
Camcorder multimedia framework with Linux and GStreamer

W. H. Lee, E. K. Kim, J. J. Lee , S. H. Kim, S. S. Park
SWL, Samsung Electronics

woonghee.lee@samsung.com

Abstract

Along with recent rapid technical advances, user expec-
tations for multimedia devices have been changed from
basic functions to many intelligent features. In order to
meet such requirements, the product requires not only a
powerful hardware platform, but also a software frame-
work based on appropriate OS, such as Linux, support-
ing many rich development features.

In this paper, a camcorder framework is introduced that
is designed and implemented by making use of open
source middleware in Linux. Many potential develop-
ers can be referred to this multimedia framework for
camcorder and other similar product development. The
overall framework architecture as well as communica-
tion mechanisms are described in detail. Furthermore,
many methods implemented to improve the system per-
formance are addressed as well.

1 Introduction

It has recently become very popular to use the internet to
express ourselves to everyone in the world. In addition
to blogs, the emerging motion video service provided by
such companies as YouTube and Metacafe help us to use
internet in this way. The question is, how can we record
the video content we want to express?

Digital camcorders, cameras and even mobile phones
can be used for making movies. But the quality gen-
erated by mobile phones or digital cameras is gener-
ally not as good as that of a digital camcorder. If users
want to make higher quality content they must use digi-
tal camcorders.

In this paper we introduce a camcorder multimedia
framework with Linux and GStreamer. We take into
account portability and reusability in the design of this
framework. To achieve portability and reusability we
adopt a layered and modular architecture.

Application
Layer

Middleware
Layer

OS Layer

Camcorder hardware platform

OSAL HAL

Graphics UI Connectivity

Multimedia
Sequencer

DVD FS

Applications

GStreamer

Hardware
Layer

Device
Drivers

Software 
codecs

Linux Kernel

Figure 1: Architecture diagram of camcorder multime-
dia framework

The three software layers on any hardware platform are
application, middleware, and OS. The architecture and
functional operation of each layer is discussed. Addi-
tionally, some design and implementation issues are ad-
dressed from the perspective of system performance.

The overall software architecture of a multimedia
framework is described in Section 2. The framework
design and its operation are introduced in detail in Sec-
tion 3. Development environments, implementation,
and performance issues are represented and discussed
in Section 4. Finally, we present some concluding re-
moarks in Section 5.

2 Multimedia Framework Overview

The three layers of the multimedia framework are ap-
plication, middleware and OS. The architecture of the
multimedia framework is shown in Figure 1.

2.1 Application layer

There are many programs, such as players and recorders
for movie and still pictures, User Interface (UI) man-
agers, USB control, navigator and camera manager in

• 239 •



240 • Camcorder multimedia framework with Linux and GStreamer

the application layer. The player and recorder are sim-
ilar to the general media player and recorder present in
standard platforms, however they have additional fea-
tures in order to support DVD media. The UI manager
interacts with camcorders through the keypad, sound
and display. USB control manages USB connections.
Users can browse DVD titles and select a particular clip
with the navigator module. All camera specific func-
tions such as Image Stabilizer and Auto Focusing are
implemented inside the camera manager. Because the
application layer outside of this paper’s scope, we will
not discuss it further.

2.2 Middleware layer

The Middleware layer is categorized into four functional
groups: multimedia, connectivity, UI, and DVDFS
(DVD File System). The multimedia module includes
the DVD sequencer, GStreamer and many media spe-
cific plugins. USB specific functions are implemented
in the connectivity module and are further broken into
three major functional blocks: USB Mass Storage
(UMS), Digital Print Solution (DPS) and PC Camera
(PC-Cam). The UI module includes FLTK and Nano-
X. DVDFS is the module that controls the DVD disk
file system.

2.3 OS layer

The OS layer plays an important role in system manage-
ment, OS services, and hardware abstraction. It consists
of OSAL (OS Abstraction Layer), HAL (Hardware Ab-
straction Layer), Linux kernel, device drivers and soft-
ware codecs. The OSAL provides the middleware an
abstraction eliminating the OS dependency. The HAL
also provides the middleware with an abstraction elimi-
nating the hardware dependency. The role of the Linux
kernel is the management of the system and the support
of the general OS environment. The device drivers are
used to control the hardware. The multimedia codecs
not supported by hardware in the platform are imple-
mented by software.

2.4 Hardware layer

In this paper, the hardware layer represents the cam-
corder hardware platform including a camcorder spe-
cific multimedia SoC chip and its supporting board. The

Device Drivers

Multimedia Sequencer

Sequencer API

Sequencer Main

GStreamer

HAL

Sequencer 
Main Thread

Buffer
Manager

Navigation
Pack 

Generator

Software Codecs

DVDFS

Figure 2: Structure of the multimedia sequencer

SoC chip supports multimedia oriented operations such
as MPEG-2 coding, multiplexing and de-multiplexing
of the DVD stream, and IO operations to the DVD disc.
In this paper, an application product is assumed to be
a camcorder. The supporting board has NOR flash,
SDRAM, DVD loader, LCD screen, key pad, camera
module and so on.

