice Ajax host relation di-
agram, it realizes hosts are connected to different net-
works and maps them out—really nice feature.

6 OpenNMS

‘OpenNMS: professional software, amateur marketing.’
That’s their slogan, and it is a good reflection of what
they stand for. Their site is mostly technical documen-
tation, no fluff on how good they are how many features
they have, just plain and correct facts.

OpenNMS is one of the older Open NMS platforms
around. Back when they started out, Nagios was the lean
and mean monitoring tool and OpenNMS was the Enter-
prise Grade platform that would take on HP OpenView,
IBM Tivoli, and other proprietary monitoring tools.

In 2001 the choice was easy, you either had Nagios or
OpenNMS, if you had SNMP and weren’t afraid of de-
ploying a J2EE appserver, you went for OpenNMS; oth-
erwise, Nagios. Today things have changed :)

58 • Systems Monitoring Shootout

An OpenNMS instance can watch a large number of
nodes from a single server, with a minimal amount of
configuration and reconfiguration work needed. In an
OpenNMS platform, you can define flexible rules to
specify how often and when certain devices are polled,
to whom different alerts are sent, and so on.

The basic element that OpenNMS monitors—an
interface—is uniquely identified by an IP address. Ser-
vices are mapped to those interfaces, and a number of
interfaces on the same devices can be mapped together
to a node, in OpenNMS terminology. OpenNMS was
one of the first tools around to support autodiscovery.
OpenNMS first polls a device; it tries to connect to an
IP address as defined in the range, then uses SNMP to
collect data.

Events are the core of a Network Monitoring system.
OpenNMS has a daemon running called eventd. It
makes the distinction between two types of events: those
that are generated by OpenNMS itself, and those that are
generated via SNMP traps. Events trigger actions such
as logging a message, triggering an automatic action via
an external script, or triggering the notification system.

Notifications can be sent to users or groups as defined in
OpenNMS, One can configure delays, escalations, and
email addresses to send the alerts to.

Our CentOS testbed was fairly pleased with some good
installation documentation on how to install OpenNMS
using yum. OpenNMS has its own repository, yum.
opennms.org.

7 Zabbix

Zabbix is a network management platform created by
Alexei Vladishev. It is designed to monitor and track
the status of various network services, servers, and other
network hardware. Zabbix has a mission: “To create
a superior monitoring solution available and affordable
for all.” Zabbix was released for the first time in 2001,
and the Zabbix company was founded in 2005 in Riva,
Latvia.

Zabbix has three main parts: the daemon, the agent, and
the web interface. The daemon collects all data from
the agents and populates the database. The independent
web interface then parses that data from the database
and provides the users with an overview of what’s hap-
pening.

It uses MySQL, PostgreSQL, SQLite, or Oracle to store
data. Its web-based frontend is written in PHP. Zab-
bix offers several monitoring options. Simple checks
can verify the availability and responsiveness of stan-
dard services such as SMTP or HTTP without installing
any software on the monitored host. A Zabbix agent can
also be installed on UNIX and Windows hosts to moni-
tor statistics such as CPU load, network utilization, disk
space, etc. As an alternative to installing an agent on
hosts, Zabbix also includes support for monitoring via
SNMP.

As Zabbix uses a database to store its data, this also in-
volves some extra configuration steps. Installing via the
system’s package manager will be straightforward, as
dependencies will be resolved, too. The Zabbix package
contains the MySQL (or other) tables to be imported in
the database. As you install Zabbix on a server, you’ll
probably want the Server and the Webserver installed.
Note that you don’t really need to place them on the
same machine, but of course, you can. The default user
is admin, with no password assigned.

On the Zabbix-server side, all configuration is done us-
ing the web interface. For initial setup, connect as user
admin. The most important part is Configration in the
top-most menu.

In the configuration part, a lot of things can be config-
ured or customized—from adding hosts to customizing
the look and feel of the web interface itself.

We’ll start with some general Zabbix-info. Simple ex-
ample: we have a host running an FTP server; when the
FTP service goes down, we’d like to be alerted. As with
probably all kinds of monitoring applications, you first
need to add a host. (More on templates later, let’s just
assume we defined a host with a name and an IP ad-
dress). When this is done, an item for this host can be
created. An item has all the data to define how a check
is to be performed on the host. (Important ones: a name
for the item, a check type: info about what data we want
and how to get it, a check interval.) The result is that
a key is stored for a certain host (e.g., FTP-key being
0 or 1, off or on). A simple check is used by Zabbix
to monitor agentless hosts. They include ICMP, HTTP,
and others. The next thing is to make sure the system
notices when the FTP service goes down and does send
us a notification. In Zabbix terms, this means we need
to define a trigger and an action. The trigger is quite
simple in this case: when the FTP is down, trigger to

