
VESPER (Virtual Embraced Space ProbER)

Sungho Kim
Hitachi, Ltd., Systems Development Lab

sungho.kim.zd@hitachi.com

Satoru Moriya
Hitachi, Ltd., Systems Development Lab
satoru.moriya.br@hitachi.com

Satoshi Oshima
Hitachi, Ltd., Systems Development Lab
satoshi.oshima.fk@hitachi.com

Abstract

This paper describes VESPER (Virtual Embraced Space
ProbER), the framework that gathers guest information
effectively in a virtualized environment. VESPER is
designed to provide evaluation criteria for system reli-
ability and serviceability, used in decision-making for
system switching or migration by a cluster manager. In
general, the cluster manager exchanges messages be-
tween underlying nodes to check their health through
the network. In this way, however, the manager can not
discover a fault immediately and get detailed informa-
tion about faulty nodes. VESPER injects Kprobes into
the guest to gather the guest’s detailed information. By
communicating with the guest in kprobes through the
VMM infrastructure, VESPER can provide the manager
with prompt fault information much more quickly.

In this paper, we explain how VESPER injects Kprobes
into a guest and clarify the benefits by showing a use
case on Xen. As VESPER is not strongly coupled to a
specific VMM, we also show its portability to KVM and
lguest.

1 Introduction

Recently, the trend of applying virtualization technol-
ogy to enterprise server systems is getting much more
noticeable, such as in server consolidation. The tech-
nology enables a single server to execute multiple tasks
which would usually run on multiple physical ma-
chines. From that point, applying virtualization tech-
nology to cluster computing is very attractive technol-
ogy and worth considering as well, in terms of efficient
resource utilization and system dependability. Further-
more, use of virtualized environments for cluster sys-
tems allows us to make improvements in several areas

of general clustering technology—especially, fail-over
response latency in high-availability clusters.

Even in a virtualized environment, a cluster manager
such as Heartbeat [1][2] software delivers messages be-
tween underlying nodes to check their health through
network periodically (known as heartbeat). If any node
fails to reply in a certain time, the manager will assign
the service which the faulty node was providing to an-
other node. This amount of time before switching to
another node is called the deadtime, key to ascertaining
node death in Heartbeat. With this approach, however,
the manager can not immediately determine faults, nor
get detailed information about faulty nodes; this results
in fail-over response latency. So we have focused on im-
proving upon this latency, and on the failure analysis the
manager should facilitate in clustering virtual machines,
by considering features of virtualization technology.

One solution to the latency and failure analysis issues
is to add dynamic probing technology into virtual ma-
chines. This allows the cluster manager to have:

• Dynamic probe insertion to guarantee service
availability while inserting a probe.

• Arbitrary probe insertion to any process address to
hold its versatile probing capability.

• Prompt notification when corresponding events
happen around a probe.

Utilizing this featured probe technology to examine the
health of a virtual cluster member machine could lead to
faster and more efficient evaluation criteria for system
switching or migration than a simple, periodic message
delivery mechanism.

• 229 •



230 • VESPER (Virtual Embraced Space ProbER)

Speaking of the probe technology, Kprobes [3] are avail-
able in the Linux kernel community. Kprobes can insert
a probe dynamically at a given address in the running
kernel of a targeted virtual machine. Its execution of
the probed instruction in the kernel is capable of deal-
ing with the detailed information on the targeted virtual
machine in an event-driven fashion.

From a system management point of view, however, one
privileged system running the cluster manager (called
host hereafter) should obtain all probed data from the
targeted virtual machine (called guest hereafter). So,
there needs a mechanism to insert probes from the host
into the guests to improve the manageability of the man-
ager, which Kprobes does not take into consideration.

Xenprobes [4] has already addressed this topic. Xen-
probes is newly devised for probing virtual machines,
but adopts Kprobes’s concept in inserting breakpoints
where one needs a probe. However, Xenprobes needs
the help of a VMM-like furnished debugging mecha-
nism [5] and should stop the guest to insert the probes.
Moreover, every breakpoint causes VMM to give exe-
cution control to the host, especially in Xen [6] tech-
nology. These could be significant problems in service
availability.

