
Suspend-to-RAM in Linux R©

A. Leonard Brown
Intel Open Source Technology Center

len.brown@intel.com

Rafael J. Wysocki
Institute of Theoretical Physics, University of Warsaw

rjw@sisk.pl

Abstract

Mobile Linux users demand system suspend-to-RAM
(STR) capability due to its its combination of low la-
tency and high energy savings.

Here we survey the design and operation of STR in
Linux, focusing on its implementation on high-volume
x86 ACPI-compliant systems. We point out significant
weaknesses in the current design, and propose future en-
hancements.

This paper will be of interest primarily to a technical au-
dience of kernel and device driver developers, but others
in the community who deploy, support, or use system
sleep states may also find it useful.

1 Introduction

When a computer is powered on, it enters the working
state and runs applications.

When a computer powered off, it consumes (almost) no
energy, but it doesn’t run applications.

As illustrated in Figure 1, several power-saving sys-
tem sleep states are available between the working and
power-off states. System sleep states share several prop-
erties:

• Energy is saved.

• The CPUs do not execute code.

• The I/O devices are in low-power states.

• Application state is preserved.

However, system sleep states differ from each other in
two major ways:

• The size of the energy-saving benefit.

Suspend
to

RAM

Resume
from
RAM

Working State

Standby State

Suspend State

Hibernate State

Standby Resume

Hibernate Restore
from
Hibernation

Deep: maximum power sav ings

Shal low:
min imum la tency

Power Off

Figure 1: System States

• The wake-up latency cost required to return to the
working state.

Linux supports three types of system-sleep states:
standby, suspend-to-RAM, and hibernate-to-disk.

Standby is the most shallow system-sleep state. This
means that it enjoys minimal wake-up latency. How-
ever, standby also delivers the least energy savings of
the sleep states.

Suspend-to-RAM is a deeper sleep state than standby.
STR saves more energy, generally by disabling all of
the motherboard components except those necessary to
refresh main memory and handle wake-up events.

In practice, STR generally enjoys the same latency as
standby, yet saves more energy. Thus standby support
is typically of little benefit, and computer systems often
do not provide it.

• 39 •

40 • Suspend-to-RAM in Linux

struct platform_suspend_ops

platform driver

Power Management CoreGeneric:

Platform
Specific:

Figure 2: Linux PM infrastructure

Hibernate-to-disk is deeper than suspend-to-RAM. In-
deed, it shares the same (almost zero) energy consump-
tion as the power-off state. This makes hibernate valu-
able when application state needs to be preserved for a
long period. Unfortunately hibernate resume latency is
quite high, so it generally is not as useful as STR.

Here we focus on suspend-to-RAM, popular due to its
combination of relatively low latency and relatively high
energy savings. We first introduce the Linux Power
Management (PM) Core, which is responsible for con-
trolling suspend and resume operations at the kernel
level. Next we describe the role of the platform firmware
and ACPI in STR, and we provide an overview of the
operations performed by the Linux kernel during sus-
pend and resume. We examine some parts of the ker-
nel’s STR infrastructure in more detail, focusing on
the known issues with the current implementation and
planned improvements. Finally, we consider some prob-
lems related to the handling of hardware, especially
graphics adapters, their current workarounds, and future
solutions.

2 The Linux Power Management Core

STR and standby are available only on systems provid-
ing adequate hardware support for them: The system
main memory has to be powered and refreshed as ap-
propriate so that its contents are preserved in a sleep
state. Moreover, the hardware must provide a mech-
anism making it possible to wake the system up from
that state and pass control back to the operating system
(OS) kernel. It is also necessary that power be at least
partially removed from devices before putting the sys-
tem into a sleep state, so that they do not drain energy

struct platform_suspend_ops {
int (*valid)(suspend_state_t state);
int (*begin)(suspend_state_t state);
int (*prepare)(void);
int (*enter)(suspend_state_t state);
void (*finish)(void);
void (*end)(void);

};

Figure 3: struct platform_suspend_ops

in vain. The part of the system providing this function-
ality is often referred to as the platform. It defines the
foundation of the system—the motherboard hardware as
well as the firmware that ships with it.1

To carry out STR and standby power transitions, the
Linux kernel has to interact with the platform through
a well-defined interface. For this purpose, the kernel
includes platform drivers responsible for carrying out
low-level suspend and resume operations required by
particular platforms. They supply a set of callbacks via
struct platform_suspend_ops shown in Fig-
ure 3. The .valid() and .enter() callbacks are
mandatory, while the others are optional.

The platform drivers are used by the PM Core. The
PM core is generic; it runs on a variety of platforms
for which appropriate platform drivers are available, in-
cluding ACPI-compatible personal computers (PCs) and
ARM platforms.

This paper focuses primarily on ACPI-compatible plat-
forms. The next section describes how ACPI fits
into the system architecture and describes some of the
specific capabilities that ACPI provides for suspend/
resume. Then we combine the PM core and ACPI dis-
cussions by stepping through the suspend and resume
sequences on an ACPI platform, in which all six of the
platform_suspend_ops are invoked.

3 ACPI and Platform System Architecture

Platform hardware defines the programming model seen
by software layers above. Platforms often augment this
programming model by including an embedded con-
troller (EC) running motherboard firmware. The EC
off-loads the main processors by monitoring sensors for

1The motherboard hardware includes not only the major proces-
sor, memory, and I/O sub-systems, but also interrupt controllers,
timers, and other logic that is visible to the software layers above.

2008 Linux Symposium, Volume One • 41

Linux Kernel
Drivers, ACPICA Core

ACPI Registers,
ACPI Tables & BIOS

Platform Hardware
Platform BIOS & firmware

Applications, System Util i t ies
User
Space

Kernel
Space

ACPI
Specification

Platform
Defined

Figure 4: Platform Abstraction Layers

buttons, batteries, temperature, fans, etc. In addition,
personal computer (PC) motherboards include a PC-
compatible BIOS (Basic Input Output System) responsi-
ble for initializing the system and presenting some stan-
dard services, such as booting, to the OS kernel.