2008 Linux Symposium, Volume One • 59

YES. The trigger uses an expression, in which a key is
evaluated. Now that we have a key and we have config-
ured a trigger on it, we want the system to send us an
email when the trigger’s state changes. In Zabbix, this
is done by adding an Action. An action has an Event
Source (in this case, it is a trigger), a condition, and an
operation. In the condition, we make the link with the
correct trigger; in the operation, we simply say to send
an email to a certain user. A Zabbix-template is made
of several items and triggers. All templates are actually
just some kind of special host-definitions, which are put
into the templates-group. It does not contain any ac-
tions. So when linking a host with a template, a lot of
items and triggers will be added for that host, but you
will still need to define actions yourself. Most of the de-
fault templates in Zabbix are using items based on keys
grabbed from the Zabbix agent. So if you want to get up
and running as soon as possible, just install the Zabbix-
agent on the host to be monitored. One way to add hosts
is by using Discovery. Zabbix can scan a network, or a
part of it, and add hosts it finds. The scan can be defined.
E.g., Zabbix can check a network range for hosts that are
running the Zabbix agent, or you can set other require-
ments like the presence of a ssh-server, etc. Based on
the output of this scan, Zabbix can use an Action to do
something with the host it has found. E.g., a discovered
Linux host that is running the Zabbix-agent can directly
be put in the Linux-group and the Linux Template can
be assigned right away.

As mentioned earlier, Zabbix will use an action to act on
a trigger. Zabbix can use different methods to send out
alerts, such as email, Jabber messages, or text messages
to a mobile phone. One can also define the days and
hours on which a person can receive alerts.

Zabbix uses items that have a key containing data; this
data can easily used to produce graphs. And Zabbix
seems to be built keeping this in mind. By default, the
data of items can be seen in a graph. Just go to the
top-most Monitoring tab and select Latest data. Graphs
viewed here are called Simple Graphs. Data is stored
during one year by default, but this can be changed
when creating an item. Zabbix can also monitor Ap-
plications. For example, an application MySQL Server
may contain all items which are related to the MySQL
server: availability of MySQL, disk space, processor
load, transactions per second, number of slow queries,
etc. Apart from the default graphs, you can also create
custom graphs. With the default ones, there is always

just one item present in the graph. When you create
a graph yourself, you can group multiple items in one
graph.

Zabbix also provides an Overview page. Several of these
pages can be created; they are called Screens in Zab-
bix terminology. A screen is a combination of several
types of information—e.g., Simple graphs, custom cre-
ated graphs, host info, trigger info, or event info. One
can define what is being displayed in a screen. It could
be set up in a way as to create a perfect status-page for
the monitoring system.

8 Hyperic-HQ

Hyperic claims to be Open Source Web Infrastructure
Monitoring and Management Software; it aims at au-
tomating your operations. Hyperic HQ is GPL, but they
also offer a Silver Support package that includes low-
cost support.

Hyperic has Auto-Discovery, it understands a lot of
technologies over 9 different operating systems, and it
is within their goals to manage everything centrally and
quickly, allowing their customers to focus on serious is-
sues. HQ collects both real-time and historical metrics
from production environments including hardware, net-
work, and application layers of your infrastructure with
what they claim is no need for invasive instrumentation.
Hyperic does performance tracking, alerting upon per-
formance problems or inventory changes and even diag-
noses errors to issue corrective actions remotely. They
claim to be able to correlate events, config changes, or
even security events in your environment.

The list of tools and platforms that Hyperic HQ knows
about is growing every day. Not only does Hyperic man-
age these products, it does so by talking to the native
APIs that these products provide. Unlike different other
tools we’ve ran into, Hyperic goes IN the application
you are monitoring.

Looking at Hyperic HQ from an architectural point of
view, they isolate different layers. They start out with
a platform which is a machine / operating system com-
bination or a network or storage devices. Hyperic HQ
likes to look at components such as the CPU, the Net-
work interfaces, or the Filesystems. One step further is
the server. The server is the actual piece of software
installed on the machine—it could be a web server, a

60 • Systems Monitoring Shootout

database, or a messaging server. Next up is the service.
An example might be the vhost that is configured within
a web server. The bigger picture for HypericHQ is the
Application, which is usually a combination of differ-
ent components that need to be working, the combina-
tion of an Apache virtual host, filesystem, and a MySQL
database.

Hyperic is a typical Agent Server setup, The Hyperic
agent is a “lightweight Java-based client” that consumes
between 10 and 70MB of memory, depending on the
number of plugins enabled. Its kernel is capable of pro-
cessing commands from its agent subsystem like mea-
suring, controlling, autodiscovery, and event tracking,
and it will be acting as a listener to delegate requests to
the appropriate system. On top of that kernel a plugin
layer is available that allows different subsystems to in-
teract with a particular product. The Agent also acts as
a local cache for data when it can’t reach the HQ server.

For the HQ-server, at least 1GB of RAM is advised—
but for deployments with more than 25 agents, how-
ever, 4GB is recommended. Hyperic HQ is running its
own Jboss Application server which might be an un-
wanted overhead for some people. Hyperic HQ also
ships with its own PostgreSQL database. Hyperic HQ
server is in charge of processing all incoming monitor-
ing data, detecting alert conditions and triggering send-
ing out messages, managing the inventory, scheduling
auto-discovery scans, and last but not least, processing
all the commands initiated by the end user. One of the
features not often seen in a monitoring tool is the avail-
ability to cluster the framework, meaning that one can
spread the load of different aspects over more nodes of
the monitoring framework.

