
Introduction to Web Application Security Flaws

Jake Edge
LWN.net

jake@lwn.net

Abstract

You hear the names of the most common web secu-
rity problems frequently: cross-site scripting, SQL in-
jection, cross-site request forgery—but what do those
terms mean? This paper will provide an introduction to
those vulnerabilities along with examples and ways to
avoid them. This introduction is language-independent,
as the problems can occur in any language used to de-
velop web applications.

Developers of web applications sometimes get caught
up in the excitement of developing the application and
forget to consider the security implications. This paper
will help them get a handle on what to avoid so that the
excitement doesn’t get squashed by an attacker. Others
who are curious about the kinds of attacks made against
web applications will also find much of interest.

1 Introduction

Web application vulnerabilities make up a fairly large
slice of security vulnerabilities reported on Bugtraq and
other security mailing lists. In addition, they are prob-
ably the type of vulnerability that Linux users are most
likely to come across.

The consequences of a web vulnerability vary
greatly, from full compromise of a vulnerable server
application—potentially the server machine itself as
well—to stealing authentication information so that
a user’s account, often on an unrelated site, can be
accessed by an attacker. This highlights the broad reach
of web application vulnerabilities as they can affect
particular sites or the users who visit them.

2 Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is the language
spoken by web applications. It is a fairly simple, text-
oriented protocol that is easy to read and understand. A

web browser sends an HTTP request and awaits a re-
sponse from the server. That response is generally text
in Hypertext Markup Language (HTML), but can also
be other types of data: images, audio, video, etc. The
browser then displays the response from the server and
awaits another user action (e.g. clicking a link, submit-
ting a FORM, using a bookmark to go elsewhere, etc.).

The most common HTTP requests are of the following
three types:

• HEAD – this retrieves the headers and dates asso-
ciated with a page so the browser can determine
whether it can use its cached version of the object
(HTML, image, etc.).

• GET – This is the workhorse of HTTP. Retrieve
content based on a URL, with parameters passed as
part of the URL (e.g. http://foo.com/bar?
baz=42).

• POST – This is used by FORMs. The parameters
are encoded into the request and POSTed to a spe-
cific URL, which is specified in the FORM tag.

Figure 1 shows a short example of using telnet to talk
to a web server. The “GET” and “Host:” lines are typed
by the user (followed by two carriage returns) with the
response from the server following. The headers are sent
first followed by a blank line and then the content, in
this case the HTML of the document (abbreviated in the
figure).

There is an important distinction between GET and
POST that web application programmers should be
aware of. GET requests should be idempotent, that
is they should not change the state of the application.
Multiple GET requests should return the same content,
unless the underlying state of the application has been
changed via a POST request. It is common for web

• 123 •

124 • Introduction to Web Application Security Flaws

HTTP EXAMPLE

$ telnet lwn.net 80
Connected to lwn.net.

GET /talks/ols2008/ HTTP/1.1
Host: lwn.net

HTTP/1.1 200 OK
Date: Mon, 28 Apr 2008 03:54:40 GMT
Server: Apache
Last-Modified: Mon, 28 Apr 2008 03:49:48 GMT
ETag: "428105-30c-4815495c"
Accept-Ranges: bytes
Content-Length: 780
Content-Type: text/html

<html>
<head>
<title>OLS 2008</title>
</head>
...

Figure 1: Example of HTTP using telnet

applications to have state-changing links (which corre-
spond to GETs), though there are two good reasons not
to do that.

One classic example is a web page with links to
delete content that looked something like: http://
somehost.com/delete?id=4. A web spider then
came along to index the site and found all of these links
to follow—promptly deleting all the content on the site.
The other reason to avoid state-changing GET requests
is to prevent trivial cross-site request forgery as will be
described below.

Another important thing to note about HTTP is that it
is a stateless protocol. There is no inherent state infor-
mation kept by the server and client. Each request is an
entity unto itself. Various mechanisms have been used
to achieve stateful web applications, the most common
is the idea of a session. Sessions are typically set up
by the server, given some kind of identification number
(i.e., session ID), and then set as a cookie in the user’s
browser in the response from the server. Cookies are
persistent values, associated with a particular website,
that are sent by a browser whenever a request is made of
that website.