In this paper, therefore, we propose the framework
named VESPER (Virtual Embraced Space Prober)
which gathers guest information effectively in a virtual-
ized environment, taking advantage of the full features
of Kprobes, adopted for its probing component. In con-
trast to Xenprobes, VESPER never gets involved with
probe handlers; this acts to avoid unnecessary probing
overhead and to improve service availability. VESPER
simply transfers Kprobes generated in the host to the
targeted guest. The transferred Kprobes do all the nec-
essary probing work themselves in the guest, and then
VESPER simultaneously obtains the result of Kprobes
through shared buffers (such as relayfs) built across the
host and guest.

We will describe how VESPER injects the probes into
guest and provides the solution to fail-over response la-
tency with failure analysis in a virtualized environment
by showing a use case with Xen, in the following sec-
tions of this paper.

Section 2 briefly describes design requirements in VES-
PER; Section 3 presents the architecture of VESPER.
Section 4 presents implementation details of VESPER,

while Section 5 shows some benefits of VESPER for
simple web services. Finally, we conclude this paper in
Section 6.

2 Design overview

In designing VESPER, we took special interest in sim-
plicity of implementation and robustness against disas-
ters in userland. We thus set up some design require-
ments on VESPER as follows, to reflect our concepts.

1. No modifications on host or guest kernels.
Lightweight implementation as a kernel module
could assure better usability and availability of
VESPER in systems due to dynamic loading and
unloading features of kernel modules.

2. Only the host can insert probes into the guest, and
guest itself loads them using guest kernel space
only. As mentioned in the previous section, the
cluster manager running on the host might as well
control probes into the guest from a management
point of view. In addition, the guest itself loads the
probes inserted by the host into its kernel space dy-
namically to keep its serviceability. Furthermore,
if some disaster should mangle user space but not
kernel space in the guest, VEPSER should still be
available to find out what the problem is.

3. All probed data from the guest is sent to host as
quickly as possible. To receive prompt alerts via
probed data is the main purpose of VESPER, and
thus to improve fail-over response latency.

To satisfy the requirements above, VESPER thinks of
Xen and KVM mainly as target VMMs because of the
popularity of Xen and KVM [7] in the OSS (Open
Source Software) community in this writing. Firstly, to
address Requirement 1 above, VESPER is, by prefer-
ence, developed as a virtual device driver. Requirements
2 and 3 dictate that VESPER communicate with host
and guest. As a matter of fact, Xen and KVM technol-
ogy provide a well-defined device driver model, split de-
vice driver, and communication infrastructure between
host and guest. Xenbus is infrastructure specific to Xen
technology, whereas virtio is applicable to Xen and
KVM as well. Especially, virtio is available in 2.6.24
Linux kernel. VESPER uses hierarchical layers in its



2008 Linux Symposium, Volume One • 231

software structure to accommodate various infrastruc-
tures, making it more available and portable.

The layer dependent on a certain infrastructure prepares
the set of functions and data items for the use of the
layers independent of the VMM architecture. Details on
that structure and implementation will be discussed in
the upcoming sections.

3 Architecture and Semantics of VESPER

For probing the guest, VESPER uses Kprobes to hook
into the guest Linux kernel, and uses relayfs to
record probed data in the probe handler of Kprobes. In
this section, we take a brief look at the VESPER archi-
tecture featuring a 3-layered structure, then we present
its semantics.

3.1 VESPER Architecture

As mentioned before, VESPER uses Kprobes to hook
into the guest kernel. However, because Kprobes is the
probing interface for the local system, it can not im-
plant probes into the remote system directly. Besides,
in the typical use case of Kprobes, the probe handler in
Kprobes comes in the form of a kernel module. There-
fore, in using Kprobes to hook into the guest kernel,
VESPER should be able to load probing kernel modules,
on which the handlers to probe are implemented, from
host to guest. This loading capability of VESPER is im-
plemented as split drivers and named Probe Loader.

In VESPER, the probing modules use relay buffers to
record data in the probe handlers. At this point, prob-
ing modules are in the guest; thus, VESPER needs to
transfer the buffer data from the guest to the host. This
relayed data transfer capability is also implemented as
split drivers and named Probe Listener.

Figure 1 is the block diagram of the VESPER compo-
nent.

As just described, VESPER contains two pairs of split
drivers. These drivers are implemented for each VMM
because they strongly depend on the underlying VMM.
So, we divide VESPER into three layers (shown in Fig-
ure 2): UI Layer, Action Layer, and Communication
Layer, in order to localize VMM-dependent code. This
structure lets VESPER run on Xen and KVM by replac-
ing only the VMM architecture-dependent layer—the
Communication Layer.

