Keeping the Linux Kernel Honest

Testing Kernel.org kernels

Kamalesh Babulal
IBM

kamalesh@linux.vnet.ibm.com

Abstract

The Linux =~ Kernel release cycle has been short
with various intermediate releases and with the lack
of a separate kernel development tree. There have
been many challenges with this rapid development
such as early bug reporting, regression tracking, func-
tional/performance testing, and test coverage by dif-
ferent individuals and projects. Many kernel develop-
ers/testers have been working to keep the quality of the
kernel high, by testing as many possible subsystems as
they can.

In this paper, we present our kernel testing methodology,
infrastructure, and results used for the v2.6 kernels. We
summarize the bug reporting statistics based on the dif-
ferent kernel subsystems, trends, and observations. We
will also present code coverage analysis by subsystem
for different test suites.

1 Introduction

The Linux kernel has been growing with every release
as a result of the sheer number of new features being
merged. These changes are being released at a very high
rate, with each release containing a very large number
of changes and new features. The time latency at which
these changes are made is very short between every re-
lease cycle. All of this is occurring across many dis-
parate hardware architectures.

This presents unique problems for a tester who must
take all of the following into account:

e Lines of code added,

e Time interval between each release,

e Number of intermediate releases,

Balbir Singh
IBM

balbir@Rlinux.vnet.ibm.com

10000000

9500000

9000000

8500000

8000000

Lines of Code

7500000

7000000

6500000 -

6000000 T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 130(
Days of Development

Figure 1: Size of the kernel with every release

Testing on wide range of architectures and plat-
forms,

Regressions carried from previous release,

Different development trees, and

e Various configurations and boot options to be
tested.

In Section 2 we briefly explain the challenges. Section 3
outlines our methodology to meet the challenges. Sec-
tion 4 presents the results of code coverage analysis, in-
cluding the fault injection coverage results for the stan-
dard test cases and we discuss our future plans in Sec-
tion 5.

2 Challenges

2.1 Different Trees

In the past, Linux kernel development had separate de-
velopment and stable trees. The stable trees had an even
number and the development trees had an odd number

e 19 o

20 e Keeping the Linux Kernel Honest

as their second release number. As an example 2.5 was
development release, while 2.4 was stable release. With
the 2.6 kernel development, there are no separate devel-
opment and stable trees. All the development is based
upon the current stable tree and once the current devel-
opment tree is marked as stable, it is released as the next
mainline release.

There are intermediate development releases between
major releases of a 2.6 kernels, each having its own
significance. Figure 2 shows the different development
trees and the flow of patches from development trees to
the mainline kernel.

The —stable tree contains critical fixes for security
problems or significant regressions identified for the
mainline tree it is based upon. Once the mainline tree
is released, the developers start contributing to the new
features to be included in the next release. The new fea-
tures are accepted for the inclusion during the first two
weeks of development following the mainline release.
After two weeks the merge window closes and the ker-
nel is in feature freeze; no further features will be ac-
cepted into this release. This is released as —rc1. After
—rc1 the features are tested well and stabilized. During
this period roughly weekly release candidates, —rc, are
produced, as well as intermediate snapshots of Linus’s
git tree.

The —rc releases are a set of patches for the bug fixes
and other important security fixes, based on the previous
—rc release. For example, 2.6.25-rc3 will have the fixes
for the bugs identified in 2.6.25-rc2.

In addition to the mainline releases, we have a number
of testing trees for less stable features, as well as sub-
system specific trees. The —mm tree has experimental
patches and critical fixes that are planned to be pushed
to the mainline kernel. For a new feature it is recom-
mended that it be tested in —mm, since that tree under-
goes rigorous testing, which in-turn helps in stabilizing
the feature. —-mm is rebased often to development re-
leases to test the patch set against the development tree.

