
Around the Linux File System World in 45 minutes

Steve French
IBM

Samba Team
sfrench@us.ibm.com

Abstract

What makes the Linux file system interface unique?
What has improved over the past year in this important
part of the kernel? Why are there more than 50 Linux
File Systems? Why might you choose ext4 or XFS, NFS
or CIFS, or OCFS2 or GFS2? The differences are not al-
ways obvious. This paper will describe the new features
in the Linux VFS, how various Linux file systems dif-
fer in their use, and compare some of the key Linux file
systems.

File systems are one of the largest and most active parts
of the Linux kernel, but some key sections of the file sys-
tem interface are little understood, and with more than
than 50 Linux file systems the differences between them
can be confusing even to developers.

1 Introduction: What is a File System?

Linux has a rich file system interface, and a surprising
number of file system implementations. The Linux file
system layer is one of the most interesting parts of the
kernel and one of the most actively analyzed. So what
is a file system? A file system “is a set of abstract data
types that are implemented for the storage, hierarchical
organization, manipulation, navigation, access, and re-
trieval of data.” [4]

But a “file system” can also mean a piece of code, i.e., a
Linux kernel module used to access files and directories.
A file system provides access to this data for applica-
tions and system programs through consistent, standard
interfaces exported by the VFS. It enables access to data
that may be stored persistently on local media or on re-
mote network servers/devices, or that may be transient
(such as debug data or kernel status) stored temporarily
in RAM or special devices.

The virtual file system interface and file systems to-
gether represent one of the larger (over 500 thousand

lines of code), most active (averaging 10 changesets a
day!), and most important kernel subsystems.

2 The Linux Virtual File System Layer

The heart of the Linux file system, and what makes
Linux file systems unique, is the virtual file system
layer, or VFS, which they connect to.

2.1 Virtual File System Structures and Relation-
ships

The relationships between Linux file system compo-
nents is described in various papers [3] and is impor-
tant to understand when carefully comparing file system
implementations.

2.2 Comparison with other Operating Systems

The Linux VFS is not the only common file system in-
terface. Solaris, BSD, AIX, and other Unixes have sim-
ilar interfaces, but Linux’s has matured rapidly over the
2.6 development cycle. Windows, originally with an
IFS model similar to that of OS2, has evolved its file
system interface differently than Linux, and has a very
rich set of file system features, but at the cost of addi-
tional complexity. A reasonably functional file system
can be much smaller in Linux than in most other operat-
ing systems (look at shmemfs for example), including
Windows.

2.3 What has changed in the VFS

During the past year, no new file systems were added,
although one (smbfs) was deprecated. In the previous
year, three new file systems were added: ecryptfs
(allowing per-file encryption), gfs2 (a new clustered

• 129 •



130 • Around the Linux File System World in 45 minutes

file system), and ext4 (an improved, more scalable ver-
sion of ext3). The file system area did improve dra-
matically though during the past year. From 2.6.21.1
to 2.6.25, the size of the VFS code grew almost 7%
(from 38 KLOC to 41 KLOC). The total size of the
file systems and VFS together (the fs directory and
all subdirectories) grew about 6% (from 487 KLOC to
518 KLOC). 3612 changesets from almost 400 develop-
ers were added during the year (about 8.4% of the total
kernel changesets), and resulting in adding or changing
over 200,000 lines of kernel file system code over the
year. There has been huge progress.

Interestingly, despite thousands of code changes, the
VFS interface, the API needed to implement a fie sys-
tem, changed only in minor ways, although file system
drivers from the 2.6.21 source tree would require minor
changes to compile on 2.6.25. The exportfs opera-
tions (needed to export a file system over the network
via NFS) reworked its required methods (2.6.24). The
debugfs and sysfs file systems also changed their
external interfaces (2.6.24). The debugfs changes
make it easier to export files containing hexadecimal
numbers. Write-begin and Write-end methods were
added to the VFS to remove some deadlock scenarios
(2.6.24). New security operations were added to con-
trol mount and umount operations (2.6.25). SMBFS was
deprecated (CIFS replaces it), but this did not affect the
VFS interface. The kernel (2.6.22) now supports set-
ting (not just getting) nanosecond inode timestamps via
the new utimensat(2) system call. This call is an
extension to futimesat(2) which provides the fol-
lowing:

• nanosecond resolution for the timestamps.

• selectively ignoring the atime or mtime values.

• selectively using the current time for either atime
or mtime.

• changing the atime or mtime of a symlink itself
along the lines of the BSD lutimes(3) func-
tions.

A similar API call is being added to POSIX.