3 Architecture design

3.1 Multimedia subsystem

3.1.1 Sequencer

The multimedia sequencer is a middleware module that
has functions related to the multimedia control, such as
playback and recording.

The architecture of the multimedia sequencer is de-
scribed in Figure 2.

The multimedia sequencer is configured using interfaces
such as the sequencer API layer, sequencer main mod-
ule, and GStreamer multimedia engine. The GStreamer
plugins call the device drivers or the software codecs
through the HAL APIs. A developer can create and
maintain the plugin codes easily using the HAL APIs.
The DVDFS module is used for reading and writing
a DVD disc in the sequencer. It is used in both the
DVDSrc plugin and the buffer manager block. For
playback, the DVDSrc plugin reads the stream data
stored in a DVD disc using the DVDFS. For record-
ing, the buffer manager uses the DVDFS for writing the
recorded stream data to the DVD disc.

In the sequencer API layer, there are functions related
to creation, initialization and control of the sequencer.



2008 Linux Symposium, Volume One • 241

NULL CREATED INITIALIZED RUN

CREATE INIT START

STOPDEINITDESTROY

Figure 3: State diagram of multimedia sequencer

The application can create, destroy, initialize, and de-
initialize the multimedia sequencer. There are three
modes and two types in the multimedia sequencer. The
modes are categorized as DVD-Video, DVD+VR and
DVD-VR, and the two types are playback and record.
For example, if the application initializes the multi-
media sequencer using DVD-Video mode and play-
back type, then the sequencer is set for the DVD-Video
player. The sequencer API also supplies control func-
tions. Using these control functions, the application can
start, stop, pause and resume the sequencer. And the ap-
plication can register callback function pointers to the
sequencer using the init function. The sequencer can
send information to the application at any time using
this registered callback function.

In the main layer of the sequencer, the three function
blocks are the thread block, buffer manager and nav-
igation pack generator. In the main thread block, the
thread routine reads and processes messages in a queue.
When the sequencer API is called by the application, the
API function is converted to a message. This converted
message is sent back to the message queue in the main
thread block of the sequencer.

When the sequencer is operating as a DVD recorder,
the buffer manager and the navigation pack generator
are activated. In the DVD recorder, VOB data has to
be recorded on the DVD disc. VOB data contains the
presentation data and part of the navigation data. VOB
data may be divided into CELL’s, which are made up
of VOBU’s. The video and audio data is packed and
recorded as a VOBU unit. The navigation pack is stored
at the start of each VOBU data. Because CELL informa-
tion has to be stored in the navigation packs of VOBU’s
in the CELL, buffering of CELL data is necessary. The
buffering manager controls the VOBU data and calls the
navigation pack generator to make navigation pack data
of VOBU’s in the CELL.

The four states of the multimedia sequencer are NULL,
CREATED, INITIALIZED and RUN. The states can

change as described in Figure 3. Each state can be man-
aged and set to in the multimedia sequencer based on
the state of the GStreamer core.

3.1.2 Interface between GStreamer and sequencer

In this section, we describe the interface between
GStreamer and the multimedia sequencer. The
GStreamer pipeline configuration for DVD playback
and recording is also discussed.

When the multimedia sequencer is initialized, the
gst_init() function is called for GStreamer framework
initialization.[1] After the GStreamer framework is ini-
tialized, shared libraries for plugins are loaded using
the gst_plugin_load_file() function. After loading plu-
gin libraries, the sequencer creates a pipeline using
gst_pipeline_new() function.

To monitor the state of the GStreamer framework, the
sequencer creates an event loop thread that checks mes-
sages from the GStreamer framework. In this thread,
the sequencer gets a bus from the created pipeline and
checks the GstMessage from the GStreamer framework
using gst_bus_poll() function. To send the GstMessage
to the application, the sequencer uses the registered call-
back function.

When the application calls the start() function of the se-
quencer, the loaded GStreamer plugins are registered us-
ing gst_element_factory_make() function and then the
pipeline is configured. After the pipeline is configured,
the properties of plugins are set using g_object_set()
function.

To change the GStreamer state, the sequencer calls
the gst_element_set_state() function. When the play-
back or recording operation is started, the state of
GStreamer is changed to GST_STATE_PLAYING. To
pause the GStreamer framework, the state is changed to
GST_STATE_PAUSED.

GObject signals are used to communicate between the
sequencer and the plugin. In GStreamer, the GObject
signal is already defined for notifying the application
of plugin events. In order to register the signal in the
sequencer, the g_signal_connect() function is called in
the sequencer.[2] After the plugin sends the signal to se-
quencer, the signal handler function in the sequencer is
called. The detailed structure of GStreamer pipelines for



242 • Camcorder multimedia framework with Linux and GStreamer

Software 
Codecs

Device 
Drivers

HAL Layer

Camera PMBM2VD M2VE PSD PSM AC3D AC3EVOutput

Video In/Out
MPEG2 Video

Codec
MPEG2
System

AC3 Audio
Codec

Memory
Mapping

Figure 4: HAL layer with device drivers

playback and record are discussed in sections 3.1.4 and
3.1.5.