3 User input cannot be trusted

Many web application vulnerabilities share a fairly sim-
ple characteristic: insufficient or incorrect filtering of
user-controlled input. This input can come as part of the
URL, from FORM data, or from cookie values. These
inputs make up most, if not all, of the attack surface of
an application and must be appropriately filtered before
use. The filtering should use a whitelisting, rather than
blacklisting, approach—only allowing known-good in-
puts is far safer than trying to construct a list of all “bad”
inputs.

One common mistake that web application program-
mers make is to assume that all traffic generated to
their program will come from a web browser. They
assume that certain things are “impossible” because a
web browser does not do it that way. This is a grievous
error, as it is trivial to generate HTTP traffic from any
programming language—many provide full-featured li-
braries to do just that. An attacker can use a browser and
easily manipulate parameters passed as part of the URL
in a GET request, but using FORMs is no protection.
Generating a POST request with the appropriate param-
eters is a simple task that is often done in Javascript as
part of an exploit. Cookie values can also be created or
stolen from another user.

Perhaps the most common manifestation of this mistake
is in using Javascript validation. Web application pro-
grammers will often write some Javascript to run on
the browser to validate values typed into a form. For
example, a form might have a place to type in an IP
address, with Javascript that ensured the values were
legitimate—integers in the right range—popping up an
alert box if the values were not valid. This may help
some users and is a reasonable thing for a web applica-
tion to do. The mistake is in not doing the same vali-
dation on the server. Any validation done by Javascript
needs to be repeated on the server side. There is no guar-
antee that the user has Javascript enabled—even if the
application tries to force it—or even that it is a browser
at the other end. A program can easily be written to sub-
mit any value of any kind for that parameter. Browser-
based limitations on length or type of a field in a form
are not enforced if the browser is not present.

2008 Linux Symposium, Volume One • 125

4 Cross-site scripting (XSS)

One of the more common vulnerabilites seen for web
applications is cross-site scripting (XSS1). XSS re-
sults from taking user input and echoing it back to
the browser without properly filtering it for HTML el-
ements. Many web applications allow users to store
some content, a comment on a story for example, in a
database on the server. This content is then sent back
to the browser for that user or others as appropriate
for the application. Consider the following “content”
<script>alert("XSS")</script>. If that is
sent to the browser unchanged, it will cause Javascript
to pop up an alert.

Any user input that gets sent back to the browser is a
potential XSS vector. One common mistake is for an er-
ror message to contain the unrecognized input, which
is helpful for a legitimate user who made a mistake,
but can also be used as part of an XSS attack. Typi-
cally, XSS vulnerabilities are described with a proof-of-
concept that just uses a Javascript alert which tends to
make some underestimate the power of XSS. It is im-
portant to note that XSS attacks are capable of anything
Javascript can do, which is a lot.2 One of the more com-
mon uses of XSS is to steal cookie information from the
browser which can then be used for session hijacking or
other attacks.

There are two major flavors of XSS, the non-persistent
XSS, where the attack comes as part of the link—like
the error message example above—and persistent XSS,
where the attacker stores something persistently on the
server that can attack each time that content is accessed.
Both flavors can have serious effects, but the amount of
malicious code that can be contained in a link is some-
what limited, whereas the database will happily store a
great deal more. Vulnerable applications may be storing
page contents for MySpace or Facebook-like uses, com-
ments on a blog posting, or some other lengthy content,
any of which may be effectively unlimited in size.

The only defense against XSS is to filter all user input
before echoing it back to the browser. Table 1 shows the

1For web abbreviations, CSS was already taken by Cascading
Style Sheets.

2For some examples, including network scanning be-
hind firewalls, stealing web browser history, and more, see
http://jeremiahgrossman.blogspot.com/2006/07/
my-black-hat-usa-2006-presentation.html.