In the previous year, splice support was added. Splice is
a mechanism to receive file data directly from a socket,
and can dramatically improve performance of network

applications like Samba server when they are reading
file data directly from a socket. The name of a common
structure element in the dentry changed as it moved into
to the new f_path structure (2.6.20). The readv and
writev methods were modified slightly and renamed
to aio_readv and aio_writev (2.6.19). The in-
ode structure shrunk (2.6.19), which should help mem-
ory utilization in some scenarios. There were changes
to the vfsmount structure and get_sb (2.6.18). A
new inotify kernel API (2.6.18) was added to fix
some functional holes with the DNOTIFY ioctl. The
statfs prototype was changed (2.6.18). Support for
MNT_SHRINKABLEwas added (2.6.17) to make imple-
mentation of global namespaces (such as NFS version 4
and CIFS DFS) possible. Shrinkable mounts are im-
plicit mounts, and are cleaned up automatically when
the parent is unmounted.

3 File Systems from a to xfs

There are many Linux file systems—each for a different
purpose. Within the fs directory of the Linux kernel are
60 subdirectories, all but five contain distinct file sys-
tem drivers: from adfs (which supports the Acorn Disk
Filing System used on certain ARM devices) to XFS (a
well regarded high performance journaling file system).
Linux also can support out of kernel file systems through
FUSE (the Filesystems in User Space driver).

4 File Systems

4.1 Types of File Systems

Conventionally we divide file systems into four types:
local file systems, cluster file systems, network file sys-
tems, and special-purpose file systems. Local file sys-
tems are used to store data on a local desktop or server
system, typically using the disk subsystem rather than
network subsystem to write data to the local disk. Lo-
cal file systems can implement POSIX file-API seman-
tics more easily than network file systems, which have
more exotic failure scenarios to deal with, and are lim-
ited by network file system protocol standards. Cluster
file systems aim to achieve near-POSIX file-API seman-
tics, while writing data to one or more storage nodes
that are typically nearby, often in the same server room.
Cluster file systems are sometimes needed for higher
performance and capacity. In such file systems, which



2008 Linux Symposium, Volume One • 131

often use SANs or network attached block storage, more
disks can be connected to the system, and more actively
used at one time, than could be achieved with a local file
system running on a single system.

5 Local File Systems

5.1 EXT4

In 2.6.23 kernel, ext4 added various scalability im-
provements including fallocate() support, increas-
ing the number of uninitialized extents, and remov-
ing the limit on number of subdirectories. In addition,
support for nanosecond inode timestamps was added
(needed by Samba and some network services). The
development of advanced snapshot and reliability fea-
tures in ZFS have led to consideration of longer-term
file system alternatives to ext4. One promising can-
didate is btrfs which was announced last year and is
under development by Chris Mason at Oracle (although
still experimental).

5.2 EXT2 and EXT3

With the obvious need to improve the scalability of the
default local file system (ext3 or ext2 on many dis-
tributions), attention has focused on the follow-on to
ext3, ext4. Despite this, there were 88 changesets
added which affected ext3 over the past year, from
over 50 developers, changing over 1000 lines. This is
a surprisingly high number of changes for a file system
in “maintenance” mode.

5.3 JFS

IBM’s JFS, which is in maintenance mode, had 45
changesets throughout the year (mostly global changes
to structures, and minor code cleanup) but few new fea-
tures.

5.4 XFS

In 2.6.23, XFS added a “concurrent multi-file data
streams” feature to improve video performance and sup-
port for “lazy superblock counters” to improve perfor-
mance of simultaneous transactions.

5.5 UDF

The “Universal Disk Format” is very important due
to the explosion in numbers of writable optical drives.
UDF added support for large files (larger than 1GB) in
2.6.22.

6 Network File Systems

6.1 NFS version 3

NFS version 3 defines 21 network file system operations
(four more than NFS version 2) roughly corresponding
to common VFS (Virtual File System) entry points that
Unix-like operating systems require. NFS versions 2
and 3 were intended to be idempotent (stateless), and
thus had difficulty preserving POSIX semantics. With
the addition of a stateful lock daemon, an NFS version 3
client could achieve better application compatibility, but
still can behave differently than a local file system.

6.2 NFS version 4

NFS version 4, borrowing ideas from other protocols in-
cluding CIFS, added support for an open and close op-
eration, became stateful, added support for a rich ACL
model similar to NTFS/CIFS ACLs, and added sup-
port for safe caching and a wide variety of extended
attributes (additional file metadata). It is possible for
an NFS version 4 implementation to achieve better ap-
plication compatibility than before without necessarily
sacrificing performance. This has been an exciting year
for NFS development with a draft of a new NFS RFC
point release (NFS version 4.1) under active develop-
ment with strong participation of the Linux community
(including CITI and various commercial NFS vendors).
The NFS version 4.1 specification is already 593 pages
long. NFS version 4.1 includes various new features that
will be challenging for the Linux file system to support
fully, including directory oplocks (directory entry infor-
mation caching), NFS over RDMA, and pNFS. pNFS
allows improved performance by letting a server dis-
patch read and write requests for a file across a set of
servers using either block- or object-based mechanisms
(or even using the NFSv4 read and write mechanism).
Some NFS version 4.1 features likely will be merged
into the kernel by early next year, but their complexity
has been challenging to the community.



