
Low Power MPEG4 Player

Joo-Young Hwang
Software Labs

Samsung Electronics Co. Ltd.
jooyoung.hwang@samsung.com

Sang-Bum Suh
Software Labs

Samsung Electronics Co. Ltd.
sbuk.suh@samsung.com

Woo-Bok Yi
Software Labs

Samsung Electronics Co. Ltd.
woobok.yi@samsung.com

Jun-Hee Kim
Seoul National University

goldlion@davinci.snu.ac.kr

Ji-Hong Kim
Seoul National University

jihong@davinci.snu.ac.kr

Abstract

In this paper, design and implementation of a dynamic
power management for a MPEG-4 player is described.
We designed two dynamic voltage scaling algorithms
(feedback-based and buffering-based) to adapt CPU
voltage dynamically according to the variable bit rate
of a movie. We experimented the algorithms with the
open-source XviD player. Our modified XviD player
can save up to about 50% power without performance
degradation. We describe practical lessons learned in
optimization of the algorithms.

Power management (PM) is an important issue for
battery-powered Linux devices, particularly for video
playing devices. Our work shows how a conventional
open-source video player can be modified to save power
significantly on a CPU with dynamic voltage scaling ca-
pability.

1 Introduction

Power consumption is one of the big issues facing mo-
bile embedded devices. Multimedia playing is one of
the key functions of recent mobile devices, and the mul-
timedia player is running for most of the time while us-
ing those devices. Power management for efficient mul-
timedia playing in mobile devices is an important issue.

There have been numerous research papers published on
power management for server systems [10], soft-real-
time systems [6], and up to real-time systems [12, 1, 11].

Some of them are focused on per-component power
management or system-level power management. In
this paper, we focus on power management of the CPU
component for multimedia playing devices, which is a
soft-real-time system.

Many modern CPUs provides dynamic changing of
clock frequencies and voltages in order to reduce power
consumption. When a CPU becomes idle, it normally
enters idle mode, a low-power mode provided by most
current processors. However, it is rather efficient to re-
duce voltage levels as much as possible without violat-
ing deadlines of tasks, because power consumption of
digital CMOS circuits is quadratically proportional to
the supply voltages (P = αC fVDD

2)[2, 7].

Conventional DVS algorithms adjust CPU voltage/clock
frequency dynamically according to workload varia-
tions. There are two DVS (Dynamic Voltage Scaling)
approaches to exploit CPU slack time: inter-task and
intra-task. Inter-task DVS is to exploit the slack time
obtained from one task when the task completes prior to
its planned execution time for the next task to schedule.
The OS scheduler determines the CPU voltage level for
the task to schedule, and changes the CPU voltage as
determined.

Intra-task DVS is to change voltage levels during the
execution of a task. Power Control Points (PCP) are in-
serted into a conventional program in order to change
CPU voltage level at those points. PCP can be inserted
automatically by the compiler, or manually by program-

• 219 •



220 • Low Power MPEG4 Player

mers. PCP should be inserted appropriately to avoid un-
necessary frequent voltage switches, which will lead to
performance degradation. There is no general rule of
thumb on where to insert PCP into a program, but it may
varies from application to application. The workload of
an application should be analyzed statically or profiled
dynamically at run time in order to pick the proper po-
sition for PCP.

Dynamic voltage scaling for multimedia players is an
intra-task DVS method. There have been many pa-
pers on dynamic voltage scaling multimedia playback
[3, 4, 8, 5, 9, 6]. In this paper, we describe a case study
on practical issues in deployment of DVS algorithms
on Linux and legacy multimedia player. We describe
implementation issues of two DVS methods (feedback-
based and buffer-based) and show detailed performance
analysis. We also indicate possible further optimization
directions.

This paper is organized as following: In Section 2, we
overview currently known DVS algorithms and describe
our implementation of those DVS algorithms in the open
source XviD MPEG4 player, and discuss implementa-
tion issues in Section 3. Experimental performance re-
sults are shown in Section 4, and we summarize this pa-
per in Section 5.