3.1.3 Hardware abstraction layer

There are some hardware IP blocks for DVD cam-
corders in the hardware layer. These hardware IP’s can
be accessed and controlled by device drivers. These de-
vice drivers are wrapped by the HAL layer described in
Figure 4. The GStreamer elements related to the device
drivers are implemented using the HAL layer API’s.

In the HAL layer, there are wrapper functions for video
input and output. The device driver functions of cam-
era and VOutput are wrapped in the HAL. The device
drivers for MPEG2 video are M2VD and M2VE. These
device drivers are wrapped up in the HAL as the MPEG2
video codec. For MPEG2 system layer, there are some
hardware IP’s such as MPEG2 PS demuxer and muxer.
These short names for these device drivers are PSD and
PSM. These device drivers are wrapped in the HAL
layer as MPEG2 system. Because the hardware IP re-
quires a physical memory buffer for input data, the user
space program has to be able to access the physical
memory buffer area. For this reason we use memory
mapped IO for mapping a physical memory area in de-
vice driver into a virtual memory area in user space.
An additional benefit of using memory mapped IO is
that memory copy operations can be avoided. In device
drivers for hardware IP’s, the physical memory area can
be assigned as the input and output buffer. But, if an
element is not connected to such device drivers, the ele-
ment has to use a device driver that enables the physical
memory area mapping. For this reason the PMB device
driver is implemented for memory mapping in the HAL
layer. The operation of PMB will be described in de-
tail in section 4.2.2. The AC3 audio encode and decoder
codecs are needed for a DVD camcorder. These soft-
ware codecs and named as AC3D and AC3E. The au-

Software
Codecs

HAL 
Layer

Device
Drivers

HAL 
Layer

DVDSrc PSD

M2VD

AC3D

VIDSink

ALSASink

DVDFS

Memory
Mapping

MPEG2
System

MPEG2 Video 
Codec

Video In/Out

ALSA

PMB PSD M2VD VOutput

AC3 Audio 
Codec

AC3D

Figure 5: Playback pipeline

dio codecs are wrapped in the HAL layer as AC3 audio
codec.

3.1.4 Playback pipeline

In this section, the structure and HAL interface of the
playback pipeline are discussed. Its diagram is shown
in Figure 5.

The DVDSrc element reads the stream data from DVD
disc using DVDFS and stores the stream data in the
stream buffer. Because the PSD element requires physi-
cal memory for the input buffer, the input stream buffer
has to be assigned to a physical memory area. This
physical buffer is assigned by the PMB device driver
through the memory mapping HAL layer and is mapped
into the virtual memory address in the DVDSrc element.
The DVDSrc element stores the stream data into the
physical memory buffer using the mapped virtual mem-
ory address. The base addresses of physical and virtual
memory and the memory size are sent to the PSD ele-
ment using GstCaps. The input stream buffer memory is
configured and managed as a ring buffer in the DVDSrc
element. The address of the input data is sent to the PSD
element through the GstBuffer.

The PSD element parses the input stream data and
stores the parsed data into the video and audio stream
buffers that assigned by the PSD device driver through
the MPEG2 system HAL layer. This parsing operation
is processed using the PSD device driver through the
MPEG2 system HAL layer. The stream buffer for the
parsed data is located at a physical memory area and the



2008 Linux Symposium, Volume One • 243

address of this stream buffer is sent to the M2VD ele-
ment through the GstBuffer.

The M2VD element is used for MPEG2 video decod-
ing. In the M2VD element, the M2VD device driver is
connected through the HAL layer of the MPEG2 video
codec. The address of the video stream buffer in the
physical memory area is sent from PSD element. The
M2VD element decodes the input video stream data and
stores the decoded frame data into the physical memory
buffer. This physical memory buffer is assigned by the
M2VD device driver through the HAL layer of MPEG2
video codec. After decoding the video stream into the
reconstructed frame, the M2VD element sends the phys-
ical buffer address of output buffer to the VIDSink ele-
ment through GstBuffer. Then, the reconstructed frame
can be displayed on either LCD or TV.

For audio, the stream data is sent from the PSD to the
AC3D element. Because the AC3 audio decoder is a
software codec, it can access the input buffer by virtual
memory address. The PSD sends the memory mapped
virtual address to the AC3D element using GstBuffer.
The AC3D element decodes the AC3 audio stream data
to PCM data by AC3D software codec through the HAL
layer of AC3 Audio codec. The decoded PCM data is
sent to the ALSASink element. This ALSASink ele-
ment is provided from the GStreamer base plugin.

Audio and video synchronization is controlled using the
system clock provided from GStreamer. AV synchro-
nization is implemented based on the time stamp data
embedded in the stream data. The time stamp data,
so called PTS (Presentation Time Stamp), is extracted
from the navigation pack in VOBU data and converted
to the GStreamer time format. All audio packs have the
PTS, so the audio decoder can send the PTS to next
element without additional calculation. In the case of
video pack, however, the PTS only exists in the first
video pack of GOP. Hence, the time information of the
video packs has to be calculated using the video frame
rate. In GStreamer, the calculated time information is
embedded in GstBuffer structure and passed through
the GStreamer pipeline. And then the audio and video
synchronization can be achieved automatically in the
GStreamer core.