The ACPI specification [ACPI-SPEC] defines a layer
of abstraction that sits above the platform-defined layer.
ACPI specifies that the platform hardware must support
certain standard registers, and that the BIOS be extended
to export tables in memory to guide the OS kernel. Fig-
ure 4 shows how ACPI fits into the system architecture.

Some ACPI tables are simply static data structures that
the ACPI BIOS uses to describe the machine to the OS.
Other ACPI tables contain functions, known as meth-
ods, to be executed in the kernel, encoded in the ACPI
Machine Language (AML).

AML methods are first expressed in ACPI Source Lan-
guage (ASL) and then translated into the AML byte
code with the help of an ASL compiler. The compiled
AML tables are then burned into PROM when the moth-
erboard is manufactured.

AML is executed by the ACPI Component Architec-
ture [ACPICA] Core’s AML interpreter residing in the
next layer up—the Linux kernel. This design allows
AML, which is effectively ACPI BIOS code, to run in
kernel context.2 That, in turn, allows platform design-
ers to use many different types of hardware components

2Before ACPI, the choices to support run-time BIOS code were

and to tailor the interfaces between those components
and the OS kernel to their needs.

However, since the AML code is obtained by compiling
source code written in ASL, the preparation of an ACPI
platform involves software development that is prone
to human error. There are additional problems related
to the ACPI’s abstraction capability, some of which are
discussed in Section 11.

4 ACPI and Suspend to RAM

Aside from its configuration and run-time power-
management responsibilities, ACPI also standardizes
several key hooks for suspend and resume:

1. Device power states.

2. Device wake-up control.

3. Standard mechanism to enter system sleep states.

4. Firmware wake-up vector.

When discussing ACPI and devices, it is important to re-
alize that ACPI firmware is stored into EEPROM when
a motherboard is created. Thus ACPI can be aware of
all logic and devices that are permanently attached to
the motherboard, including on-board legacy and PCI de-
vices, device interrupt routing, and even PCI slot hot-
plug control. But ACPI has no knowledge of the devices
that may later be plugged into I/O slots or expansion
buses.

ACPI defines “Device Power States” (D-states) in terms
of power consumption, device context retention, device-
driver restore responsibilities, and restore latency. The
PCI Power Management specification [PCI-PM] simi-
larly defines the D-states used by PCI devices; ACPI
extends the notion of D-states to non-PCI motherboard
devices.

D-states can be used independently of system sleep
states, for run-time device power management. Note,
however, that D-states are not performance states; that
is, they do not describe reduced levels of performance.
A device is non-functional in any D-state other than D0.

to call the BIOS directly in real mode, which required a real-mode
OS, or to invisibly invoke the System Management Mode (SMM).

42 • Suspend-to-RAM in Linux

System sleep states, such as STR, mandate the use of D-
states. Before D-states were implemented in Linux, we
found several systems that would suspend and resume
from RAM successfully, but they had devices which
would continue to drain energy while the system was
suspended—which severely shortened the the system’s
ability to sleep on battery power.

ACPI also defines a mechanism to enable and disable
device wake-up capability. When the system is in the
working state, this mechanism can be used to selectively
wake up a sleeping device from a D-state. When the
whole system is suspended, this capability may be used
to enable automatic system resume.

Many devices export native wake-up control. In partic-
ular, modern Ethernet Network Interface Cards (NIC)
support Wake-on-LAN (WOL) and their drivers export
that function via ethtool(1). Note that this has to
be a native capability, because ACPI firmware can not
provide wake-up support for add-on adapters.

Today the wake-up support in Linux is in flux. There is
a legacy hook for ACPI wake-up capability in /proc/
acpi/wakeup, but that interface is nearly unusable, as
each entry refers to an arbitrary 4-letter ASL name for
a device that the user (or an application) cannot reliably
associate with a physical device. The device core pro-
vides its own wakeup API in /sys/devices/.../
power/wakeup; this is not yet fully integrated with
the ACPI wake-up mechanism.

The ACPI specification carefully describes the sequence
of events that should take place to implement both sus-
pend and resume. Certain platform ACPI hooks must
be invoked at various stages in order for the platform
firmware to correctly handle suspend and resume from
RAM. These hooks are mentioned in later sections that
detail the suspend and resume sequence.

Finally, ACPI provides a standard mechanism to tell the
platform what address in the kernel to return to upon
resume.

More information about ACPI in Linux can be found in
previous Linux Symposium presentations [ACPI-OLS],
as well as on the Linux/ACPI project home page
[ACPI-URL].

5 Suspend Overview

There are two ways to invoke the Linux kernel’s suspend
capability. First, by writing mem into /sys/power/

state.3 Second, with the SNAPSHOT_S2RAM ioctl
on /dev/snapshot, a device provided by the user-
space hibernation driver. This second method is pro-
vided only as a means to implement the mixed suspend-
hibernation feature4 and will not be discussed here.

Once mem has been written to /sys/power/state,
the PM core utilizes the platform_suspend_ops
in the steps shown in Figure 5. First, it invokes the
platform driver’s global .valid() method, in order to
check whether the platform supports suspend-to-RAM.

The .valid() callback takes one argument represent-
ing the intended system-sleep state. Two values may
be passed by the PM core, PM_SUSPEND_STANDBY
and PM_SUSPEND_MEM, representing the standby and
the suspend sleep states, respectively. The .valid()
callback returns true if the platform driver can asso-
ciate the state requested by the PM core with one of
the system-sleep states supported by the platform. Note,
however, that on non-ACPI systems the choice of the ac-
tual sleep state is up to the platform. The state should
reflect the characteristics requested by the core (e.g.,
the STR state characteristics if PM_SUSPEND_MEM is
used), but the platform may support more than two such
sleep states. In that case, the platform driver is free to
choose whichever sleep state it considers appropriate.
But the choice is made later, not during .valid().