Probing Module
kernel

kernelVESPER-UI

user land user land

Probe
Loader
Host Part

Probe
Loader
Guest Part

Probe
Listener
Guest Part

Probe
Listener
Host Part

host guest

VMM
Load Probing Module

Share Probed Data

Figure 1: Architecture of VESPER

Communication Layer

Action Layer

Probing Module

Communication Layer

Action Layer

UI Layer user space

kernel space

Host Guest

Figure 2: Layer of VESPER

1. UI Layer

This is the interface layer between VESPER and
user applications which manage the guest in the
host. This layer provides interfaces for loading and
unloading probing modules to/from the guest and
accessing probed data recorded in the guest. These
are presented in detail in Section 5.

2. Action Layer

This is the worker layer which processes requests
from the UI and Communication Layer. Concretely
speaking, in this layer VESPER does actual work
for load/unload probing modules to/from guest and
sharing probed data between host and guest.

3. Communication Layer

This is the layer which provides communication
channels between host and guest. It strongly de-
pends on VMM architecture. By implementing this
layer with respect to each VMM, VESPER con-
fines the differences between VMM environments
to this layer.



232 • VESPER (Virtual Embraced Space ProbER)

3.2 VESPER Semantics

In order to implant probes into guests, VESPER must
load probing modules from the host to the guest. And
then, VESPER sends probed data from the guest to the
host.

Figure 3 illustrates the semantics overview of VESPER.

3.2.1 Module Loading

The first step to probe the guest kernel is to load the
probing module onto the guest.

0. Make Module

First of all, one should make a probing module
which uses Kprobes and relayfs.

A1. Module Load Command

Execute the probing module insertion via inter-
faces provided by the probe loader. One can also
specify module parameters, if needed.

A2. Obtain Module Information

On the host-side Action Layer of the probe loader,
from user space, VESPER obtains the module in-
formation to insert such as the module’s name, its
size, and its address with others related to module
parameters, if any.

A3. Send/Receive Request

Through the interface provided by the VMM, the
probe loader transfers the probing module’s infor-
mation between the host and guest.

A4. Load Module

In the Action Layer, the probe loader on the guest
side loads the module without userspace help.

A5. Share Relay Buffer

In the Action Layer, the guest’s probe listener gets
relayfs buffer information such as the read index,
buffer ID, etc., from the probe modules; it then ex-
ports the buffer to the host.

A6. Send/Receive Buffer Information

Communication layer of guest probe listener trans-
fer the shared buffer information to host via VMM
interface, and then, host probe listener receives it.

A7. Setup Relayfs Structure

The Action Layer of the host’s probe listener builds
the relayfs structure based on the information re-
ceived from the guest.

A8. Analyze/Offer Probed Data

One can read probed data through the UI Layer of
the probe listener.

3.2.2 Probing

After finishing the procedures in Section 3.2.1, the host
and guest probe listeners share relay buffers of the prob-
ing module. Consequently, it is not necessary to transfer
all the recorded data from guest to host, but it is nec-
essary to transfer index information about shared relay
buffers, where the data is, to get the start index for the
actual access to relay buffers by host.

B1. Gather Guest Kernel Data

Once loaded, the probing module puts data into the
relay buffer in the probe handler.

B2. Get Index Information

When change occurs in the relay sub-buffer, the ac-
tion layer of the guest probe listener gets the index
information and creates a message to notify host.

B3. Send/Receive Message

Through the communication layer, the host probe
listener is notified of the index data from the guest.

B4. Update Index

The action layer function of the host probe listener
updates the index of relayfs in the host, based on
the received message.

3.2.3 Module Unloading

Basically, unloading a probing module below is similar
to loading a module. The significant difference is that
it takes two steps in the unloading module process, be-
cause before removing the relay buffer in the handler in
the guest, the exported user interface for the buffer in
host should be dropped.



2008 Linux Symposium, Volume One • 233

Com:(A3)(C3)

Act:(A4)(C4)(C8)

Probe Loader
Frontend

Com:(A6)(B3)(C6)

Act:(A5)(B2)(C5)

Probe Listener
Frontend

guest

Com:(A6)(B3)(C6)

Act:(A7)(B4)(C7)

UI:(A8)

Probe Listener
Backend

Com:(A3)(C3)

Act:(A2)(C2)

UI:(A1)(C1)

Probe Loader
Backend

host

Module:(B1)

user
space

kernel
space

VMM

Figure 3: Process Flow of VESPER.