Device
Drivers

HAL 
Layer

CAMSrc M2VE PSM FakeSink

ALSASrc AC3E

Software
Codec

HAL 
Layer Video In/Out

MPEG2
System

MPEG2 Video
Codec

AC3 Audio
Codec

Camera PSMM2VE

AC3E

ALSA
Memory
Mapping

Device 
Drivers

PMB

Sequencer

Buffer Manager
Navigation

Pack
Generator

DVDFS

Figure 6: Record pipeline

3.1.5 Record pipeline

In this section, the structure and HAL interface of the
record pipeline are discussed. Its diagram is shown in
Figure 6.

The CAMSrc element is connected to the camera device
driver through the video in/out HAL layer. The input
frame data is stored in the physical address area that is
assigned by camera device driver. The physical address
of the input frame data is sent to the M2VE element.

The M2VE element encodes the input frame data and
sends the physical address of the encoded video stream
data to the PSM element.

The ALSASrc element sends the captured PCM data to
the AC3E element. In the AC3E element, the PCM
data is encoded by the AC3E software codec through
the HAL layer of AC3 audio codec. Because the PSM
device driver requires the physical memory address of
the input audio stream buffer, the AC3E element uses
the PMB device driver for memory mapping. The en-
coded audio data is stored in the virtual memory address
by the AC3E element and the memory mapped physical
address is sent to the next PSM element.

The PSM element packetizes the input video and au-
dio stream data, and generates video and audio packs.
In order to satisfy the MPEG2 system layer and the
DVD standard, the PSM element uses the buffer man-
ager in the multimedia sequencer. For synchronization



244 • Camcorder multimedia framework with Linux and GStreamer

Input Device Drivers Output Device Drivers

FLTK

Nano-X

OSD DriverButton Driver Touch Screen Driver

Figure 7: Structure of graphics subsystem

of recorded stream, the PSM element uses the GstCol-
lectPads that is provided from GStreamer.

In PSM, the VOBU information from the packetized
data is sent to the buffer manager. The buffer manager
generates the navigation pack for the VOBU using the
navigation pack generator. After CELL data is ready
in the buffer manager, the CELL data is recorded to the
DVD disc using DVDFS module. Because the disc write
operation is processed in the buffer manger and DVDFS
module, we use the FakeSink as a dummy element for
the generation of a complete pipeline

3.2 Graphics subsystem

The structure of the graphics subsystem is depicted
in Figure 7. The FLTK (Fast Light Tool Kit)[3] is
a lightweight version of GTK+, and Nano-X[4] is a
lightweight X window system. They are generally used
for the graphics subsystem of embedded platforms due
to their small size. They are supported by input and out-
put device drivers. The input device can be a keyboard
and a pointer like touchpad, and the output device can
be on screen display (OSD) or the frame buffer.

3.2.1 Input and output device drivers

To support input devices, the button and the touch screen
devices are used in the camcorder platform. The but-
ton driver takes care of the press, release and long press
events from each key or button. The touch screen driver
handles of click, double click and drag events.

The target platform has video output and OSD layers.
The video output layer is used for displaying video
frame data from camera module, and the OSD is used
for displaying camcorder information like icons, num-
bers and menus. In the graphics subsystem, only the
OSD layer is of interest. The OSD implementation is
similar to that of the Linux frame buffer, however, it

needs an additional process. It should be set the palette
of the specified OSD and its property as followings:

• Width and height

• Bit per pixel

• Screen color number

• Pixel format

• Frame buffer address

• Scale

• Chroma-key information

Additionally, the video output and OSD have different
color formats, YUV and RGB respectively. Because the
color format to be displayed on LCD or TV is YUV, the
RGB data from OSD must be converted to YUV.

3.2.2 Nano-X

Nano-X is a lightweight X windows system developed
by the Nano-X open source project. Although it imple-
ments a lightweight X window system, it offers lots of
functionality so that it is sufficient for embedded devices
such as digital cameras and camcorders.

Nano-X is implemented based on MicroGUI, which is
a portable graphics engine and composed of Win32-like
Microwindows API and X-like Nano-X API.

Nano-X generally supports keyboards and pointers such
as mice as input devices, however buttons and a touch
screen are used for the input devices of camcorders. The
drivers of button and touch screen devices should work
like those of keyboard and pointer devices.

3.2.3 FLTK

FLTK is a lightweight version of GTK+. FLTK takes an
important role in creating and exploiting widgets, han-
dling various events in the windows and widgets, and
supporting OpenGL window to implement OpenGL’s
applications on the FLTK. Its role is similar to GTK+’s.



2008 Linux Symposium, Volume One • 245

DVD-Video DVD-VR DVD+VR

UtilityTempFS UDF RSAT

DVDFS API

ATAPI API

Figure 8: Architecture of DVDFS

FLTK is implemented in C++ so that we can create var-
ious types of windows and widgets, and handle the spe-
cial events by sub-classing the widget and window class.
FLTK supports FLUID (UI Designer Toolkit) to help UI
designers create an UI applications easily.

Because all applications in our framework are imple-
mented in C, application programmers can not create or
extend the widgets and windows implemented by C++.
So the parts of FLTK implemented by C++ should be
wrapped in API’s for the mixed C/C++ development.