If the .valid() platform callback returns true, the
PM core attempts to acquire pm_mutex to prevent
concurrent system-wide power transitions from being
started. If that succeeds, it goes on to execute sys_
sync() to help prevent unwritten file system data from
being lost in case the power transition fails in an unre-
coverable manner. It switches the system console to a
text terminal in order to prevent the X server from in-
terfering with device power-down. It invokes suspend
notifiers to let registered kernel subsystems know about
the impending suspend, as described in Section 7. It
freezes the tasks, as detailed in Section 8. This puts all
user processes into a safe, static state: They do not hold
any semaphores or mutexes, and they cannot run until
the PM core allows them to.

3The old STR user interface, based on /proc/acpi/sleep,
is deprecated.

4This feature first creates a hibernation image and then suspends
to RAM. If the battery lasts, then the system can resume from RAM,
but if the battery fails, then the hibernation image is used. An exper-
imental implementation is provided by the s2both utility included in
the user-land suspend package at http://suspend.sf.net.

2008 Linux Symposium, Volume One • 43

acquire pm_mutex

.valid

suspend device class

sys_sync

console switch

suspend notif iers

freeze tasks

.begin

freeze console

disable non-boot CPUs

disable interrupts

.suspend_late()

.enter

abort

.prepare
set f i rmware waking vector
_PSW (Prepare wake devices)
_PTS (Prepare to Sleep)
_SST (System indictor status)

PM: Syncing file systems ... done.

abort

suspend system devices

suspend device bus

suspend device type

Figure 5: Suspend Sequence

Next the PM core invokes the .begin() platform-
suspend callback to notify the platform driver of the de-
sired power transition. The .begin() callback takes
one argument representing the system-sleep state re-
quested by the PM core. The interpretation as well as
the possible values of its argument are the same as for
the .valid() callback. At this point, however, the
platform driver chooses the sleep state in which to place
the system and stores the information for future refer-
ence. The choice made by the platform driver is not di-
rectly conveyed to the PM core, which does not have the
means to represent various sleep states that may be sup-
ported by different platforms and does not really need
that information. Still, the sleep state chosen by the plat-
form driver, the target state of the transition, may deter-
mine the low-power states (D-states on ACPI systems)
into which devices should be put. For this reason, the
platform driver provides device drivers with information
on the low-power states in which they are supposed to
place their devices. The .begin() callback returns 0
on success or an error code on failure, in which case the
PM core aborts the transition.

After .begin() succeeds, the PM core blocks system
console messages in order to protect the console de-
vices from being accessed while they are suspended,5

and starts suspending devices (i.e., putting them in low-
power states). Devices are suspended in reverse order
of registration; in this way the kernel should never find
itself stuck in a situation where it needs to access a sus-
pended device or where a suspended parent has an ac-
tive child. To suspend a device, the PM core invokes the
suspend callbacks provided by the device-class driver,
device-type driver, and bus-type driver associated with
it, in that order.

Device-class, device-type, and bus-type drivers can
each implement one device-suspend method, called
.suspend(), and one corresponding device-resume
method, called .resume(). Bus-type drivers
can define extra device-suspend and -resume meth-
ods to be executed with interrupts disabled, called
.suspend_late() and .resume_early(), re-
spectively. These additional methods are invoked after
the non-boot CPUs have been disabled, as described be-
low.

Each of the suspend callbacks takes two arguments,
5Since this mechanism makes debugging difficult, there is a

no_console_suspend kernel command-line parameter which
prevents it from triggering.

44 • Suspend-to-RAM in Linux

a pointer to the appropriate device structure and a
pm_message_t argument, representing the transition
being carried out. Currently five values of this ar-
gument are recognized: PMSG_ON, PMSG_FREEZE,
PMSG_SUSPEND, PMSG_HIBERNATE, and PMSG_
PRETHAW. The first represents the transition back
to the working state, while PMSG_FREEZE, PMSG_
HIBERNATE, and PMSG_PRETHAW are specific to hi-
bernation. Thus only PMSG_SUSPEND is used for
standby and STR. Since the same callbacks are in-
voked for both suspend and hibernation, they must de-
termine the proper actions to perform on the basis of the
pm_message_t argument.

The device-class, device-type, and bus-type suspend
callbacks are responsible for invoking the suspend call-
backs implemented by individual device drivers. In
principle the names of those suspend callbacks may
depend on the device class, device type, or bus type
the device belongs to, but traditionally drivers’ suspend
callbacks are called .suspend() (or .suspend_
late() if they are to be executed with interrupts dis-
abled). Also, all of them take two arguments, the first of
which is a pointer to the device structure and the second
of which is as described above.

The framework for suspending and resuming devices is
going to be changed. The current framework has some
deficiencies: It is inflexible and quite inconvenient to
use from a device-driver author’s point of view, and it is
not adequate for suspending and resuming devices with-
out the freezing of tasks. As stated in Section 8, the
freezing of tasks is planned to be phased out in the fu-
ture, so a new framework for suspending and resuming
devices (described in Section 9) is being introduced.

After executing all of the device-suspend callbacks, the
PM core invokes the .prepare() platform suspend
method to prepare the platform for the upcoming transi-
tion to a sleep state. For the ACPI platform, the _PTS
global-control method is executed at this point.

Next the PM core disables non-boot CPUs, with the help
of the CPU hot-plug infrastructure. We will not dis-
cuss this infrastructure in detail, but it seems important
to point out that the CPU hot-plug notifiers are called
with special values of their second argument while non-
boot CPUs are being disabled during suspend and en-
abled during resume. Specifically, the second argu-
ment is bitwise OR’ed with CPU_TASKS_FROZEN, so
that the notifier code can avoid doing things that might

lead to a deadlock or cause other problems at these
times. The notifier routines should also avoid doing
things that are not necessary during suspend or resume,
such as un-registering device objects associated with a
CPU being disabled—these objects would just have to
be re-registered during the subsequent resume, an over-
all waste of time.6

After disabling the non-boot CPUs, the PM core dis-
ables hardware interrupts on the only remaining func-
tional CPU and invokes the .suspend_late()
methods implemented by bus-type drivers which, in
turn, invoke the corresponding callbacks provided by
device drivers. Then the PM core suspends the so-called
system devices (also known as sysdevs) by executing
their drivers’ .suspend() methods. These take two
arguments just like the regular .suspend() methods
implemented by normal (i.e., not sysdev) device drivers,
and the meaning of the arguments is the same.