C1. Module Unload Command

C2. Obtain Module Information

C3. Send/Receive Request

C4. Unload Module (step1)

C5. Stop Sharing Relay Buffer

C6. Send/Receive Buffer Information

C7. Destroy Relayfs Buffer

C8. Unload Module (step2)

In the next section, we describe the detailed implemen-
tation of the probe loader and listener.

4 Implementation of VESPER

As previously described, VESPER consists of two com-
ponents named probe loader and probe listener. Each
component is split into three parts, UI Layer, Action
Layer, and Communication Layer, to confine the de-
pendency on the underlying VMM. In this section, we
present the implementation of VESPER from the view-
point of the Communication Layer on Xen.

4.1 Probe Loader

Probe Loader loads probing modules from host to guest
without using the guest’s user space. To make this con-
cept real, probe loader needs to perform two functions.
One is to transfer the probing module from the host to
guest, and the other is to load the module in the guest
without involving user space.

4.1.1 Module Transfer Function

In order to implant the probing module from the host
into the guest memory space, VESPER needs to be
able to transfer the module image somehow. Gener-
ally, VMM provides I/O infrastructure between host and
guest using a shared memory mechanism. In the Xen
environment, grant table and I/O ring are pro-
vided for that. To use them for transferring the module,
probe loader is implemented as split drivers—frontend
driver in the guest, and backend driver in the host, on
Xenbus.

Backend driver allocates shared memory using grant
table and write the module image into it. And then,
the driver pushes a request onto I/O ring for the
frontend driver. After receiving the request through I/O
ring, frontend driver maps the shared memory to its
virtual memory space.

For security reasons, it is normally the frontend driver
that requests I/O from the backend driver. If, instead,



234 • VESPER (Virtual Embraced Space ProbER)

the backend driver issued I/O requests to the frontend
driver, because frontend driver should have read/write
permissions on the host to accomplish the requests, this
would result in the guest being able change the contents
of the host’s page.

In VESPER, however, (as mentioned above) the host
must issue requests to the guest for loading the module.
From a security perspective, we must ensure that VES-
PER’s communication protocol between host and guest
follows this pattern—that is, that the frontend driver re-
quests, and the backend driver responds. To keep this
pattern, the frontend driver first issues a dummy request
to backend driver. Then, the backend driver issues the
module loading request as a response to the dummy re-
quest in the protocol, when the UI layer in host triggers.
At this phase, the frontend driver has received all the in-
formation about the module to insert and then allocates
a grant table for the module image. After grant
table allocation, the frontend driver issues the real
module loading request. With that request, the backend
driver does copy_from_user to the grant table
with respect to the module for the response. Finally, the
result of loading the module is sent as a new dummy
request from frontend driver. When next request is trig-
gered from the host, the backend driver only issues a
new request as the response to the last dummy request
for the next process. The processes above are involved
for every module insertion request in the host. The de-
tails of the protocol follow.

1. Frontend driver issues a dummy request.

2. Application triggers the module loading into guest.

3. Backend driver issues the module loading request as
a response to the dummy request.

4. Frontend driver issues a real request with grant
table allocated.

5. Backend driver copies the module into the grant
table.

6. Frontend driver loads the module.

7. Frontend driver issues a new dummy request with the
last loading module result.

8. Backend driver hands in the result of the module
loading to the application.

9. Repeat Steps 2 through 8 for every request from the
application.

From the benefit of the protocol, we sacrifice only one
dummy request incurred in the initialization phase of the
drivers, which is very trivial compared to the security
hole.

4.1.2 Module Load Function

Sometimes there is the situation that a user program
goes out of control. In such cases, the user program
cannot be executed, but a kernel program can. If it is
possible to load the module without user space help, one
is able to analyze system faults even in the case above.
Thus, in VESPER, the module load function is imple-
mented without using a user-space program.

Currently the core system of the module loader in Linux,
such as load_module, calls copy_from_user to
get module images because it assumes that module load-
ing is executed in user space. Inside copy_from_
user, access_ok is called to verify its memory
address. However, it never checks whether the call-
ing function is executed in user space; it only checks
whether the address limit is in its process address space.
Hence, we implemented the module load function as
a kernel thread in the Action Layer of the guest probe
loader. This kernel thread calls sys_init_module,
which calls load_module. Because the loaded mod-
ule is already copied from the host via the module
transfer function described above, copy_from_user
works properly.