The -next release was introduced with the 2.6.24
development series. The —next tree has the patch
changesets from different maintainers, intended to be
merged into the next release. Changesets are rebased
to the current development tree, which helps to resolve
the merge conflicts and bugs before they get introduced
in the next release. Resolving the conflicts and bugs on

a regular basis would allow the development and stable
releases to be based on the —next tree in the future (re-
fer to [5] for more information on kernel trees).

distributions

e

-rcN release
mainline release

B Bug Fixes B Features Rebase B Releases

Figure 2: Linux Kernel Development Cycle

2.2 Release Frequency

Testing is essential to deliver high quality software and
testing every phase of development is important if we
are to catch bugs early. This is especially true for
projects like Linux where the source is growing by
2.32% [1] with every release, as represented in Figure 1.
These numbers are pretty high for any project. Starting
from 2.6 kernel development series, there is no sepa-
rate stable and development tree, which means that more
code is being added and it needs to be tested thoroughly.

Bugs caught and fixed early in the cycle helps to main-
tain the kernel quality by:

e Providing a pleasant user experience,

e Avoiding building on top of buggy code, and

e Easier debugging, since the code is fresh in the au-

thors mind.

The stable kernel releases are made approximately ev-
ery 2-3 months, during which time an average of 3.18

2008 Linux Symposium, Volume One o 21

v2.6 kernels

versions 20| 21| 22| 23| .24 | Total
stable 22 8| 20| 18 5 73
stable-git 16 | 18 18| 26| 22 100
stable-mm 2 2 0 1 1 4
stable-mm

+hotfixe(s) 0 0 0 3 6 9
rc 7 7 11 8 8 41
rc-git 59| 52| 57| 70| 47| 285
rc-mm 12 6 10 7 4 41
rc-mm

+hotfixe(s) 0| 10| 18 14 3 45
next 0 0 0 0| 35 35
Total 118 | 103 | 134 | 147 | 131 | 633

Table 1: Summary of releases between kernel versions

changes are being accepted every hour. This has been
the trend for the past 1% years.

Table 1 shows the data of various intermediate releases
made for past 1% years. These incremental changes to
the kernel source ensure that any code changes made
to the kernel are well tested before they accepted into
mainline.

With the average of 126 kernels (refer to Table 1) be-
ing released between two sequential major releases, we
have at least one kernel per day being released. Devel-
opers end up limiting their testing to unit testing for the
changes they make and start concentrating on new de-
velopment. It is not practical for most of the developers
to test their changes across all architectures supported
by Linux. A significant amount of testing is being done
by others from the community, which includes testers,
developers, and vendors (including distribution compa-
nies).

2.3 Test Case Availability

There is a significant testing effort in the community by
various individual testers, developers, distribution com-
panies, and Independent Software Vendors. They con-
tribute to the effort with combinations of testing meth-
ods such as:

e Compile and Boot test (including the cross com-
piler tests),

Regression Testing,

Stress Testing,

Performance Testing, and

Functional Testing.

These efforts are not being captured completely because
most of these efforts are not visible. We will not be able
to account for any testing done unless it is being pub-
lished or shared. Many features are accepted into the
mainline after stringent code reviews and ample testing
in the development releases. But not many developers
provide the test cases or guidelines to test their func-
tionality even though it is in the interest of developers to
keep the quality of their code high.

Over the years there have been many test projects and
suites with a primary focus to improve the quality of
Linux. They are constantly undergoing lots of changes
between every release. They have been adding new test
cases to test the new features getting merged into the
kernel, but the updating is not fast enough to catch those
early bugs and for some features we do not have test
cases available.

Any person who is interested in testing the kernel has no
single, nor even a small number, of test projects which
can cover most of the kernel subsystems. We do have
a large number of test projects, but each is independent
requiring installation and configuration; the test setup is
a huge effort for a tester. Not all the testers have the
harness infrastructure in place for testing due to the lim-
itations of the hardware they own.

Most of the test projects act at best as regression, stress,
performance test suites, or combinations thereof, but we
do not have tests which can be used for functional test-
ing of the new features being merged into the kernel.
It is very critical for new code to be tested thoroughly,
even before it gets merged in to the mainline.

In the existing scenario there are many valuable test
cases/scripts available from individuals, which could
expose bugs on other environments untested by them.
Sharing these test cases and scripts with the community
through one of the test projects will help in improving
the testing much more by:

e Enabling the code to be tested on a variety of hard-
ware,

22 e Keeping the Linux Kernel Honest

e Improving the test coverage on executing all possi-
ble code paths,

e Avoiding duplication of test case development, and

e Making reproduction of bugs easier.