132 • Around the Linux File System World in 45 minutes

6.3 NFS improvements

Over the past year, NFS has improved significantly, and
has had more changes than any other file system. The
SunRPC layer (which NFS uses for sending data over
the network) now supports IPv6, although some smaller
supporting patches are still being evaluated. Due to
scarcity of IPv4 addresses in some countries, IPv6 sup-
port is becoming more important, especially as some
government agencies are beginning to require IPv6 sup-
port in their infrastructure. NFS over RDMA, which
provides performance advantages for workloads with
large writes, is partially integrated into mainline (some
of the server portions are not upstream yet). Server-side
security negotiation is upstream. A new string-based
mount options interface to the kernel has been added,
which allows new options to be implemented in ker-
nel without necessarily requiring nfs-utils (user-
space tools) update, and eases long-term NFS packag-
ing. Forced unmount support, which had been removed
from NFS a few years earlier, was readded (2.6.23).
This allows “umount -f” to better handle unresponsive
servers. Also added to NFS in kernel version 2.6.23 was
support for “nosharecache” which allows two mounts,
with different mount options, from the same client to
the same server export. When this mount option is not
specified, the second mount gets the same superblock,
and hence the same mount options as the first. With this
new mount option, the user may specify different mount
options on a second mount to the same export.

6.4 CIFS

IPv6 support was added (2.6.22). Additional POSIX
extensions were added (2.6.22) to improve POSIX ap-
plication compatibility on mounts to Samba servers.
The most exciting changes to CIFS over the past year,
though, have been the addition of Kerberos support and
the addition of DFS support. MS-DFS is a mechanism
for traversing and managing a global name space for
files and is commonly used in larger networks. The
Samba server already supported DFS, but the Linux
kernel did not, until this year. Released earlier this
spring, large amounts of interoperability documentation
by Microsoft may allow us to improve our support more
quickly, not just for newer servers, but also for older
servers. Older dialects of SMB, sometimes more than 15
years old, are still in use in some places. This documen-
tation is also making development of an in kernel SMB2

client implementation easier. Currently smb2 support
is being prototyped as a distinct module from cifs,
to make it easier to make rapid changes, and because
SMB2 is turning out to be much different than CIFS. Al-
though sharing some information levels with SMB and
CIFS, SMB2 has a much simplified set of commands
that are largely handle- (rather than path-) based, and
are even more efficient to parse, which should allow im-
proved performance in the long run. SMB2 also allows
improved asynchronous operation and request dispatch-
ing, while also adding better reconnection support via a
new durable handle feature of the protocol. The proto-
type SMB2 client should be available (in experimental
form) before the end of the year. Although the server for
CIFS, Samba, is not in-kernel, it should be mentioned
that with the recent release of the enormous amount of
network interoperability documentation by Microsoft,
the Samba team already has made great progress with
the Samba 4 SMB2 server, already passing most func-
tional tests.

6.5 AFS

There are multiple versions of AFS, the OpenAFS im-
plementation which is more complete in function, but
not in mainline kernel, and what a year ago was only
a minimal implementation in-kernel. The AFS version
in the mainline kernel has improved dramatically over
the past year. In 2.6.22, support for basic file write
was added, and support for directory updates (mkdir,
rename, unlink, etc.) and krb4 ticket support was
added via RPC over AF_RXRPC sockets.

7 Cluster File Systems

There are two cluster file systems in the mainline ker-
nel, GFS2 from Red Hat/Sistina and OCFS2 from Ora-
cle. There are also two popular cluster file systems that
are not in the mainline, but that are mentioned because
they are often used in high-end compute clusters: Lus-
tre (now owned by Sun) and IBM’s GPFS. GFS2 sup-
ports more file system entry points than OCFS2 (which
has worse locking and ACL support), but OCFS2 does
support sufficient features to address the needs of some
clustered databases.

7.1 OCFS2

In 2.6.22 OCFS2 added support for sparse files. Over
the year the OCFS2 team and other kernel developers



2008 Linux Symposium, Volume One • 133

added 247 changesets to OCFS2, more than 16,000 lines
of code.