2 DVS Algorithms for Multimedia Playing

2.1 Feedback-based DVS Algorithm

Using conventional feedback-based algorithms [3, 4, 8,
5, 9], workload of the current Video Object Plane (VOP)
is predicted considering the previous VOP decoding
workloads, and the CPU voltage/clock is adjusted ac-
cordingly. In our media player, the VOP workload is es-
timated based on a simple moving average scheme; the
workloads measured in the unit of the number of CPU
cycles for previous frames are averaged over a window
(typically 3 frames). Target CPU clock for the current
frame decoding is calculated as the estimated workload
divided by the decoding period. Then we select the
power state with the minimum CPU clock among the
CPU clocks higher than the calculated target frequency.
The algorithm uses a different time window size for dif-
ferent VOP types (I, P, or B) of a frame.

2.2 Profile-based DVS Algorithm

This algorithm is the ideal case of a feedback-based al-
gorithm. By profiling actual VOP decoding times in
off-line and using the profile at run-time, the feedback-
based algorithm can adjust voltage/clock according to
correctly predicted workloads for all the frames. The
VOP decoding times are measured for each CPU clock
frequency because decoding time is affected not only by
CPU clock frequency, but also by off-chip memory la-
tencies. The performance of the profile-based feedback
scheme gives the ideal performance which can be ob-
tained by feedback-based algorithms.

2.3 Buffer-based DVS Algorithm

This algorithm, originally proposed in [6], can be used
for input buffering or output buffering. The paper de-
scribed only the input buffering case in detail, but we
are interested in output buffering in this paper.

When there is no output buffer and the decoder should
output decoded stream to the frame buffer directly, the
decoder should wait until the next period to update the
frame buffer. VST (Workload Variation Slack Time),
which is generated by early completion of decoding of
a frame, cannot be exploited for decoding of the next
frame. If there are output buffers to save the decoded
stream, the decoder can begin decoding of the next
frame, exploiting the VST generated by the previous
frame. This is illustrated in Figure 1.

When decoding of the j-th VOP is complete prior to its
deadline, the slack whose amount is V STj occurs. With-
out output buffers, the decoder should wait for this slack
interval. Assuming that the workload required for de-
coding the j + 1-th frame is PEC, the CPU clock fre-
quency for decoding the frame is PEC/Period. With
output buffers, the decoder can start decoding of j + 1-
th frame without waiting for the next period. At the
moment, CPU clock frequency is adjusted to be PEC
/ (V STj + Period), so power consumption is reduced. At
the deadline of j + 1-th frame, the current frame buffer
address is switched to the memory, which contains the
decoded data of the j +1-th frame.

According to [6], maximum buffer size can be estimated
by the ratio of worst case execution time (WCET) to
best case execution time (BCET). The VST increases
as the actual execution time becomes shorter than the



2008 Linux Symposium, Volume One • 221

deadline. Assuming the steady state worst-case scenario
where VST is saturated to a maximum value, (BCET
/ WCET) becomes equivalent to (T / T + VST) where
T is the period, then VST = T(WCET/BCET - 1). To
fully exploit the VST, output buffers should be available.
Therefore, the buffer size h should satisfy the following.
h ≥ dV ST

T e= dWCET
BCET −1e

To determine BCET and WCET for a media clip, the
clip is played once at the full speed of a CPU. The au-
thors of [6] supposed that the execution times of the ap-
plications follow a normal distribution and took 3σ vari-
ations around the mean of the distribution as boundary
values. In our experiment, we simply take the actual
maximum and minimum execution times as WCET and
BCET, respectively.

3 Implementation

3.1 Voltage Scaling Function in Linux Kernel

In our experimental platform, CPU supply voltage is
regulated via the LTC1663 chip, and it takes non-
negligible time to change CPU voltage. So, the multi-
media player should not block waiting for completion
of CPU voltage change. A voltage scaling daemon,
running as a kernel thread, is responsible for changing
CPU voltage to a new value, specified by the multime-
dia player’s voltage scaling request. The VS daemon
writes the request to the LTC1663 chip and sleeps on
interrupt from the chip, which arrives when the actual
voltage change is complete.

3.2 Media Player SW Architecture

Our low power media player consists of four modules as
described in the following.

• AVI I/O Library

Most MPEG-4 video data are contained in a sep-
arate container format such as AVI or MOV.
Among them, AVI format is generally used,
and we use it for our experiments. AVI I/O
library extracts MPEG-4 VOP stream data
from AVI file and sends it to XviD decoder.
We use Transcode AVI I/O library for this
module.