Nevertheless, it is impossible to invoke sys_init_
module and load_module from external kernel
modules, because they are not exported by EXPORT_
SYMBOL. To address this problem, in VESPER, we get
the address of these symbols from the guest kernel sym-
bol table, and then pass them as parameters to the user
interface probe loader provides for loading.

4.2 Probe Listener

The Probe Listener should retrieve the probed data from
the guest and make it available to user-space applica-
tions in the host. Probing modules use relayfs to record
the probed data which describes the behavior of the
guest kernel around the probe points.



2008 Linux Symposium, Volume One • 235

In fact, relayfs tends to allocate its buffers by pages,
and grant table is also a page-oriented mechanism.
So, provided that the buffers controlled by relayfs are
allocated by grant table in the guest, a copy pro-
cess is definitely unnecessary between host and guest
to share the data, because grant table is transpar-
ent to both host and guest. A design decision on using
grant table as relayfs buffers could also eliminate
the need of other control mechanisms onto buffers than
relayfs rchan.

In the case of sharing the probed data in the buffers,
VESPER should also share and update some infor-
mation about the buffers, such as the read index and
padding value for relayfs in the host, to access the
buffers.

As a result, Probe Listener consists of two components,
which are a buffer share function and an index update
function, and it is implemented as split drivers, just like
Probe Loader.

4.2.1 Buffer Share Function

As mentioned before, because the probing module
records probed data into relay buffers, Probe Listener
shares them between host and guest. Sharing the buffers
is implemented by using grant table like the mod-
ule transfer function in Probe Loader. Similarly, infor-
mation about which buffers need to be shared is pro-
vided from guest to host by using I/O ring.

Once the relay buffers are exported by the guest and
their information is received by the host, the relayfs
structure is built on the host to provide probed data
in the buffers to user-space applications. At this time,
Probe Listener does not call relay_open to create
a rchan structure, which is a control structure of re-
layfs. This is because Probe Loader does not need to
newly allocate the pages for the relay buffers, but should
just map the pages exported by the guest. Therefore,
Probe Listener sets up the rchan structure manually.
After rchan is set up, the interface to read this relay
buffers is created on /sys/kernel/debug/vesper/

domid/modname/ like other subsystems which use re-
layfs. User applications can read this interface directly,
or use APIs abstracted by VESPER.

Finally, to stop sharing the buffer, the probe listener ex-
ecutes the above process in reverse. Removing the relay

structure is done at first, and then exporting relay buffers
is stopped.

4.2.2 Index Update Function

When the probe listener shares the relay buffers be-
tween host and guest, it must synchronize some buffer
information such as the read index between both rchan
structures. If it does not, the user application on the
host cannot read the probed data correctly. Probe Lis-
tener uses I/O ring for the information transfer. The
guest’s probe listener creates a message including the
information, pushes it to I/O ring, and then notifies
the host’s probe listener. The host’s probe listener gets
the message from I/O ring and updates its own relay
buffer information with the message.

Ideally, probe listener should update that information
immediately whenever the guest rchan is changed.
However, message passing by I/O ring is too expen-
sive to update each time due to the intervention of the
interrupt mechanism to notify host of the existence of
pending messages. Hence, Probe Listener updates the
buffer information when switching to sub-buffer occurs.
In doing so, probe listener updates the buffer control
information, and the user application can get the latest
data probed from the guest.

5 VESPER Interface

This section describes the VESPER Interface.

5.1 The VESPER User API

VESPER provides user applications with simple inter-
faces to insert probing modules to target guests and to
obtain probed data from the guests in Figure 4. Argu-
ments of virt_insmod and virt_rmmod are sim-
ply the same as insmod and rmmod, Linux user com-
mands to handle kernel modules, except that they target
the guest. In addition, virt_is_alive is available
for the application to check if some error occurs around
the probed point.