To complete the suspend, the PM core invokes the
.enter() platform-suspend method, which puts the
system into the requested sleep state. If the .begin()
method is implemented for given platform, the state
chosen while it was executed is used and the argument
passed to .enter() is ignored. Otherwise, the plat-
form driver uses the argument passed to .enter() to
determine the state in which to place the system.

6 Resume Overview

The resume sequence is the reverse of the suspend se-
quence, but some details are noteworthy.

Resume is initiated by a wake-up event—a hardware
event handled by the platform firmware. This event may
be opening a laptop lid, pressing the power button or a
special keyboard key, or receiving a magic WOL net-
work packet.

Devices must be enabled for wake-up before the sus-
pend occurs. On ACPI platforms, the power button is
always enabled as a wake-up device. The sleep button
and lid switches are optional, but if present they too are
enabled as wake-up devices. Any platform device may
be configured as a wake-up device, but the power, sleep,
and lid buttons are standard.

6It also would mess up the PM core’s internal lists, since the
objects would be re-registered while they were still suspended.

2008 Linux Symposium, Volume One • 45

When a wake-up event occurs, the platform firmware
initializes as much of the system as necessary and passes
control to the Linux kernel by performing a jump to a
memory location provided during the suspend. The ker-
nel code executed at this point is responsible for switch-
ing the CPU to the appropriate mode of operation.7

This sequence is similar to early boot, so it is generally
possible to reuse some pieces of the early initialization
code for performing the resume CPU-initialization op-
erations.

Once the CPU has been successfully reinitialized, con-
trol is passed to the point it would have reached if the
system had not been put into the sleep state during the
suspend. Consequently the PM core sees the platform-
suspend callback .enter() return zero. When that
happens, the PM core assumes the system has just wo-
ken up from a sleep state and starts to reverse the actions
of the suspend operations described in Section 5.

It resumes sysdevs by executing their .resume() call-
backs, and then it invokes the device-resume callbacks
to be executed with interrupts disabled. That is, it ex-
ecutes the .resume_early() callbacks provided by
bus-type drivers; they are responsible for invoking the
corresponding callbacks implemented by device drivers.
All of these callbacks take a pointer to the device object
as their only argument.

Subsequently the non-boot CPUs are enabled with the
help of the CPU hot-plug code. As mentioned above,
all of the CPU hot-plug notifiers executed at this time
are called with their second argument OR-ed with CPU_
TASKS_FROZEN, so that they will avoid registering
new device objects or doing things that might result in a
deadlock with a frozen task.

After enabling the non-boot CPUs, the PM core calls the
.finish() platform-suspend method to prepare the
platform for resuming devices. In the case of an ACPI
platform, the _WAK global-control method is executed
at this point.

Next the PM core resumes devices by executing the
device-resume methods provided by bus-type, device-
type, and device-class drivers, in that order. All of
these methods are called .resume() and take a device
pointer as their only argument. They are responsible for
invoking the corresponding methods provided by device

7For example, protected mode on an i386 PC or 64-bit mode on
an x86-64 system.

resume at wake vector

unblock console

initialize CPU

.resume system devices

.resume_early()

resume non-boot CPUs

.finish

.resume device bus

thaw tasks

resume notif iers

console switch

.end
forget target state

.enter

_WAK (wakup)

release pm_mutex

.resume device class

.resume device type

Figure 6: Resume Sequence

46 • Suspend-to-RAM in Linux

drivers. Although these methods may return error codes,
the PM core cannot really do anything about resume er-
rors; the codes are used for debugging purposes only.
Devices are resumed in order of registration, the reverse
of the order in which they were suspended.

Once devices have been resumed, the PM core un-
blocks the system console so that diagnostic messages
can be printed, and calls the .end() platform method.
This method is responsible for doing the final platform-
resume cleanup. In particular, it assures that the in-
formation about the target sleep state of the system
stored by .begin() has been discarded by the plat-
form driver.

The last three steps of resume are the thawing of tasks,
invoking suspend notifiers with the appropriate argu-
ment (PM_POST_SUSPEND), and switching the system
console back to whatever terminal it had been set to be-
fore the suspend started. Finally, the PM core releases
pm_mutex.

7 Suspend and Hibernation Notifiers

Suspend and hibernation notifiers are available for sub-
systems that need to perform some preparations before
tasks are frozen (see Section 8). For example, if a device
driver needs to call request_firmware() before a
suspend, that should be done from within a suspend no-
tifier.

The notifiers are registered and un-registered using the
register_pm_notifier() and unregister_
pm_notifier() functions, respectively. Both these
functions take one argument, a pointer to an appro-
priately populated struct notifier_block. If
there is no need to un-register a suspend notifier, it can
be registered with the help of the simplifying macro
pm_notifier(), which takes only a function name
and a priority as arguments.

The notifiers are called just prior to freezing tasks
during both suspend and hibernation with their sec-
ond argument set to PM_SUSPEND_PREPARE or PM_
HIBERNATION_PREPARE, respectively,8 as well as
during resume from a sleep state or hibernation with
the second argument equal to PM_POST_SUSPEND or
PM_POST_HIBERNATION, respectively. In addition,

8They also are called during resume from hibernation with PM_
RESTORE_PREPARE, but we will not discuss that here.

they are called if suspend or hibernation fails. The
PM core does not distinguish these invocations from the
calls made during a successful resume; for this reason,
the notifier code should be prepared to detect and han-
dle any potential errors resulting from a suspend fail-
ure. Regardless, the rule is that if the notifiers were
called with PM_SUSPEND_PREPARE during suspend,
then they are called with PM_POST_SUSPEND to undo
the changes introduced by the previous invocation, ei-
ther during resume or in a suspend error path.