3.3 DVD file system

Nowadays there are various types of DVD-Disc, such as
DVD-ROM, DVD-R, DVD-RW, DVD-RAM, DVD+R
and DVD+RW. Each of them has different physi-
cal characteristics. Moreover, the formats for stor-
ing data on DVD-Disc can be categorized into three
different specifications: DVD-Video[5], DVD-VR and
DVD+VR. The camcorder software has to consider all
of the types of media and DVD formats. DVDFS pro-
vides simple APIs for DVD recording and playback.
The application and middleware can record and play
the DVD contents without worrying about what types
of DVD media and formats are used.

The architecture of DVDFS is shown in Figure 8.

Modules of DVDFS can be described as follows:

• DVDFS API-The unified user API set.

• DVD-Video-Module for DVD-Video format

• DVD-VR-Module for DVD-VR format

• DVD+VR-Module for DVD+VR format

• Tempfs-Temporary File System. It manages a tem-
porary table which is used in the finalization on
DVD-Video format.

VMG = Video Manager
VTS = Video Title Set
VTSI = Video Title InformationVTSI_BUP = Video Title Information Backup
VMGI = Video Manager Information
VOBS = Video Object Set
Menu VOBS=Video Object Set for Menu (optional data)

Volume & File
Structure

VMG VTS # 1LI LO

VTSI VOBs VTSI_BUP

VTS # N
(up to 99)

â�¦â�¦

VMGI
Menu
VOBs

VMGI_BUP
Menu
VOBs

1 file 1 file 1 file 1 file 1 file 1 ~9 files 1 file

DVD-Video Zone

Figure 9: Layout of DVD-Video format

• UDF-Module for Universal Disc Format[6]

• RSAT-Module for Reserved Sector Allocation Ta-
ble. It is used by DVD+VR module to translate the
mapping information of first reserved area.

• Utility-Module for formatting, getting disc info.

• ATAPI API-Wrapper of the OS specific ATAPI.

DVD-Video, unlike other formats, does not support real-
time recoding, so it needs to support Tempfs. We will
focus on how to record through DVD-Video format in
following sections.

3.3.1 DVD-Video format

DVD-Video format is a basic specification and most
widely used for the distribution of movies. In the be-
ginning it only considered pre-pressed disc like DVD-
ROM, so the order of files is physically predetermined
as showin in Figure 9. For that reason it is not suit-
able for real-time recording devices such as camcorders,
recorders and so on.

3.3.2 Real-time recording on DVD-R

DVD-R is a write-once media. Basically, it has to be
written by sequential-recording methods. This means
that recording is only permitted at the next address of
the written block. Therefore, DVD-R provides the in-
cremental write mode. In this mode, the media can
be divided into several areas and these areas are called
RZone. Sequential-recording is performed in each
RZone. DVDFS adopts this method to reserved areas



246 • Camcorder multimedia framework with Linux and GStreamer

Reserved
Rzone #1

Reserved
Rzone #2

Incomplete
Rzone #3

Lead
-In

Lead
-Out

Reserved
Rzone #1

Completed
Rzone

Completed
Rzone

Lead
-In

Lead
-Out

Video
Data

(a) Initial status

BUP

Incomplete
Rzone #3

VTSI

Reserved
Rzone #2

(b) Complete One VTS

 FS + VMG VTSI

FS + VMG

Completed
Rzone #1

Completed
Rzone

Lead
-In

Lead
-Out

VTS #1

(C) Finalized Disc

FS + VMG

Tempfs
Table

VTSI

Tempfs
Table

Completed
Rzone

VTS #2
Tempfs
Table

â�¦â�¦

Figure 10: Real-time recording DVD-Video with DVD-
R

for file system data and video information files which
are determined after recording video data.

The management of RZone is the most important pro-
cess in recording data on DVD-R. Disc status during the
recording operation on DVD-Video and its sequence are
described in Figure 10.

(a) depicts the initial status of disc. RZone #1 is re-
served for file system and VMG. RZone #2 is reserved
for VTSI. The remained area is automatically regarded
as RZone #3, and it is used for recording movie data.

(b) depicts the status of the completed VTS. When user
closes a movie data recorded, VTSI_BUP is generated
and written continuously. Then, Tempfs table is written
at the end of VTSI_BUP. It contains all data of file lo-
cation, file size and time information. Once RZone is
closed, it can not be managed any more. Then, DVDFS
need to reserve another RZone for new VTSI.

(c) depicts the final status. Firstly, the volume and file
structures of UDF are written to RZone #1. At that time,
the last Tempfs table is used for constructing the UDF
data structures. Then, VMG data is written on the end
of UDF. Finally, the border will be closed.

3.3.3 Real-time recording on DVD-RW

In case of the rewritable media, formatting creates ad-
dressable blocks which can be overwritten. It takes a
long time to format a whole disc. To avoid this prob-
lem, quick format is used. Formatting is performed in

Blank
Lead

-In
Lead
-Out

Lead
-In

Lead
-Out

(a) After quick format

(b) Complete One VTS

FS, VMG

Padding dummy

Lead
-In

Lead
-Out

FS, VMG

Tempfs
Table

Video Data BUPVTSI

Video Data BUPVTSI
Tempfs
Table

(C) Finalized Disc

Figure 11: Real-time recording DVD-Video with DVD-
RW

the small part of disc, and other parts are only used for
sequential recording. Once a block is written, it turns
into an over-writable block.