2.4 Kernel options

The Linux kernel is highly configurable, which allows
specific features to be enabled as required. This means
that to test the kernel fully we would have to test with
each combination of these options. Testing kernels com-
piled only with the best known' configurations cannot
expose any bugs hidden under the untried combinations.
As an example the kernel can be configured to use any
one of the following different memory models:

CONFIG_FLATMEM
CONFIG_DISCONTIGMEM
CONFIG_SPARSEMEM
CONFIG_SPARSEMEM EXTREME
CONFIG_SPARSEMEM_ VMEMMAP

They are mutually exclusive, which means the kernel
can be compiled with only one of these options. Testing
all combinations of memory models would require five
different build and test cycles. Some of the combina-
tions should be tested to improve the testing coverage of
the kernel.

Many of the new features getting merged into the kernel
are not tested by all individuals because their existence
is not known to the tester. The example above shows
how quickly permutations and combinations can grow.
Usually what gets tested is the defaults on each architec-
ture and the defaults that depend on the machine (testers
do not deviate from a configuration that works for them).

It is important to test the responsiveness of the kernel
with different boot options (refer to [10] for more avail-
able kernel parameters). For example, booting with less
memory by passing mem=<less memory> as a boot
parameter could test kernel behaviour when booted on a
system with less memory. An extensive testing of this
kind could take lots of kernel testing cycles, with total
number of test combinations = number of boot param-
eter combinations x number of kernel configurations x
number of releases.

lthe configuration with which the kernel builds and boots without
any issues

2.5 Ecxisting Test Projects

There are many existing test projects used by the indi-
vidual test contributors. We summarize some of them
along with their key features:

LTP (Linux Test Project) is a Regression/Functional
test suite. It contains 3000+ test cases to test the ba-
sic functionality of the kernel. It is capable of test-
ing/stressing filesystem, memory, scheduler, disk /O,
network, and system calls. It also provides some ad-
ditional test suites such as pounder, kdump, open-hpi,
open-posix, code coverage, and others.

It is ideal for running the basic functionality verification,
with sufficient stress generated from the test cases. LTP
does not support the kernel build test. LTP results can
be formatted as HTML pages. It lacks the support for
machine parseable logs. The test case results are either
PASS or FAIL, which makes it complex for a tester to
understand the reason behind test failure.

IBM autobench is a client harness project which sup-
ports setting up the test execution environment, execu-
tion of the test suites, and capturing the logs with envi-
ronmental statics. It supports a kernel build test along
with support for profiling. It is capable of executing test
cases in parallel. The job control support is basic, allow-
ing user to have minimal control over the way the tests
are executed. The tool is written using bash/perl scripts.

Autotest’ is an open source based client/server harness
capable of running as a standalone client or is easily
plugged into an existing server harness. Test cases in-
cluded are capable of regression, functionality, stress,
performance, kernel build tests, and they support vari-
ous profilers. Autotest is written in python which al-
lows the user to take more control of job execution by
including python syntax in the job control file. Its object
oriented and has a cleaner design.

Autotest has built-in error handling support. The logs
are machine parseable with consistent exit status of the
test executed as well as providing a descriptive message
of the status. Parse* is built into the server harness.
It summarizes the job execution results from different

2http://1ltp.sourceforge.net/

3http://test.kernel.org/autotest/

“4Parser used by the autotest to parse the test results http://
test.kernel.org/autotest/Parse

testers® and formats them in query-able fashion for the
tester to interpret them better.

3 How is the kernel being tested?

3.1 Methodology

Release early, release often[7] is the Linux kernel de-
velopment philosophy. The development branches are
released very frequently. As an example we have two
—git releases per day, typically one —next release
along with regular —rc and —mm releases (Different de-
velopment releases have been explained in section 2.1).
Testing development releases earlier and more often
helps in identifying the patches that break the kernel.
This allows fixing them earlier in the cycle. Before
merging the patches, they should have been tested across
all supported architectures, but it is not practical to ex-
pect all developers to test their patches that widely be-
fore merging.