5.2 The VESPER Module API

VESPER defines an API to export relay buffers of the
probing module to the host. Additionally, VESPER pro-
vides a callback function for use when the sub-buffer of



236 • VESPER (Virtual Embraced Space ProbER)

int virt_insmod(
const int target_guest,
const char *modname,
const char *opt);

int virt_rmmod(
const int target_guest,
const char *modname,
const long flags);

bool virt_is_alive(
const int target_guest,
const char *modname);

Figure 4: Prototype of the VESPER user API

the relay is changed. All probing modules should call
the exported function after relay_open, and the stop
export function before relay_close. The callback
function also is set up to subbuf_start, the member
of struct rchan_callbacks. Figure 5 shows the
prototype of the module API.

int relay_export_start(
struct rchan *rchan,
const chaq *modname);

void relay_export_stop(
const char *modname);

int virtrelay_subbuf_start_callback(
struct rchan_buf *buf,
void *subbuf,
void *prev_subbuf,
size_t prev_padding);

Figure 5: Prototype of the VESPER module API

6 Evaluation

In this section, we will examine the benefits of VES-
PER with a webserver running on a Xen-based guest,
and will explain how VESPER works with Heartbeat to
eliminate the latency using the test case we plan to build.

6.1 Test environment

For this experiment, we plan to prepare two physical
machines. We set up two guests as resources managed
by the LRM (Local Resource Manager) of Heartbeat on
each physical machine. In fact, it is a controversial is-
sue on how a guest is treated in the cluster, as one of
the cluster nodes, or as a resource like IP. However, we
will treat guests as a resource to avoid any complexity
of management caused by difficulty in identifying host
and guest from the all nodes, in case a guest were treated
as a node. On each physical machine, the webserver is
on the one guest, we say VM1; it is actively performing
web service. On the other hand, the webserver in the
other guest, we say VM2, is inactive. Figure 6 depicts
the details.

When something wrong happens to VM1, Heartbeat lets
VM2 take over all of roles which VM1 was perform-
ing. However, one physical machine, P1, has Heart-
beat’s LRM without involvement of VESPER to show
how Heartbeat works in the usual way. However, the
other physical machine, P2, has LRM cooperating with
VESPER. Here, we treat the guest as a resource so that
we plan to add virtual machine resource plugin con-
forming to OCF (Open Cluster Framework) to LRM to
make Heartbeat and LRM recognize a virtual machine
as a resource. The plugin has interfaces for start, stop,
and monitor (a.k.a. status) the resource. In implement-
ing the resource plugin, the monitor interface of the plu-
gin will invoke VESPER for LRM on P2 only.

6.2 Implementation of virtual machine resource

In Heartbeat, CRM (Cluster Resource Manager) coordi-
nates what resources ought to run where, or which status
they are running, working with the resource configura-
tion it maintains. And it commands LRM to achieve
all the things. LRM then searches for proper resource
to handle by way of the PILS subsystem of Heartbeat.
LRM calls exported interfaces by the resource to exe-
cute CRM requests, start/stop/monitor, etc. We newly
define a virtual machine resource, and it exports a start/
stop/monitor interface implemented as follows.

• start. The resource invokes the xm command (Xen
tool) to start a specific guest.

• stop. The resource also invokes xm (Xen tool) to
stop a specific guest.



2008 Linux Symposium, Volume One • 237

host
user space

Heartbeat

LRM

resource

kernel space 

VM1
user space

kernel space 

web
server

VM2
user space

kernel space 

Xen

Hardware

P1

host
user space

Heartbeat

LRM

resource

kernel space 

VM1
user space

kernel space 

web
server

VM2
user space

kernel space 

Xen

Hardware

P2

VESPER
probes probes

Figure 6: Test environment to demonstrate the usability of VESPER.

• monitor. The resource invokes the xm command
(Xen tool) to get the status of a specific guest as
well as monitor procedure, prepared for this test,
to get status of the services running on that guest.
What is more, the resource on P2 invokes the VES-
PER interface and does a logical OR on the results
of the above two for the return value, only in case
of P2.

6.3 Expected result and discussion

For simplicity, we insert Kprobes around the panic path
of the guest kernel via VESPER. Kprobes thus inserted
will put clues like the callstack to the panic on the re-
layfs when the panic occurs. Then, we cause a panic
intentionally on VM1 and measure the recovery time on
P1 and P2. We can easily expect that P2 will recognize
what happened to VM1 of P2 as soon as VM1 panics,
because of the prompt notification done by VESPER.
Obviously service recovery time is supposed to be dra-
matically improved by as much as deadtime we set for
Heartbeat. Moreover, one can find out the reason why
VM1 on P2 panicked through the probed data on the re-
layfs later on.

Through the experiment, we could verify better perfor-
mance on response latency and usability of failure anal-
ysis provided by VESPER.