• XviD Decoder Library

This is a open source GPL licensed MPEG-4 de-
coder library. It is not official reference soft-
ware for MPEG-4, but it is fully compatible
with MPEG-4 and its performance is well op-
timized, so we choose it for our baseline me-
dia player.

• Low Power Player Module

This is the core module of our media player.
It performs basic hardware initialization and
sends frame data decoded by the XviD de-
coder library to the LCD frame buffer, in syn-
chronization with frame deadlines. This also
includes implementation of feedback-based
and buffer-based DVS algorithms.

• User-level VS Library

The VS library provides user-level DVS APIs for
applications. These invoke system calls to get
service of DVS functions from Linux kernel.

DVS APIs provided by the user-level VS library to the
media player are summarized in the following.

• unsigned int getCurrentSpeed()

returns current relative speed

• void setScaledClock(unsigned int
newSpeed)

set CPU clock frequency to a value corresponding
to a given relative speed value of "newSpeed"

• void setScaledSpeed (unsigned int
newSpeed)

set both CPU clock frequency and voltage at the
same time corresponding to a given relative
speed value of "newSpeed"

• unsigned int getCurrentVoltage()

returns current voltage value multiplied by 100.

• void setVoltage(unsigned int
newVoltage)

set CPU voltage to the given "newVoltage" which
is a voltage value multiplied by 100.



222 • Low Power MPEG4 Player

3.3 Power States Selection

PXA-255 provides various CPU voltage/clock combi-
nations, as shown in Table 1. We selected combinations
with the same memory clock frequency of 99.5 MHz to
avoid ambiguity, as described in the following. When
we consider two combinations with different memory
clocks and different CPU clocks, it is not determinis-
tic which one consumes more power and gives higher
performance, because the actual power consumption de-
pends on workload characteristics. For memory inten-
sive workloads, a combination with a higher memory
clock may give higher performance, even though it has
lower CPU clock frequency. It is also difficult to com-
pare the total power consumption including CPU and
memory power, because they may vary from device to
device, and an accurate power consumption specifica-
tion for processor and memory is required for correct
comparison. For implementation simplicity and porta-
bility, we selected the four combinations in Table 1.

PXA-255 processor has an idle mode, where power con-
sumption is minimal. It is generally entered by operat-
ing systems when the system is idle. When an interrupt
arrives, processor mode is immediately changed to ac-
tive mode. Even though the system is idle, the Linux
kernel still typically processes a timer tick every ten mil-
liseconds. To reduce the power consumption for pro-
cessing, the periodic timer ticks when the system is idle;
we adjust the CPU voltage/clock to the lowest power
state on entry to slack interval.

3.4 Deadline Misses Handling

In the feedback-based method, a deadline miss may oc-
cur when the workload prediction is incorrect. If the
CPU voltage is adjusted too low, the decoding of a frame
will not be complete until the deadline of the frame.
When such deadline miss occurs for a frame, the VOP
deadline of the next frame is shortened accordingly not
to increase the total play time.

4 Performance results

Our experimental platform, TynuxBox-Xe, is equipped
with an Intel PXA255 CPU operating at 400MHz,
32MB SDRAM, and 32MB NOR flash memory. To
measure the power consumption of the CPU, a data

acquisition instrument is used to collect voltage sam-
plings. Small serial resistance is inserted between the
supply and the CPU to measure the current flow. Volt-
age level is sampled at the points (A) and (B) in Figure 2.
Instantaneous power consumption of the CPU is calcu-
lated as VB

VA−VB
R , where VA and VB are the voltages at

(A) and (B) points, respectively. Voltages are sampled
at 1000 HZ frequency. We used a trailer for the Matrix
Revolutions as an input, in which length is 63 seconds,
video frame rate is 12 frame per second, and screen res-
olution is 240x160.

PXA-255
(400MHz)

(B) (A)

V(B)

Data Acquisit ion
Instrument

V(A)

voltage sampling

R

Figure 2: Power consumption measurement

We compare the following four cases:

• Normal case without DVS methods. CPU voltage
is set to the highest value when system is active,
and CPU enters idle mode when system is idle.

• Feedback-based method. It is to adjust CPU volt-
age frame by frame according to the predicted cur-
rent frame’s CPU workload, which is estimated
based on history of actual workloads of the previ-
ous frames. Moving average window size is 3.