Ideally we do the Build test on all releases on various
hardware®, with different configuration options. Build
test is focused on build errors and warnings while build-
ing the kernel. This is followed by the Regression test
suite. This helps uncover bugs introduced as side effects
of new kernel changes. In order to ensure a regression
free kernel, the suite is bundled with test suites from
different test projects to test the filesystems, disk I/O,
memory, scheduler, IPC, commands functional verifica-
tion, and system calls with little stress.

The more thoroughly the development releases are
tested, the better the Linux kernel quality is. Testing
thoroughly requires two or more machine days based
on the tests run on the releases. We selectively pick up
development releases for a complete round of testing.
Testing all releases with more than just build and regres-
sion tests would take too long and the important releases
would be tested much later, after the release.

We do build and regression testing on all of the Linux
kernel releases, which includes -stable, -rc,
—-git, -mm, -next. The focus is on certain de-
velopment releases, which are tested more with stress
tests and functionality tests along with some profile in-
formation extraction. As an example we focus more

STKO (test.kernel.org) database is used to populate the results

6

™ .
we cover the x86, Power and s390x architectures

2008 Linux Symposium, Volume One e 23

on -majorrelease, -rcl, and -mm releases.
The debug options are tested on the major releases. —mm
is one of the important development releases with bleed-
ing edge features incorporated in it, so we test rounds of
-mm + hotfixes if available. The Filesystem stress
tests are executed over:

Ext2/3 Filesystem

Reiserfs Filesystem

XFS Filesystem

JFS Filesystem

CIFS Filesystem

NFS3/4 Filesystem

Comparing kernel performance under certain workloads
on the machine to historical measures verifies the per-
formance improvement or degradation. Performance
Testing results are captured for almost all of the kernel
releases. Results of workloads such as dbench, kern-
bench, and tbench are captured on the same machines,
consistently validating the performance with every ker-
nel release.

3.2 Infrastructure

Human hours are costlier in comparison to machine
hours. Given the frequency of kernel releases, machine
hours can be better used for setting up test environments
and execution. Human hours can be best utilized in an-
alyzing test results and debugging any bugs found. Fig-
ure 3 explains how the infrastructure works.

Mirror/Trigger: kernels are rsync’d to the local mirror,
within a few minutes of the releases. Once the mirroring
is complete, it acts as a trigger to test the newly down-
loaded kernel image. The trigger is initiated by any of
the kernel releases mentioned in Section 2.1.

Test Selection/Job Queues: based on the kernel release,
the predefined test cases are queued to the server for test
execution. Section 3.1 explains the selection criteria of
different predefined set of test cases to be queued, based
upon the kernel release.

IBM’s ABAT’ server schedules the queued jobs from
users based upon the availability of machine and does

7 Automated Build And Test

24 e Keeping the Linux Kernel Honest

’ Jobs Trigger ‘ ’ Manual Job ‘

o\

’ All Kemels ‘ ’ Selective Kemels ‘

) \

Build + Regression H Additional Testcases

Found Problem

Figure 3: Infrastructure of kernel.org testing

more than just a simple queuing system. ABAT test
framework is not open source, but the results are
published to the community through http://test.
kernel.org8

Client harness: both IBM autobench and autotest are
supported as the client harness tools though their control
file syntax is different. The client starts the test execu-
tion reading the job control file that is passed over when
the job gets scheduled. It is responsible for building the
appropriate kernel, running the tests, capturing the logs
and other information, and making the results available.
Section 2.5 explains more about these clients.

Results Collation: results are gathered asynchronously
as the jobs complete and are pushed to test.
kernel.org. They are grouped relevantly by TKO
before publishing them. Kernel binaries and other sys-
tem information dumps are stripped off the results. Re-
sults published at TKO are of a standard set of test cases
that are used for testing.

8In collaboration between development and test team at IBM
Linux Technology Center

Results Analysis: tests produce large amount of logs
and other information. Analyzing the test information
collected is time consuming. Relevant information is
extracted and displayed as status using colour combi-
nations each representing the percentage of test cases
completed successfully. Results can be viewed in differ-
ent layouts.” Performance data is analysed on selective
benchmarks to provide historical performance graphs.