Figure 11 illustrates the sequence of recording opera-
tions on DVD-RW. After quick format, DVDFS reserves
a space by writing dummy data. This area will contain
file system, VMG, VTSI, and Tempfs table. Video data
is written after that padded data.

Another difference between recording of DVD-R and
that of DVD-RW is the location of Tempfs table. Be-
cause the over-writing is possible in DVD-RW, the
Tempfs table is written on a fixed area

3.4 Connectivity subsystem

3.4.1 Architecture of USB Connectivity

The Linux kernel supports USB devices using the USB
gadget framework.[7] It is made up of the Peripheral
controller drivers, Gadget drivers and Upper layers. The
Peripheral controller drivers manage and control the
USB hardware IP. The Gadget drivers are the logical
layers divided by their function. They can be a file
system (Gadget file system), a network (Ethernet over
USB), a serial or a MIDI. Upper layers are the support-
ing layers for user applications. They execute the spe-
cific functions such as UMS, DPS, Ethernet or serial.

The USB connectivity architecture is depicted in Fig-
ure 12. USB controller driver is the Peripheral con-
troller driver in the USB gadget framework. It has to fit
well with the API of the USB gadget framework. This
makes it easier to implement or to use Gadget drivers.
Although there are many kinds of Gadget drivers, only



2008 Linux Symposium, Volume One • 247

Linux Kernel

Device Drivers

Conectivity

USB Controller
 Driver

Gadget
Filesystem

UMS DPS PC-Cam

Middleware
Layer

OS Layer

Figure 12: Architecture of USB connectivity

the Gadget file system is used in our camcorder frame-
work. In the middleware layer, the connectivity module
supplies UMS, DPS and PC-Cam.

3.4.2 Blocks of USB connectivity

UMS transfers files to computer. This requires some
implementations such as:

• USB Mass Storage Class Bulk-Only Transport
- It sends commands through CBW(Command
Block Wrapper) and gets the result of CBW by re-
ceiving CSW(Command Status Wrapper).[8]

• SCSI protocol - It is a protocol included in CBW.
It has commands like READ and WRITE.[9]

• Block device control function - It enables UMS
to get block device information such as media type
and number of sectors from block device. And it
must be able to read and write from/to the block
device.

DPS enables the camcorder to connect to a printer di-
rectly and to print images. The connected printer must
have the function of PictBridge. This needs some im-
plementations such as:

• Picture Transfer Protocol-It is a protocol for digi-
tal cameras to send images to other devices like PC
and printers.[10]

• PictBridge-It is an industry standard written by
CIPA (Camera & Image Products Association). It
includes the methods for the device discovery and
sending the information of images.[11]

PC-Cam enables a camcorder to send the captured im-
ages and sounds. Data transfer is divided into two parts
- video and audio. Video data is compressed by JPEG
and transferred to PC. The methods for transferring au-
dio data observe the definition of USB Audio Class.[12]

3.5 OS

3.5.1 OS abstraction layer

The original purpose of OSAL was to remove the OS de-
pendency from software. If middleware and application
have such a dependency on the OS, they can’t be reused
on different OS’s. However, it causes some overhead to
cover up the difference between many OS’s. Therefore,
we designed the OSAL to achieve its original purpose
and to reduce overhead simultaneously. To meet this
goal, the number of categories and functions of OSAL
are limited to the minimum as far as possible. The cat-
egories consist of task, semaphore, message queue, mu-
tex, timer and system timer. The functions of OSAL are
limited to creating, deleting and a few action functions.

3.5.2 Porting Linux kernel

In order to support the camcorder platform, the Linux
kernel needs to be ported with board specific code and
device drivers. The first work is to select the appropriate
ARM core code from many versions of codes already
existing in the Linux kernel source. Because our plat-
form has ARM 11 core, the ARMv6 code of Linux ker-
nel source was selected. The second is to include ma-
chine specific code. This code initializes and controls
the peripherals of the SoC Chip such as Timer, Clock,
DMA, IO mapping and so on. Finally, device drivers not
existing in the standard kernel source need to be created.
They support many kinds of general and camcorder spe-
cific devices. They are almost based on open source and
managed by HAL layer and GStreamer elements in mid-
dleware.

4 Implementation

4.1 Development environments with emulator

The emulator is a useful tool for development and test-
ing of applications on a PC. It is helpful when a real tar-
get is not available. It provides an emulated camcorder



248 • Camcorder multimedia framework with Linux and GStreamer

Linux kernel

Sandbox

Graphics UI

Connectivity DVD FS

GStreamer
X-Window

GTK+

VKB VTS VFB

Multimedia
Sequencer

USB 
Device
Driver

UDF

Application

Figure 13: Architecure of emulator

framework. The user interface of the emulator includes
keyboards, buttons, menu toolbar, touch screen and so
on. It is based on X Window, GTK+ and sandbox modi-
fied from scratchbox[13] . The architecture of emulator
is shown in Figure 13.