• Profile-based method. It is to adjust CPU voltage
frame by frame according to the actual workload
which is known a priori.

• Buffer-based method. It is to adjust CPU voltage
frame by frame according to the worst-case execu-
tion time of each frame. The number of buffers is
set to 4, which is calculated as described in 2.3.

Figure 3 shows instantaneous power consumption of the
three DVS methods for the first 500 milliseconds time



2008 Linux Symposium, Volume One • 223

t imeT 2T 3T 4T

VST1 VST2 VST3 VST4

Vmax

Vmin

(a) Without output buffers

t imeT 2T 3T 4T

VST1

VST2

VST3

VST4

Vmax

Vmin

(b) With output buffers

Figure 1: Working behaviour comparison between w/o buffer and w/ buffer cases.

CPU Clock (MHz)
corresponding to PXA255’s CCCR setting (N)

N = 1.00 N = 1.50 N = 2.00 N = 3.00 SDRAM Clk(MHz)
99.5@1.0V - 199.1@1.0V 298.6@1.1V 99.5
132.7@1.0V - - - 66
199.1@1.0V 298.6@1.1V 398.1@1.3V - 99.5
265.4@1.1V - - - 66
331.8@1.3V - - - 83
398.1@1.3V - - - 99.5

Table 1: PXA255 CPU voltage/clock combinations table with SDRAM clock frequency. CCCR is Core Clock
Configuration Register of PXA255 CPU.



224 • Low Power MPEG4 Player

interval, during which the video changes smoothly and
decoding workload is low. As shown in Figure 3 (a),
the decoder in the normal case is active only for approx-
imately half of the period. For the workload, all those
DVS methods work well and none of them outperforms
the others. Total energy consumption over the time in-
terval are 11.49, 7.37, 6.23, and 7.26 mJ for normal,
feedback-based, profile-based, and buffer-based meth-
ods, respectively. It should be noted that the buffer-
based method adjusts the CPU voltage higher than the
profile-based method for the first frame, because it uses
the worst-case execution time for workload estimation,
while the profile-based method uses the exact workload
of the frame. For that reason, total energy consumption
of the profile-based method is the the lowest among the
three methods.

Figure 4 shows instantaneous power consumption of the
DVS methods for the time interval from 3 - 3.5 seconds
of the video during which the scene changes quickly,
and decoding workload is high. The feedback-based
method failed to reduce power for this workload because
the moving average-based workload estimation is wrong
for most cases. The buffer-based method works well
for the workload, and even better than the profile-based
method. In the method, CPU voltages are kept low for
most of time and media player hardly enters Idle mode,
which is owing to the efficient exploitation of VST. Un-
like other methods, in the buffer-based method, CPU
voltage change is not synchronized with frame deadline
as observed during the (i+4)-th frame in Figure 4 (c).
Energy consumptions during the time interval are 14.84,
14.91, 10.28, and 7.33 mJ for normal, feedback-based,
profile-based, and buffer-based methods, respectively.

The current buffer-based method has more optimization
opportunities. It is possible that CPU voltage is conser-
vatively set because the buffer-based method uses the
worst-case execution time of a video clip, instead of us-
ing feedback from actual execution times. In case of
playing a video whose frame decoding complexity vari-
ation is very high, setting the CPU voltage consider-
ing WCET may lead to buffer shortage while decoding
low complexity frames. Using actual execution times
can be a solution of this problem. Since this may also
cause deadline misses as the feedback-based method, ei-
ther appropriate deadline miss handling or deadline miss
avoidance is necessary, which is one of our future works.

5 Summary

In this paper, we described our implementation of DVS
algorithms designed for low-power multimedia play-
back. Feedback-based and buffer-based methods are
implemented using the XviD MPEG4 player. The
feedback-based method performs well for smoothly
changing video. However, it could not correctly predict
frame decoding workloads for quickly changing video,
which led to non-significant power reduction. We also
implemented the profile-based DVS method, which uses
correct workload information profiled at off-line to show
the upper bounds of the performance, which can be ob-
tained by ideal feedback-based methods.