7.2 GFS2

This area had a busy year, with 243 changesets added:
many small stability patches and bug fixes, but multiple
performance enhancements were added as well.

8 Future Work

Going forward there are many challenges to address in
the Linux File System area, but among the most interest-
ing are the following: clustering improvements, new hi-
erarchical storage management features, improved error
handling and detection in the local file system, support
for new network file systems (SMB2), and improved
network file systems (NFS version 4.1).

8.1 Clustering

With the need for reliable server failover, and the need
for dynamic reconfiguration of complex networks, clus-
tering is becoming more important, but there is no clear
winner among the cluster file systems, and two of the
most popular choices still remain out-of-kernel. In ad-
dition, the NFS version 4.1 protocol adds the ability to
support parallel NFS, to better distribute load across a
set of NFS servers without requiring cluster file system
software to be installed on all clients. Similar features
are being investigated for CIFS. Samba server support
for clustering is greatly improved through the work of
Tridge, and others on the SOFS team, on ctdb. Ctdb
has proven to be a very useful library for high perfor-
mance cluster state management and recovery. NFS
server support for running over a clustered file system
also has improved in the past year through work by CITI
and by IBM and others.

8.2 New Local File Systems

Among the biggest long term challenges in the file sys-
tem area remains error handling and recovery. As disks
get ever larger and yet error rates stay constant, error de-
tection and recovery is reaching a critical point. One of
the design goals of btrfs is to address this problem,
as well as to improve HSM features. Many new systems

now contain a mix of storage which includes disk and
solid state. Since these devices perform very differently,
local file systems must add features to optimize perfor-
mance on hybrid systems which contain both. Whether
in the long term we will need two local file systems,
ext4 and btrfs, due to performance differences on
particular popular workloads, or whether one Linux file
system will win and be used for most workloads remains
to be seen. EXT4 scalability is improved but would re-
quire substantial changes to handle ever increasing disk
errors on ever larger disks as well as btrfs already
does. In some operating system, the file system and vol-
ume manager layers of the operating system are more
tightly coupled than in Linux. This eases the addition
of better support for dynamic reconfiguration of disk
subsystems when failing disks are added or removed on
the fly. The development of btrfs may open up dis-
cussion of changes to the volume management layer as
well as changes to Linux to support DMAPI, the stan-
dard for disk management used by many storage man-
agement applications. Adding support for part or all of
DMAPI to the VFS and btrfs or ext4 would allow
for improved backup and disk management. Currently a
subset of DMAPI is supported but on XFS only.

8.3 New Network File Systems

An SMB2 file system prototype, written by the author,
is being coded and tested currently. Since SMB2 is sig-
nificantly different than SMB and CIFS protocols in the
way it handles path names, and in the way it handles
file handles, less code could be shared between it and
the existing cifs module, so it is being written as a dis-
tinct module. This also allows it to be updated quickly
without impacting the existing cifs module. SMB2 will
become more important in the coming year since it is the
default network file system for current Microsoft servers
and clients, and matches reasonably well to Linux. NFS
version 4.1 also includes new features which will need
to be explored in the Linux VFS, including how to sup-
port directory oplocks (directory delegations).

9 Legal Statement

This work represents the view of the author and does not nec-
essarily represent the view of IBM. IBM and GPFS are regis-
tered trademarks of International Business Machines Corpo-
ration in the United States and/or other countries. Microsoft,



134 • Around the Linux File System World in 45 minutes

Windows, and Windows Vista are either a registered trade-
mark or trademark of Microsoft Corporation in the United
States and/or other countries. UNIX is a registered trademark
of The Open Group in the United States and other countries.
POSIX is a registered trademark of The IEEE in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds. Other company, product, and service names
may be trademarks or service marks of others.

References

[1] O. Kirch. Why NFS Sucks. Proceedings of the
2006 Ottawa Linux Symposium, Ottawa, Canada,
July, 2006. http://ols.108.redhat.
com/reprints/kirch-reprint.pdf

[2] Linux CIFS Client and Documentation.
http://linux-cifs.samba.org

[3] S. French. Linux File Systems in 45 minutes: A
Step by Step Introduction to Writing or
Understanding a Linux File System.
http://pserver.samba.org/samba/
ftp/cifs-cvs/
ols2007-fs-tutorial-smf.pdf

[4] File System. Wikipedia, The Free Encyclopedia,
Retrieved 28 April 2008. http://en.
wikipedia.org/wiki/Filesystem

[5] Linux Weekly News, API changes in the 2.6
kernel series http://lwn.net/Articles/
2.6-kernel-api/

[6] Kernel Newbies. Linux Changes report. http:
//kernelnewbies.org/LinuxChanges



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