Notifiers return zero on success; otherwise they return
appropriate error codes. However, while an error code
returned by a notifier called during suspend causes the
entire suspend to fail, error codes returned by notifiers
called during resume are ignored by the PM core, since
it is not able to act on them in any significant way.

8 Freezing Tasks

In both suspend and hibernation, tasks are frozen before
devices are suspended. This assures that all user-space
processes are in a stable state in which they do not hold
any semaphores or mutexes, and they will not continue
running until the PM core allows them. This mechanism
was introduced with hibernation in mind, to prevent data
from being written to disks after the hibernation image
was created. Otherwise the on-disk data would not re-
flect the information preserved within the hibernation
image, leading to corruption when the system resumed.
Historically, Linux’s support for hibernation has been
much more robust than its support for STR, and drivers’
suspend and resume callbacks were designed and tested
with hibernation in mind. They generally expected tasks
to be frozen before they were executed. Since the same
callbacks were (and still are) used for both STR and
hibernation, it became necessary to freeze tasks before
STR as well as before hibernation.

The piece of code that freezes tasks is called the freezer.
It is invoked by the PM core after the suspend no-
tifiers are called (see Section 7) and just before the
.begin() platform-suspend method is executed. It
works by traversing the list of all tasks in the system
and setting the TIF_FREEZE flag for the ones marked
as freezable (i.e., those without the PF_NOFREEZE flag
set).

It does this first for user-space tasks, calling signal_

2008 Linux Symposium, Volume One • 47

wake_up() on each of them.9 The code uses a busy
loop in which the freezer checks if there still are any
tasks with TIF_FREEZE set. The loop finishes when
there are none left, or the only remaining ones also have
the PF_FREEZER_SKIP flag set.10

The tasks for which TIF_FREEZE has been
set are forced by the signal handler to call
refrigerator(). This function unsets
TIF_FREEZE, sets the PF_FROZEN flag for the cur-
rent task, and puts it into the TASK_UNINTERRUPTIBLE
state. The function will keep the task in this state as
long as the PF_FROZEN flag is set; the PM core has
to reset that flag before the task can do any more
useful work. Thus, the tasks that have PF_FROZEN
set and are inside the refrigerator() function are
regarded as “frozen.” As a result of the way in which
refrigerator() is entered, the frozen tasks cannot
hold any semaphores or mutexes, so it is generally safe
to leave them in this state before suspending devices.

When all of the user-space tasks have been frozen,
the freezer sets TIF_FREEZE for the remaining freez-
able tasks (i.e., freezable kernel threads). They also
are supposed to enter refrigerator(). But while
user-space tasks are made call refrigerator() by
the generic signal-handling code, kernel threads have
to call it explicitly in order to be frozen. Specifi-
cally, they must call the try_to_freeze() func-
tion in suitable places. Moreover, the freezer does
not call fake_signal_wake_up() on them, since
we do not want to send a fake signal to a kernel
thread. Instead the freezer calls wake_up_state(p,
TASK_INTERRUPTIBLE) on those tasks (where p is
a pointer to the task’s struct task_struct ob-
ject). This causes the tasks to be woken up in case they
are sleeping—but it also means that kernel threads in the
TASK_UNINTERRUPTIBLE state cannot be frozen.11

Although freezing tasks may seem to be a simple
mechanism, it has several problems. First of all, the
main limitation of the freezer (inability to handle un-
interruptible tasks) causes it to fail in many cases where
we would like it to succeed. For example, if there

9The freezer distinguishes user-space tasks from kernel threads
on the basis of the task’s mm pointer. If this pointer is NULL or has
only been set temporarily, the task is regarded as a kernel thread;
otherwise it is assumed to belong to user-space.

10This allows the freezer to handle some corner cases, such as the
vfork() system call.

11This also applies to user-space processes in that state.

is a task waiting on a filesystem lock in the TASK_
UNINTERRUPTIBLE state and the lock cannot be re-
leased for a relatively long time due to a network er-
ror, the freezer will fail and the entire suspend will fail
as a result. Second, the freezer does not work well
with device drivers having a user-space component, be-
cause they may not be able to suspend devices after
their user-space parts have been frozen. Third, freezing
tasks occasionally takes too much time. It usually does
not take more than several milliseconds, but in extreme
cases (i.e., under a heavy load) it may take up to sev-
eral seconds, which is way too much for various impor-
tant usage scenarios. Finally, the approach used by the
freezer to distinguish user-space processes from kernel
threads is not optimal. It turns out that there are kernel
threads which in fact behave like user-space processes
and therefore should be frozen in the same way, by send-
ing fake signals to them with signal_wake_up().
These threads often fail to call refrigerator() in
a timely manner, causing the freezer to fail.

For these reasons, the kernel developers generally agree
that the freezing of tasks should not be used during sus-
pend. Whether it should be used during hibernation is
not entirely clear, but some implementations of hiberna-
tion without freezing tasks are being actively discussed.
In any case, there ought to be an alternative mechanism
preventing user-space processes and kernel threads from
accessing devices that are in a low-power state (i.e., after
they have been suspended and before they are resumed).
It is generally believed that device drivers should handle
this, and for this purpose it will be necessary to rework
the suspend and resume framework.

9 Proposed Framework for Suspending and
Resuming Devices

As stated in Section 5, the current framework for sus-
pending and resuming devices does not seem to be ade-
quate. It is considered inflexible and generally difficult
to use in some situations. It does not include any mech-
anisms allowing the PM core to protect its internal data
structures from damage caused by inappropriate driver
implementations.12 It does not provide enough context
information to resume callbacks. Finally, it may not be

12For example, if a callback or notifier routine registers a new
device object below a suspended parent, the ordering of the device
list used by the PM core will be incorrect and the next suspend may
fail as a result.