In general, the emulator supports virtual devices for UI
interface. The camcorder emulator supports virtual key-
board (VKB), virtual touch screen (VTS) and virtual
frame buffer (VFB). Each device works as input and out-
put devices respectively. The emulator can display the
camcorder application on the PC using the X window
through the VFB device and emulate its actions through
VKB and VTS.

The other parts of camcorder framework are also emu-
lated by substituting target platform dependent part. We
install USB-device PCI card to the PC for emulation of
USB connectivity. In the case of GStreamer emulation,
the software codecs are used instead of the hardware
codec.

4.2 Performance enhancement methods

4.2.1 Thread based element in GStreamer

When input data is not sufficient to be processed, the
input data needs to be buffered more. Especially in the
case of DVDs, because the input stream data is divided
into packs, the M2VD element has to wait the input
data until the input stream data is sufficient to be de-
coded and reconstructed into a frame. For this buffering
operation, the M2VD element is threaded. The struc-
ture of the M2VD element based on the thread is sim-
ilar to that of the queue element of GStreamer. In the
thread based element, the size of queue is the main con-
trol point of the element. When the chain function of

1000 0000

1400 0000
OSD

Video In

M2VE

PSM

Stoage

Bootloader &
Images

Kernel &
Application

area 
(38MB)

0000 0000

0080 0000

Reserved
buffer area

(26MB)

SDRAM

NOR FLASH

Physical address map

1260 0000

Recoding mode

OSD
LOADER

M2VD

PSD

Storage

Playback mode

OSD
Video In

M2VE

USB

Stoage

USB mode

Figure 14: Reserved buffer area

the thread based element is called, the element just in-
creases the size of queue by the input data size and re-
turns immediately. The main operation on the input data
starts immediately when the size of queue is sufficient
for processing. Because the memory mapped addresses
are shared between the elements, this buffer size based
control is possible. The immediate return of the thread
based element enables the previous element to do an-
other operation. We apply the structure of thread based
elements to both M2VD and AC3D elements. These el-
ements are linked with the source pads of PSD element.
Because of the immediate response/return of the M2VD
and AC3D to the PSD element we can get better decod-
ing performance

4.2.2 Reserved buffer area

The memory allocation routine spends CPU time to use
memory efficiently. The dynamic memory allocation,
e.g., memory allocation and free in Linux kernel, are
very complicated and computationally intensive. In or-
der to eliminate these problems, the reserved buffer area
is used for some device drivers.

Figure 14 shows the reserved buffer area in our cam-
corder framework. It’s divided into small parts for
the device driver according to execution modes such as



2008 Linux Symposium, Volume One • 249

DVDSrc PSD

M2VD

AC3D

VIDSink

ALSASink

Stream 
Input
Buffer

Video
Stream
Buffer

Audio
Stream
Buffer

Video
Frame
Buffer

buffers
of

device
drivers

GStreamer
elements

Figure 15: Memory interfaces of elements

recording, playback and USB mode. Each device driver
buffer can be accessed by not only the device driver it-
self, but also user applications or middleware.

4.2.3 Using memory mapped IO

Normally, read and write functions are used for ex-
changing data between user application and kernel de-
vice drivers, but this needs to be reconsidered from a
performance point of view. Firstly, they use system
calls has a long call path. Secondly, the read and write
data are copied by two functions, copy_from_user() and
copy_to_user(), in the device driver. In order to avoid
copy operations, the mmap is used instead of the read
and write operations. The mmap permits us to directly
access the buffer in the device driver. The camcorder
framework benefits from this mmap operation a lot be-
cause it transfers a huge data frequently.

Figure 15 shows the memory interface for DVD play-
back. In the previous section, buffers are allocated in the
reserved buffer area and accessed by their own device
drivers. However, GStreamer elements can not access
those buffers directly. Therefore, GStreamer elements
get the access permission and virtual address by calling
mmap functions of device drivers. Each element con-
trols or manages its buffer through the virtual address.

4.2.4 Fast boot

In a PC environment, the Linux system spends more
than one minute on the booting process. The booting
process includes following steps; loading image, initial-
izing the kernel and device drivers, and starting some

daemons. However, such a long boot time is not suit-
able for commercial products. Fast boot techniques for
Linux have been studied for a long time.[14] We inves-
tigated and adapted them to our camcorder framework.

• Fast memory copy - Generally, the memory copy
routine is implemented by ARM instructions such
as LDR and STR. The transfer unit is 4 bytes long
in size with those instructions. However, LDM and
STM can transfer data in a larger unit longer than 4
bytes. By using these instructions, the fast memory
copy can be achieved.

• Using the uncompressed kernel image - The zIm-
age is the compressed kernel image. It spends quite
a long time to uncompress the image. If the uncom-
pressed image is used, the uncompressing time can
be removed.

• Reducing kernel option - There are many options
in the Linux kernel source. Only minimum options
required for booting the system up are turned on to
save time.

• Preset LPJ - In the kernel initialization, there is a
function so called LPJ to calibrate the CPU speed.
It is used for busy waiting like udelay() and mde-
lay(). The Preset LPJ means that the calibrating
code is disabled and its output variable for the de-
lay is set with the pre-estimated value.