Results Publication: after automated analysis, the re-
sults are made available on the TKO website. Human
monitoring is needed to take action on test failures or
performance regressions. The problems are reported to
the community (mostly via email) with the links to the
test results.

Found Problem: when a test failure or performance re-
gression is noticed, it is reported back to the community
(mostly via email) by the person monitoring the results.
Depending on the kernel release, another round of jobs
are queued with the additional patches received for the
problem reported. Currently only IBM engineers can
manually submit the jobs on ABAT though the results
and performance graphs are published as is done for reg-
ular jobs.

4 Results Analysis

The test procedure attempts to execute as many as pos-
sible code paths in the Linux kernel using different test
projects. When combined together, the various tests
tend to cover most of the kernel, but there has always
been a gap between fested and untested code. Code cov-
erage helps us to quantify this gap.

In this section we compare the code coverage re-
sults of 2.6.20, 2.6.21, 2.6.22, 2.6.23
and 2.6.24 for x86 and Power architecture. We
also look at the results of executing some of these tests
using the fault injection framework.

4.1 Code Coverage Setup

The gcov kernel patch'® and Icov package'! from LTP
were used for the code coverage. Table 2 shows

user selects the row and column heads. Condition based views

are available.
101’1ttp ://1ltp.sourceforge.net/coverage/gcov.
php
Uhttp://1tp.sourceforge.net/coverage/lcov.
php

2008 Linux Symposium, Volume One e 25

Benchmarks

Description

runltp

A collection of tools for testing
the Linux kernel and related fea-
tures.

dbench

Filesystem benchmark that gen-
erates good filesystem load.

aio-stress

Filesystem benchmark that gen-
erates asynchronous I/O stress
load.

aio-cp

Testing tool that copies files by
using async /O state machine.

hackbench

A benchmark for measuring the
performance, overhead, and scal-
ability of the Linux scheduler.

vmmstress

Performs general stress with
memory race condtions between
simultaneous read fault write
fault, copy on write (COW) fault.

kernbench

A CPU throughput benchmark. It
is designed to compare kernels on
the same machine, or to compare
hardware.

Itp-stress

Stresses the system using the LTP
test suite.

hugepage-tests

Perform basic functional and
stress tests for large pages

ramsnake

Allocate 1/8 of the system RAM
and kick off threads to use them
for 3600 seconds.

random_syscall

Pounds on syscall interface and
does random syscalls

reaim

A multiuser benchmark that tests
and measures the performance of
open system multiuser comput-
ers.

sdet

Workload created by parallel ex-
ecution of common UNIX com-
mands.

libhugetlbfs

Interacts with the Linux hugetlbfs
to make large pages available to
applications in a transparent man-
ner.

Others

Tested NFS, CIFS and the autofs
filesystem.

Table 2: Benchmarks used for Code Coverage

the benchmarks used. Coverage was run on x86 and
Power ' architectures, with following configurations:

8P Intel® XEON"", 10GB Memory
2P IBM® POWERS5+' ", 7GB Memory

Lines of code

500000 - L L
Lines Instrumented EX&xzR
Lines Executed mmm—

450000

400000

350000

300000

250000

200000

150000

100000

2.6.20 2.6.21 2.6.22 2.6.23 2.6.24
Kernel versions

Figure 4: Code coverage on x86 architecture

Kernels | Lines Instrumented | Lines Executed
2.6.20 380,333 133,718
2.6.21 383,800 134,800
2.6.22 386,868 136,653
2.6.23 395,520 137,472
2.6.24 401,802 139,052

Table 3: Lines Instrumented Vs Executed on x86 archi-
tecture

Figure 4 and Table 3 show number of lines instrumented
and the code covered of the various kernels mentioned
for the x86 architecture. The figure shows the following
trends:

e The number of lines instrumented shows a modest

increase of 5.64%. When compared to the rate of
change of the kernel, it does not seem significant.
The code coverage data above fails to show that
changed lines are also covered as the kernel version
changes.

e The code coverage shows a modest increase of

3.98%. It is very encouraging to see code cover-
age increase as the number of lines in the kernel
increase.