48 • Suspend-to-RAM in Linux

suitable when the freezing of tasks is removed and de-
vice drivers are made responsible for preventing access
to suspended devices. Consequently a new framework
for suspending and resuming devices is now being in-
troduced [PATCHES].

The first problem solved by the new framework is the
lack of separation between the suspend and hiberna-
tion callbacks, especially where the resume part is con-
cerned. Within the current framework the same device-
resume callbacks are used for both hibernation and sus-
pend, and since they take only one argument (a pointer
to the device structure), it is nearly impossible for them
to determine the context in which they are invoked. This
is a serious limitation leading to unnecessary complica-
tions in some cases, and it is going to be fixed by in-
troducing separate device-resume callbacks for suspend
and hibernation.13 Likewise, separate device-suspend
callbacks for suspend and hibernation will be intro-
duced, so that the pm_message_t argument (used for
determining the type of transition being carried out, see
Section 5) will not be necessary any more.

struct pm_ops {
int (*prepare)(struct device *dev);
void (*complete)(struct device *dev);
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*thaw)(struct device *dev);
int (*poweroff)(struct device *dev);
int (*restore)(struct device *dev);

};

Figure 7: Proposed struct pm_ops

struct pm_ops, representing a set of device-
suspend and -resume callbacks (including hibernation-
specific callbacks), is defined as shown in Figure 7.
Each device-class or device-type driver implementing
these callbacks will provide the PM core with a pointer
to one of these structures. Since bus-type drivers gener-
ally need to define special device-suspend and -resume
callbacks to be executed with interrupts disabled, the
extended struct pm_ext_ops structure detailed in
Figure 8 is provided for their benefit.

Although the implementation of suspend and resume
callbacks in device drivers may generally depend on the

13In fact, two separate device-resume callbacks are necessary for
hibernation: one to be called after creating an image and one to be
called during the actual resume.

struct pm_ext_ops {
struct pm_ops base;
int (*suspend_noirq)(struct device *dev);
int (*resume_noirq)(struct device *dev);
int (*freeze_noirq)(struct device *dev);
int (*thaw_noirq)(struct device *dev);
int (*poweroff_noirq)(struct device *dev);
int (*restore_noirq)(struct device *dev);

};

Figure 8: Proposed struct pm_ext_ops

bus type, device type, and device class their devices
belong to, it is strongly recommended to use struct
pm_ops or struct pm_ext_ops objects. How-
ever, the legacy callback method pointers will remain
available for the time being.

The majority of callbacks provided by struct
pm_ops and struct pm_ext_ops objects are
hibernation-specific and we will not discuss them. We
will focus on the callbacks that are STR-specific or com-
mon to both suspend and hibernation.

The .prepare() callback is intended for initial
preparation of the driver for a power transition, with-
out changing the hardware state of the device. Among
other things, .prepare() should ensure that after it
returns, no new children will be registered below the de-
vice. (Un-registering children is allowed at any time.) It
is also recommended that .prepare() take steps to
prevent potential race conditions between the suspend
thread and any other threads. The .prepare() call-
backs will be executed by the PM core for all devices
before the .suspend() callback is invoked for any of
them, so device drivers may generally assume that the
other devices are functional while .prepare() is be-
ing run.14 In particular, GFP_KERNEL memory alloca-
tions can safely be made. The .prepare() callbacks
will be executed during suspend as well as during hiber-
nation.15

The .suspend() callback is suspend-specific. It will
be executed before the platform .prepare() method
is called (see Section 5) and the non-boot CPUs are
disabled. In this callback the device should be put

14However, user-space tasks will already be frozen, meaning that
things like request_firmware() cannot be used. This limita-
tion may be lifted in the future.

15During hibernation they will be executed before the image is
created, and during resume from hibernation they will be executed
before the contents of system memory are restored from the image.

2008 Linux Symposium, Volume One • 49

into the appropriate low-power state and the device’s
wake-up mechanism should be enabled if necessary.
Tasks must be prevented from accessing the device af-
ter .suspend() has run; attempts to do so must block
until .resume() is called.

Some drivers will need to implement the
.suspend_noirq() callback and its resume
counterpart, .resume_noirq(). The role of these
callbacks is to switch off and on, respectively, devices
that are necessary for executing the platform methods
.prepare() and .finish() or for disabling and
re-enabling the non-boot CPUs. They should also
be used for devices that cannot be suspended with
interrupts enabled, such as APICs.16

The .resume() callback is the counterpart of
.suspend(). It should put the device back into an
operational state, according to the information saved
in memory by the preceding .suspend(). After
.resume() has run, the device driver starts working
again, responding to hardware events and software re-
quests.

The role of .complete() is to undo the changes
made by the preceding .prepare(). In particular,
new child devices that were plugged in while the sys-
tem was suspended and detected during .resume()
should not be registered until .complete() is called.
It will be executed for all kinds of resume transitions,
including resume-from-hibernation, as well as in cases
when a suspend or hibernation transition fails. After
.complete() has run, the device is regarded as fully
functional by the PM core and its driver should han-
dle all requests as appropriate. The .complete()
callbacks for all devices will be executed after the last
.resume() callback has returned, so drivers may gen-
erally assume the other devices to be functional while
.complete() is being executed.