The buffer-based method using multiple output buffers
performs better than the profile-based method, owing to
efficient exploitation of VST (Workload Variation Slack
Time). Without output buffers, the decoder cannot de-
code the next frame, even though the current frame de-
coding is completed earlier than its deadline. In con-
trast, with output buffers, the decoder can continue work
by queuing output to buffers. The number of buffers
does not have to be large, and 4 buffers were enough
to get significant power reduction for our test video se-
quence.

We showed detailed analysis of voltage scaling be-
haviour for typical DVS methods. We also indicate the
possibility of further optimization of the buffer-based
DVS method for handling video sequences with vary-
ing frame complexity.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. M.
Alvarez. Dynamic and aggressive scheduling
techniques for power-aware real-time systems. In
Proceedings of IEEE Real-Time Systems
Symposium, 2001.

[2] T. Burd and R. Brodersen. Processor design for
portable systems. In Journal of VLSI Signal
Processing, Aug. 1996.

[3] K. Choi, K. Dantu, W. Cheng, and M. Pedram.
Frame-based dynamic voltage and frequency
scaling for a mpeg decoder. In Proceedings of
International Conference on Computer Aided
Design, pages 732–737, November 2002.



2008 Linux Symposium, Volume One • 225

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  50  100  150  200  250  300  350  400  450  500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
feedback

(a) Normal vs. Feedback based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  50  100  150  200  250  300  350  400  450  500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
profile

(b) Normal vs. Profile based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  50  100  150  200  250  300  350  400  450  500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame 0 frame 1 frame 2 frame 3

normal
buffer

(c) Normal vs. Buffer based method

Figure 3: DVS results for smoothly changing video part.



226 • Low Power MPEG4 Player

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000  3050  3100  3150  3200  3250  3300  3350  3400  3450  3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
feedback

(a) Normal vs. Feedback based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000  3050  3100  3150  3200  3250  3300  3350  3400  3450  3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
profile

(b) Normal vs. Profile based method

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 3000  3050  3100  3150  3200  3250  3300  3350  3400  3450  3500

po
w

er
 (

w
at

ts
)

time (milliseconds)

active idle
frame i frame i+1 frame i+2 frame i+3

normal
buffer

(c) Buffer based method vs. Normal and Profile-based Methods

Figure 4: DVS results for quickly changing video part.



2008 Linux Symposium, Volume One • 227

[4] K. Choi, R. Soma, and M. Pedram. Off-chip
latency-driven dynamic voltage and frequency
scaling for an mpeg decoding. In Proceedings
of41st Design Automation Conference, pages
544–549, June 2004.

[5] C. Im and S. Ha. Dynamic voltage scheduling
with buffers in low- power multimedia
applications. ACM Transactions on Embedded
Computing Systems (TECS), 3(4):686–705,
November 2004.

[6] C. Im, H. Kim, and S. Ha. Dynamic voltage
scheduling technique for low-power multimedia
applications using buffers. In Proc. Int’l Symp. on
Low Power Electronics and Design, pages 34–39,
2001.

[7] T. Ishihara and H Yasuura. Voltage scheduling
problem for dynamically variable voltage
processors. In Proceedings of ISLPED
(International Symposium on Low Power
Electronics and Design), Aug. 1998.

[8] Z. Lu, J. Lach, M. Stan, and K. Skadron.
Reducing multimedia decode power using
feedback control. In Proc. of International
Conference on Computer Design, pages 489–496,
October 2003.

[9] Z. Lu, J. Lach, M. Stan, and K. Skadron. Design
and implementation of an energy efficient
multimedia playback system. In Signals, Systems
and Computers, 2006. ACSSC ’06. Fortieth
Asilomar Conference on, pages 1491–1497,
Oct.-Nov. 2006.

[10] T. Pering, T. Burd, and R. Broderson. The
simulation and evaluation of dynamic voltage
scaling algorithms. In Proc. Int’l Symp. on Low
Power Electronics and Design, pages 76–81,
1998.

[11] P.Pillai and K. G. Shin. Real-time dynamic
voltage scaling for low-power embedded
operating systems. In Proceedings of 18th ACM
Symposium on Operating Systems Principles,
pages 89–102, 2001.

[12] Y. Shin, K. Choi, and T. Sakurai. Power
optimization of real-time embedded systems on
variable speed processors. In Proceedings of the

International Conference on Computer-Aided
Design, pages 365–368, 2000.



228 • Low Power MPEG4 Player



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