e Versions 2.6.23 and 2.6.24 show a trend of de-

cline in code coverage percentage. The coverage

26 e Keeping the Linux Kernel Honest

500000

n n
Lines Instrumented e
Lines Executed

450000

400000

350000

300000

Lines of code

250000

200000

150000

100000

2.6.21 2.6.22 2.6.23 2.6.24
Kernel versions

2.6.20

. T™ .
Figure 5: Code coverage on Power ~ architecture

Kernels | Lines Instrumented | Lines Executed

2.6.20 388,019 116,736
2.6.21 382,552 115,242
2.6.22 385,853 116,010
2.6.23 391,993 117,168
2.6.24 407,194 122,431

Table 4: Lines Instrumented Vs Executed on Power
architecture

of 2.6.20 kernel was 35.15%, where as for 2.6.24 it
is 34.6%.

Figure 5 and Table 4 show the coverage of the various
kernels mentioned for the Power' architecture. The fig-
ure shows the following trends:

e The number of lines of instrumented code show a
trend similar to the ones for the x86 architecture.

e The code coverage has increased with increasing
kernel versions.

e The code coverage percentage however is less than
that of the x86 architecture, close to 30%.

e There is no decline in the code coverage percentage
as seen on the x86 architecture, indicating that x86
is growing rapidly.'?

Figures 6,7 and Tables 5,6 show the component-wise
break up for the code coverage obtained for the 2.6.24

12\which might be true, due to the x86 and x86-64 merge.

120000

100000

80000

60000 -

Lines of code

40000

20000 ~

| | | |
Instrumented Lines ==
Executed Lines

mm net kernel lib

arch driver include

Figure 6: Component-wise code coverage on 2.6.24 ker-
nel with x86 architecture

Directories | Lines Instrumented | Lines Executed
mm 1,3147 8,597
net 63,802 20,855
kernel 23,633 10,962
lib 5,152 2,785
arch 14,836 4,810
driver 116,623 30,031
include 7,751 4,707

Table 5: Lines Instrumented Vs Executed on 2.6.24 ker-
nel with x86 architecture

Directories | Lines Instrumented | Lines Executed
mm 14,585 9,133
net 65,441 20,749
kernel 23,407 10,916
lib 5,062 2,799
arch 24,954 5,700
driver 88,195 8,930
include 7,638 4,434

Table 6: Lines Instrumented Vs Executed on 2.6.24 ker-
nel with Power ' architecture

90000 L L L L L L
Instrumented Lines ez
Executed Lines

80000

70000

60000

50000

40000

Lines of code

30000

20000

10000

mm net kernel lib arch driver include

Figure 7: Component-wise code coverage on 2.6.24 ker-
nel with Power' " architecture

120000 n n n n n n n
Instrumented Lines ez

Executed Lines mmmm—

Executed Lines With Fault Injection

100000 B

80000

T
!

60000

Lines of code

40000

20000

mm net kernel lib arch driver include

Figure 8: Fault injection code coverage on 2.6.24 kernel
with x86 architecture

kernel on the x86 and Power — architectures respec-
tively. The component-wise break up shows some in-
teresting trends as well:

e The mm, kernel, 1ib, and include subdirec-
tories are among those that have the highest code
coverage.

e The subsystem with highest coverage is mm, with
close to 65% coverage

e drivers and arch subdirectories are among
those that have the least code coverage, The main
focus of our testing is not to test architecture or
platform-specific code.

2008 Linux Symposium, Volume One e 27

Directories | Lines Instrumented | Lines Executed
Disabled | Forced
mm 13,147 8,597 | 8,688
net 63,802 | 20,855 | 21,306
kernel 23,633 10,962 | 11,431
lib 5,152 2,785 | 2,853
arch 14,836 4,810 | 4,918
driver 116,623 | 30,031 | 30,552
include 7,751 4,707 | 4,777

Table 7: Fault Injection code coverage on 2.6.24 kernel
with x86 architecture

We used the Fault Injection framework'? to get more
coverage of the error handling path. The kernel was con-
figured with:

N > /debug/fail_page_alloc/task-filter

20 > /debug/fail_page_alloc/probability
2000 > /debug/fail_page_alloc/interval

-1 > /debug/fail_page_alloc/times

0 > /debug/fail_page_alloc/space

1 > /debug/fail_page_alloc/verbose

N > /debug/fail_page_alloc/ignore-gfp-wait

N > /debug/fail_make_request/task-filter

20 > /debug/fail_make_request/probability
2000 > /debug/fail_make_request/interval

-1 > /debug/fail_make_request/times

0 > /debug/fail_make_request/space

1 > /debug/fail_make_request/verbose

N > /debug/fail_make_request/ignore-gfp-wait

(refer to [9] for more configuration details) The results
of the coverage are shown in Figure 8. Getting cover-
age results with fault injection enabled turned out to be
very challenging, since most applications are not ready
to deal with failures. The test applications we saw would
fail and abort their operation on error. We had to man-
ually make changes to get coverage data with fault in-
jection and we were forced to keep the failure rate very
low. Due to these factors, we did not see a significant
improvement in code coverage with the fault injection
framework enabled, it was just 0.6% improvement. The
test cases and infrastructure need to be enhanced to deal
with the failures forced from the fault injection frame-
work.

Binjects errors at various kernel layers, helping to test error han-
dling

28 e Keeping the Linux Kernel Honest

5 Future Plans

We plan to extend our testing by adopting and updat-
ing test cases from various test projects and test scripts
published on the mailing list to improve the coverage of
untested code. We intend to test the practically possible
permutations of kernel configurations and boot options
with selective releases. We intend to build tests with the
a cross-compiler setup will help us in finding the build
errors over various platforms. Testing the kernel error
path is very critical to avoiding surprises under certain
situations. We could perform error handling path testing
on selective kernels using the fault injection framework
available in the kernel.

6 Conclusion

Testing kernel releases earlier and often, helps in fix-
ing the bugs earlier in the cycle. The earlier the prob-
lem gets fixed, the lower the costs involved in fix-
ing it. Our infrastructure tests various kernels across
different hardware, using many benchmarks and test
suites performing build, regression, stress, functional,
and performance testing. Benchmarks are run selec-
tively depending upon the kernel release. Testing re-
sults are contributed back to the community through
test.kernel.org. We discussed some of the har-
nesses commonly used by the projects.

Code coverage results explain the gap between the lines
of code being added and tested. For better and more
complete testing of the kernel, we need test cases that
can help us better test existing and new features. For
these we require developers to share their tests and test-
ing methodology. The fault injection framework helps
testing the error handling part of the kernel, so improve-
ments made to the framework could result in better ker-
nel coverage.

7 Acknowledgments

We would like to thank Andy Whitcroft for his input to
and review of drafts of this paper.

We also owe lot of thanks to Sudarshan Rao, Premalatha
Nair, and our teammates for their active support and en-
thusiasm.

8 Legal Statement

(©International Business Machines Corporation 2008. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo and ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESSMACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] Greg Kroah-Hartman, Jonathan Corbet, and
Amanda McPherson, How Fast it is Going, Who
is Doing It, What They are Doing, and Who is
Sponsoring It, http://www.
linux—foundation.org/publications/
linuxkerneldevelopment .php, April 2008.

[2] Fully Automated Testing of the Linux Kernel,
Martin Bligh and Andy P. Whitcroft. In
Proceedings of the Linux Symposium 2006.

[3] Linux Test Project,
http://ltp.sourceforge.net/

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Autotest,
http://test.kernel.org/autotest

Kernelsource/Documentation/HOWTO.

Linux Kernel Mailing List.
linux—kernel@vger.kernel.org,
http://1lkml.org/

Linux Test Project - Test Tools Matrix. http://
ltp.sourceforge.net/tooltable.php

The Cathedral and the Bazaar, Eric Steven
Raymond.

kernelsource/Documentation/
fault-injection/fault-injection.
txt

kernelsource/Documentation/
kernel-parameters.txt

2008 Linux Symposium, Volume One e 29

30 e Keeping the Linux Kernel Honest

Proceedings of the
Linux Symposium

Volume One

July 23rd-26th, 2008
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.

Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net

Robyn Bergeron

Dave Boutcher, /IBM

Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