All of the callbacks described above except for
.complete() return zero on success or a nonzero er-
ror code on failure. If .prepare(), .suspend(),
or .suspend_noirq() returns an error code, the en-
tire transition will be aborted. However the PM core
is not able to handle errors returned by .resume()
or .resume_noirq() in any meaningful manner, so

16At present, APICs are represented by sysdev objects and are
suspended after the regular devices. It is possible, however, that
they will be represented by platform device objects in the future.

they will only be printed to the system logs.17

It is expected that the addition of the .prepare() and
.complete() callbacks will improve the flexibility
of the suspend and resume framework. Most impor-
tantly, these callbacks will make it possible to separate
preliminary actions that may depend on the other de-
vices being accessible from the actions needed to stop
the device and put it into a low-power state. They will
also help to avoid some synchronization-related prob-
lems that can arise when the freezing of tasks is removed
from the suspend code path. For example, drivers may
use .prepare() to disable their user-space interfaces,
such as ioctls and sysfs attributes, or put them into a de-
graded mode of operation, so that processes accessing
the device cannot disturb the suspend thread.

Moreover, we expect that the introduction of the
hibernation-specific callbacks and the elimination of the
pm_message_t parameter will help driver authors to
write more efficient power-management code. Since all
of the callbacks related to suspend and hibernation are
now going to be more specialized and the context in
which they are invoked is going to be clearly defined,
it should be easier to decide what operations are to be
performed by a given callback and to avoid doing unnec-
essary things (such as putting a device into a low-power
state before the hibernation image is created).

10 Suspend to RAM and Graphics Adapters

One of the most visible weaknesses of Linux’s current
implementation of suspend-to-RAM is the handling of
graphics adapters. On many systems, after resume-
from-RAM, the computer’s graphics adapter is not func-
tional or does not behave correctly. In the most extreme
cases this may lead to system hangs during resume and
to the appearance of many unusual failure modes. It is
related to the fact that the way Linux handles graphics
does not meet the expectations of hardware manufactur-
ers.18

For a long time graphics has been handled entirely by
the X server, which from the kernel’s point of view is

17To change this, the resume callbacks would have to be required
to return error codes only in case of a critical failure. This currently
is not possible, since some drivers return noncritical errors from their
legacy resume callbacks. In any event, drivers have a better idea of
what recovery options are feasible than the PM core does.

18This mostly applies to the vendors of notebooks.

50 • Suspend-to-RAM in Linux

simply a user-space process. Usually the X server uses
its own graphics driver and accesses the registers of the
graphics adapter directly. In such cases the kernel does
not need to provide its own driver as well, and the X
server is left in control. Normally this does not lead to
any problems, but unfortunately with suspend-to-RAM
it does.

When the system is put into STR, power is usually re-
moved from the graphics adapter, causing it to forget its
pre-suspend settings. Hence during the subsequent re-
sume, it is necessary to reinitialize the graphics adapter
so that it can operate normally. This may be done by the
computer’s BIOS (which gets control over the system
when a wake-up event occurs) and it often is done that
way on desktop systems. However, many laptop ven-
dors tend to simplify their BIOSes by not implement-
ing this reinitialization, because they expect the graphics
driver provided by the operating system to take care of
it. Of course this is not going to work on Linux systems
where the kernel does not provide a graphics driver, be-
cause the X server is activated after devices have been
resumed and that may be too late for it to reinitialize the
graphics adapter, let alone restore its pre-suspend state.
Furthermore X may not even have been running when
the system was suspended.

The ultimate solution to this problem is to implement
graphics drivers in the Linux kernel. At a minimum,
graphics drivers should be split into two parts, one of
which will reside in the kernel and will be responsi-
ble for interacting with the other kernel subsystems and
for handling events such as a system-wide power tran-
sition. The other part of the driver may still live in the
X server and may communicate with the first part via a
well-defined interface. Although this idea is not new, it
was difficult to realize owing to the lack of documen-
tation for the most popular graphics adapters. Recently
this situation has started to change, with first Intel and
then AMD making their adapters’ technical documenta-
tion available to kernel and X developers. As a result,
.suspend() and .resume() callbacks have been
implemented in the i915 driver for Intel adapters, and it
is now supposed to correctly reinitialize the adapter dur-
ing resume-from-RAM.19 It is expected that this ability
will also be added to the graphics drivers for AMD/ATI
adapters in the near future.

Still, there are many systems for which the graphics

19This driver is included in the 2.6.25 kernel.

adapters are not reinitialized correctly during resume-
from-RAM. Fortunately it was observed that the reini-
tialization could often be handled by a user-space wrap-
per executing some special BIOS code in 16-bit emu-
lation mode. It turned out that even more things could
be done in user-space to bring graphics adapters back to
life during resume, and a utility called vbetool was
created for this purpose.20 At the same time, a util-
ity for manipulating backlight on systems using ATI21

graphics adapters, called radeontool, was created.
These two programs were merged into a single utility
called s2ram, which is a wrapper around the Linux
kernel’s /sys/power/state interface incorporating
the graphics reinitialization schemes.22

Although s2ram is a very useful tool, it has one draw-
back: Different systems usually require different opera-
tions to be carried out in order to reinitialize their graph-
ics adapters, and it is necessary to instruct s2ram what
to do by means of command-line options. Moreover,
every user has to figure out which options will work on
her or his system, which often is tedious and can in-
volve several failed suspend/resume cycles. For this rea-
son s2ram contains a list of systems for which a work-
ing set of options is known, and the users of these sys-
tems should be able to suspend and resume their com-
puters successfully using s2ram without any additional
effort.23

11 Problems with Platforms

The flexibility given to platform designers by ACPI can
be a source of serious problems. For example, if the
ACPI Machine Language (AML) routines invoked be-
fore suspend are not implemented correctly or make un-
reasonable assumptions, their execution may fail and
leave the system in an inconsistent state. Unfortunately
the kernel has no choice but to execute the AML code,
trusting that it will not do any harm. Of course if given
platform is known to have problems, it can be black-
listed on the basis of its DMI24 identification. Still, be-

20vbetool was written by Matthew Garrett.
21ATI was not a part of AMD at that time.
22The creator of s2ram is Pavel Machek, but many people have

contributed to it since the first version was put together. s2ram is
available from http://suspend.sf.net.

23s2ram matches computers against its list of known working
systems based on the DMI information in the BIOS. The list is built
from feedback provided by the s2ram users and is maintained by
Stefan Seyfried.