Hyperic HQ has an active community and even its own
HyperForge where people can find all kind of different
plugins.

Back in the early days they only had a couple of tarballs,
but those were fine. However, when you want to auto-
mate the agent installation, a package such as an RPM
would be better. Seems like recently indeed Hyperic fig-
ured out that an RPM would be interesting. . .

The RPM does almost everything for you. Manually
starting the HQ Server, however, should be done using
the Hyperic user. The problem with this RPM, however,
is that it unpacks a tarball. From here it is a similar
action with your clients. After configuring your clients

(you can copy a prepared agent.properties file
around), you’ll see a list of autodetected services in your
Dashboard. And Hyperic proposes you to add this to its
inventory. Now, Hyperic isn’t flawless—it detects a lot
of services, only to fail, finding different versions of that
same service. For example, it finds the local HQ JBoss
that it requires for its own workings, but fails to find
the JBoss 4.0.3 installed on another server that it is sup-
posed to monitor. However, modifying the parameters
in the agent.properties file should solve that.

Most other Monitoring systems just detect your MySQL
being up or down. Hyperic tells you how fast your in-
dexes and tables are growing, and how many QPS you
have on a specific table. The information is in there;
however, we have to admit that sometimes it takes a
while to find it. :)

Apart from looking at your database, Hyperic also gives
you a GUI to optimize and check your tables. So Hy-
peric goes beyond monitoring, alerting, and trending
into fully managing your infrastructure.

Also, when working with different JBoss versions, Hy-
peric knows about JMX, giving you more fine-grained
information.

The big disadvantage of Hyperic is that it requires an
awful lot of resources. Hyperic might call a 70MB-
eating JVM lightweight, but we call it fat and over-
weight (especially when compared to other alterna-
tives). When you are trying to measure performance of
an ill-behaving server, adding the Hyperic client to that
server will, for sure, have an impact on your system. On
the other hand, however, you can really drill into an ap-
plication with Hyperic, you can look deep inside your
databases and application servers. And that with almost
no configuration efforts.

9 Conclusion

We covered a lot in just 3.5 weeks; getting a full-blown
monitoring tools shootout done is a lot of work. We tried
our best to test as much as possible and to get a good
idea of what worked where and how things worked out
of the box. We spent equal time on most of the solutions.

With such little time we had little data for trending anal-
ysis, but we haven’t shut down our boxen, they’ll be
gathering more data, and we’ll update our findings as
we go.

2008 Linux Symposium, Volume One • 61

Nagios is still one of the most-deployed tools around,
lots of people prefer it because they are used to it and it
does what they expect. But do we want more? Do we
want easier installations, trending, and so on?

Looking at the installation effort, GroundWorks is ob-
viously the poorest performer in the class. Other tools
have prepackaged builds in mainstream Linux distribu-
tions that simply work. Where as GroundWorks makes
the process more difficult and fails to deliver clear doc-
umentation.

On the Auto discovery part, both Agent-based tools
score fairly good. Compared to Zabbix, Zenoss doesn’t
even come close in discovering services, or at least isn’t
that intuitive.

Zabbix also positively surprised us regarding trending
and quick graph correlation, combined with a good set
of default templates that get you up to speed in no time.

Part of being a good tool is the capability of not hav-
ing to look at a manual, of not having to redefine a set of
terms so your users understand what you mean. Ground-
Works and Zenoss fail there.

We’ve seen GroundWorks trying to add its own features
to Nagios. Because they wanted to build on the shoul-
ders of giants, not reinventing the wheel. The question,
however, is: did they make it better? We’re not con-
vinced.

On the other hand, we see the OpenNMS and Hyperic
people with different monitoring approaches (agent-
based vs. agent-less). The OpenNMS folks have written
a plugin for Hyperic-HQ that interacts with OpenNMS.
This way you really get the best of both worlds. You get
the good features of OpenNMS network device integra-
tion within one view of Hyperic’s application overview.

Hyperic gives you a lot more than a regular monitoring
tool, as it goes deep into the applications itself. On the
negative side, you might call HypericHQ bloated.

Mark Hinkle, however, mentioned an interesting point
in his blog:

“Nagios that has been around longer than any
of the monitoring solutions mentioned here
they have a large base of plugins and tests
used to check status. Hyperic, Groundwork,
OpenNMS, and Zenoss all support Nagios

plugins as it is the most utilitarian approach
to expanding their products rather than create
new standards that might prevent users from
using previous customizations and gives flex-
ibility to try new solutions. This adherence to
standards enforced (or at least motivated) by
users rather than vendors is a bit of a novelty.”

As mentioned, these are our initial findings. We plan to
continue our evaluation and keep you posted on our site.

62 • Systems Monitoring Shootout

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