However, special care should be taken with two issues
regarding probes. One is what probe points are suitable
for proper monitoring. If the targeted, necessary probe

points miss, no more improvement over usual Heartbeat
can be expected. Actually, the problem on where probe
points should be inserted seems very tricky to handle,
because highly experienced developers or system ad-
ministrators on kernel context and applications running
on the server are required to select optimal probe points.
The other is about overhead produced by the execu-
tion of probes. One should adjust the overhead ac-
cording to the required service performance. Both is-
sues exclude each other. More probes inserted to hit
fine-grained events cause more overhead in probing, ob-
viously. Some mechanism to help one select optimal
probes could be needed. Some suggestions for these is-
sues will be mentioned as future works of VESPER in
the next section.

7 Conclusion and future works

In this paper, we proposed VESPER as a framework to
insert probes in virtualized environments and discussed
what topics VESPER can solve in clustering computing.
After that, we described the design and the implementa-
tion of VESPER. Then we suggested a test bed to show
the performance improvement on fail-over response la-
tency and failure analysis. Finally we discussed some
considerations on places and overhead of probing. To
address these considerations, we have some plans about
future VEPSER developments.

7.1 Probing aid subsystem

For the ease use of cluster manager or other applications,
we plan to develop a probing aid subsystem. Probing



238 • VESPER (Virtual Embraced Space ProbER)

points could be classified into several groups based on
their functionality. The subsystem thus can pre-define
several groups of probe points and abstract them to
its clients or application—like memory group, network
group, block-io group, etc. The clients just select one
of groups, and the subsystem will generate all needed
probes relayed to VESPER. Also, fine-grained selection
from several groups will be supported by the subsystem.

7.2 SystemTap Enhancement

We have a plan to integrate the feature of VESPERs for
virtualization into the SystemTap [8] for its versatile us-
age in the native kernel as well as the virtualized kernel.

7.3 Virtio support and evaluation on KVM and
lguest

Virtio is likely to promise one standard solution to
host and guest communication infrastructure on various
VMMs. VESPER should support virtio and be evalu-
ated on KVM and lguest [9] to verify its portability and
usability.

The next two are not related directly to probing tech-
nique but are worth examining as enhancements of func-
tionality of virtual machine resource facilities in clusters
in terms of virtualization technology.

7.4 Virtual machine resource support for LRM

Arguably, there is a question on how services running
on virtual machines should be treated if a virtual ma-
chine is treated as a resource. Should the services be
handled at the same level as the virtual machine itself in
LRM? When the services go fail-down, only the failed
service must be moved to another virtual machine on the
same physical machine—better than virtual machine it-
self should be switched to another virtual machine on a
different physical machine. The next version of inter-
face VESPER exports will suggest the solution to that.

7.5 Precaution capability on collapse of the host

If the host collapsed, all services running on the guests
would be lost. It is obviously a big problem. Therefore,
VESPER should probe the host simultaneously to check
whether the host is in good condition. When VESPER
catches a sign of the host’s collapse, the cluster manager
notified by VESPER could take necessary action, such
as live migration to other host.

8 Acknowledgments

We would like to thank Yumiko Sugita and our col-
leagues for reviewing this paper.

9 Legal Statements

Linux is a registered trademark of Linus Torvalds. Other
company, product, and service names may be trademarks or
service marks of others.

References

[1] Alan Robertson, “Linux-HA Heartbeat Design,”
In Proceedings of the 4th International Linux
Showcase and Conference, 2000.

[2] Heartbeat, http://linux-ha.org.

[3] Ananth N. Mavinakayanahalli et al., “Probing the
Guts of Kprobes,” In Proceedings of the Linux
Symposium, Ottawa, Canada, 2006.

[4] Nguyen A. Quynh et al., “Xenprobes, A
Lightweight User-space Probing Framework for
Xen Virtual Machine,” In USENIX Annual
Technical Conference Proceedings, 2007.

[5] Nitin A. Kamble et al., “Evolution in Kernel
Debugging using Hardware Virtualization With
Xen,” In Proceedings of the Linux Symposium,
Ottawa, Canada, 2006.

[6] The Xen vitual machine monitor,
http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/.

[7] KVM, http://kvm.qumranet.com/.

[8] SystemTap,
http://sourceware.org/systemtap/.

[9] Rusty Russell, “lguest: Implementing the little
Linux hypervisor,” In Proceedings of the Linux
Symposium, Ottawa, Canada, 2007.

[10] VESPER,
http://vesper.sourceforge.net/.



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