24Desktop Management Interface.

2008 Linux Symposium, Volume One • 51

fore blacklisting a system, the kernel developers have
to know what kind of problems it experiences and what
exactly to do to prevent them from happening. That,
in turn, requires the users of those systems to report
the problems and to take part in finding appropriate
workarounds.

Moreover, problems may arise even if there is nothing
wrong with the AML code. This happens, for exam-
ple, if the kernel provides native drivers for devices that
are also accessed from the AML routines, because the
kernel has no means to determine which registers of a
given device will be accessed by the AML code before
actually executing that code. Thus, if the native driver
accesses the device concurrently with an AML routine,
some synchronization issues are likely to appear. It is
difficult to solve those issues in a way general enough
to be applicable to all systems and, again, blacklisting
is necessary to make things work on the affected plat-
forms.

Another major inconvenience related to ACPI platforms
is that the requirements regarding STR changed between
revisions of the ACPI specification. The suggested code
ordering for suspend changed between ACPI 1.0 and
ACPI 2.0, and there are systems for which only one of
them is appropriate. Some of these systems fail to sus-
pend or even crash if the code ordering implemented by
the kernel is not the one they expect. Again, the kernel
has no choice but to use one suspend code ordering by
default and blacklist the systems that require the other
one.25

Last but not least, testing the interactions between the
kernel and a particular platform is problematic because
it can be carried out on only a limited number of sys-
tems. Even if the kernel follows the ACPI specification
and works on the systems available to its developers, it
may very well fail to work on other systems having dif-
ferent implementations of the AML code in question.
For this reason, it is very important that the users of
STR test development kernels and immediately report
any new STR-related problems, so that the developers
can investigate and fix them before the new code is offi-
cially released.

12 Future Work

We’ve reached a level of stability where STR is useful
on a large number of systems. We need to continue these

25At present, the ACPI 2.0 ordering is used by default.

stability efforts with the goal of broad, and ultimately
universal, deployment.

But to make STR even more useful, we need to increase
our focus on performance. We need tools to track STR
performance such that performance is easily and widely
measured, issues are easily identified, regressions are
prevented, and benefits of tuning are permanent.

Linux needs a stable user/system API for device D-state
control. D-states should be widely available to run-time
device power management, which must inter-operate
well with system sleep states. (Some progress in this
area has already been made; a few subsystems, such as
USB, can power down devices when they are not in ac-
tive use.)

The wake-up API available in sysfs needs to be more
widely used and better integrated with the platform
wake-up mechanisms.

It is unclear that the existing CPU hot-plug infrastruc-
ture is ideally suited to system suspend, and alternatives
should be sought.

We need to think about the work required for device
drivers to properly implement suspend and make sure
that the burden on driver authors is minimized. This
applies to the API seen by individual device drivers as
well as to the infrastructure provided by the upper-level
device-class drivers.

13 How to Participate

STR in Linux is approaching a point where a crit-
ical mass of developers routinely use it, and thus
test it. These developers often run the development
and release-candidate kernels and thus immediately
notice and report regressions. With tools such as
git-bisect [GIT-OLS, GIT-URL], these develop-
ers are empowered to do an excellent job isolating is-
sues, even if they never read or modify a single line of
suspend-related code.

Please join them! For STR on Linux to reach the next
level of success, it is critical that the Linux community
assert that STR work properly on the systems that they
have, and actively file bugs and help isolate regressions
when STR does not meet expectations. The more active
testers we have, the easier it will be for the community
to successfully deploy STR on a broad range of systems.

52 • Suspend-to-RAM in Linux

Also, note that there is now a dedicated kernel
Bugzilla category for STR related issues: http://
bugzilla.kernel.org, product Power Manage-
ment, and Component Hibernation/Suspend.

Still another group in the community must be
mobilized—driver authors. At this point, drivers are
expected to include full suspend/resume support if they
are used on systems that support suspend. A new driver
should not be considered complete enough for inclusion
in the kernel if it does not include suspend support.

14 Acknowledgments

Linux’s suspend-to-RAM support is not a new idea; it
has been evolving for years. We must all acknowledge
that we are standing on the shoulders of the giants who
came before us, and thank them for all they have done.

In particular, the authors would like to single out Pavel
Machek of Novell/SuSE, co-maintainer of suspend and
hibernation, who has been key to development and
adoption. Also Andy Grover and Patrick Mochel, who
set a lot of the foundation starting way back in Linux-
2.4.

We thank Alan Stern for many valuable suggestions and
for helping us to prepare the manuscript. We also thank
Pavel Machek for valuable comments.

Finally, we thank the communities on the mailing lists
linux-pm@lists.linux-foundation.org
and linux-acpi@vger.kernel.org, where the
actual work gets done.

References

[ACPI-SPEC] Advanced Configuration and Power
Interface Specification
(http://www.acpi.info).

[ACPICA] ACPICA project home page
(http://acpica.org).

[PCI-PM] PCI Bus Power Management Interface
Specification (http://www.pcisig.com/
specifications/conventional/).

[ACPI-OLS] Brown, Keshavamurthy, Li, Moore,
Pallipadi, Yu; ACPI in Linux—Architecture,
Advances, and Challenges; In Proceedings of the
Linux Symposium (Ottawa, Ontario, Canada, July
2005).

[ACPI-URL] Linux/ACPI project home page
(http://www.lesswatts.org/
projects/acpi).

[GIT-URL] GIT project home page
(http://git.or.cz).

[GIT-OLS] J.C. Hamano, GIT—A Stupid Content
Tracker, In Proceedings of the Linux Symposium
(Ottawa, Ontario, Canada, July 2006).

[REPORT] R.J. Wysocki, Suspend and Hibernation
Status Report
(http://lwn.net/Articles/243404).

[PATCHES] R.J. Wysocki, Separating Suspend and
Hibernation (http://kerneltrap.org/
Linux/Separating_Suspend_and_
Hibernation).

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