• Invalidating printk - There are a lot of messages
generated in the booting phase, and consequently
they affect the booting time. To solve this we can
either use the ’quiet’ parameter in the kernel, or
turn off the CONFIG_PRINTK option. The for-
mer increases the verbose level so that messages
are not printed out. And the latter invalidates the
printk function completely. In other words, the
prink function is converted to a null function. We
invalidate the printk function using the latter.

• Using prelink - An application is generally built
with shared libraries. Using shared libraries saves
the development time and the image size as well.
However, it spends a lot of time binding the library
symbols at run-time. The prelink technique re-
moves the bind operation, so that the start-up time
of the application can be reduced.



250 • Camcorder multimedia framework with Linux and GStreamer

Before

After

1s 2s 3s 4s 5s

Loading image

Uncompressing kernel

Kernel init

Device driver init

Loading application

Figure 16: Result of fast boot

To analyze the fast booting process, the booting com-
pletion point needs to be defined first. Usually, it cor-
respond to a state of record standby. In this paper,
however, the completion point is defined as just before
the application start-up because the application devel-
opment is not completed for integration in the software
framework at this time. Figure 16 shows measured data
after adopting the fast boot techniques mentioned above.
The booting time was about 5.5 seconds before adop-
tion of fast boot techniques. After adoption, it reduced
to about 2.1 seconds. Assuming a real product develop-
ment, it will presumably take an extra time due to added
components in the application.

4.2.5 Memory foot print

Because GStreamer depends on many external libraries,
the total library size of the GStreamer framework is not
suitable for the embedded system. In order to use the
GStreamer in an embedded system, the size optimiza-
tion is a significant part of development. In order to re-
duce GStreamer size, the external libraries actually used
in the operation of GStreamer should be identified, as-
sorted, and built with the appropriate options accord-
ingly.

The external libraries that have dependencies with the
GStreamer core are libxml, libz, libglib, libcheck and
libpopt. Of the above, all external libraries except the
libglib can be removed. Because the libglib is exten-
sively used in the entire GStreamer core, it needs to be
kept.

The result of optimization is described in the following
Table 1. As a result of optimization, the total size of
GStreamer was reduced from 2.9MB to 1.4MB approx-
imately.

Library name Before After
libcheck.so 27,216 0
libpopt.so 26,928 0
libxml2.so 1,110,004 0

libz.so 74,140 0
libglib-2.0.so 622,420 622,420

libgmodule-2.0.so 10,308 10,308
libgobject-2.0.so 243,020 243,020
libgthread-2.0.so 14,684 14,684

libgstreamer-0.10.so 644,160 445,896
libgstbase-0.10.so 147,516 79,280

libgstinterfaces-0.10.so 32,412 32,392
total 2,952,808 1,448,000

Table 1: Foot print of GStreamer optimization

5 Conclusions

In order to support many multimedia devices such as
cameras and camcorders using a single hardware plat-
form equipped with a dedicated multimedia SoC, a flex-
ible and extensible software framework is highly pre-
ferred from the development cost perspective.

GStreamer is one of the open source based multime-
dia frameworks. Especially, it is adopted widely in
multimedia product because of a variety of its plugin
functions. In this paper, we presented a multimedia
framework which supports both DVD and memory cam-
corders. It was designed and implemented by making
use of open source middleware such as GStreamer in
Linux OS. Based on the GStreamer engine, we devel-
oped a multimedia framework with many plug-ins im-
plemented by hardware as well as software codec. The
emulator was also introduced as a development environ-
ment in the PC platform.

References

[1] GStreamer Application Development Manual,
http://gstreamer.freedesktop.org/
data/doc/gstreamer/head/manual

[2] GStreamer Plugin Writer’s Guide,
http://gstreamer.freedesktop.org/
data/doc/gstreamer/head/pwg/

[3] Fast Light Tool Kit Open Source Project,
http://www.fltk.org/

[4] The Nano-X Windows System Open Source
Project,http://www.microwindows.org/



2008 Linux Symposium, Volume One • 251

[5] DVD Specification for Read-Only Disc Part3:
Version 1.1

[6] Universal Disc Format Specification Revision
2.50, http://www.osta.org/specs/

[7] Linux-USB Gadget API Framework,
http://www.linux-usb.org/gadget/

[8] USB Mass Storage Class Bulk-Only Transport,
http://www.usb.org/developers/
devclass_docs/usbmassbulk_10.pdf

[9] Information Technology - SCSI Block Commands
2–3

[10] PIMA 15740:2000 - Picture Transfer Protocol for
Digital Still Photography Devices,
http://www.i3a.org/

[11] White Paper of CIPA DC-001-2003 Digital Photo
Solutions for Imaging Devices

[12] Universal Serial Bus Device Class Definition for
Audio Devices

[13] Scratchbox,
http://www.scratchbox.org/
documentation/general/tutorials/
explained.html

[14] Boot Time Resources,
http://tree.ceLinuxforum.org/pubwiki/
moin.cgi/BootupTimeResources



252 • Camcorder multimedia framework with Linux and GStreamer



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