Input Character Output HTML Entity
< <
> >
((
))
& &
#

Table 1: Character mapping for HTML entities

recommended filtering rules. Mapping each listed char-
acter to its HTML entity equivalent will prevent XSS.

Depending on the implementation language, there
may be functions (like htmlentities() or cgi.

escape()) that do some or all of the filtering job. Note
that some implementations may not do all of the recom-
mended transformations, which could possibly lead to
an XSS hole.

5 Cross-site request forgery (XSRF or CSRF)

Another type of web vulnerability—in some ways re-
lated to XSS—is cross-site request forgery (CSRF or
XSRF3). XSRF abuses the trust that a web site has in
the user, typically in the form of cookies, to cause an
action on that site from an unrelated site.

To see how this works, consider a state-changing GET
on a particular web site, perhaps one for a broad-
band router. If a particular URL on the site, http:
//router/config?setDNS=1.2.3.4 for exam-
ple, will change the router’s DNS setting, a completely
unrelated attack site could use that URL in an im-
age tag: <img src="http://router/config?
setDNS=1.2.3.4">. This would cause a request to
be made of the router with any cookie the browser has
stored for the router. If the cookie was used for authen-
tication and had not yet expired, the action would be
performed.

It is not just GETs that can be attacked via XSRF,
POSTs are vulnerable as well. Using Javascript—and
often hidden away in an IFRAME—FORMs can be con-
structed and submitted with values under the control of
an attacker. A user could be lured to the attack site via
a link in an email or other web page. Once they arrive,
the attack site could generate a FORM submission to a

3For consistency with XSS, this paper will use XSRF.

126 • Introduction to Web Application Security Flaws

Username: x
Password: ’ OR 1=1; --
Query: SELECT id FROM users WHERE name=’$name’ AND password=’$pword’
Results in: SELECT id FROM users WHERE name=’x’ AND password=’’ OR 1=1; --’

Figure 2: SQL injection example

$stmt = prepare("SELECT id FROM users WHERE name=? AND password=?")
execute($stmt, $name, $pword)

Figure 3: SQL prepared statement and placeholder example

completely unrelated site—a banking, stock trading, or
shopping site for example—which would be transmit-
ted along with any cookies the user has for the site. If
the user has recently logged in, the form action will be
taken, just as if the user visited the site and filled in the
form that way.

For high-profile sites, the URL is easy to know, but even
for local devices like the broadband router mentioned
above, the URL can often be guessed. It is very com-
mon for a particular model of router to be handed out
en masse to subscribers of a particular service—often
by default their IP address is fixed. So an attacker that
wanted to do a phishing scam might choose a vulnerable
router type and try to do XSRF attacks to 192.168.1.1,
for example.

Getting rid of XSRF holes is somewhat complicated.
First, as described above, state-changing GETs must be
eliminated from the site. These are clearly the easist
XSRF hole to exploit.

For FORMs, there needs to be something that cannot
be reliably predicted—or brute forced—in the FORM
data. The best way to do that is with a TYPE=
HIDDEN FORM element that has unpredictable NAME
and VALUE attributes. Each should be generated sep-
arately, be long enough to resist brute force, and be
tracked on the server side associated with the session
ID. Whenever a FORM is submitted, the NAME and
VALUE of the element should be validated, with any
action dependent on that validation.

It should be noted that XSS can provide a means for
Javascript to read the FORM and gather the required in-
formation, so a site must be free of XSS issues or the
avoidance mechanism above can be circumvented.

It should also be noted that for very sensitive opera-
tions, re-authenticating the user can provide absolute
protection against XSRF—assuming a good password
has been chosen. It is common for web applications to
require the current password before changing to a new
password, which is an example of this technique.

6 SQL injection

SQL injection is, after XSS, the most commonly re-
ported web site application flaw. Because many web
sites are backed by some kind of SQL database, there
are a large number of applications that are potentially
vulnerable. SQL injections can lead to data loss, data
disclosure, authentication bypass, or other unpleasant
effects.

SQL injection abuses the queries that the web site does
as part of its normal operation by injecting additional
SQL code—under the control of the attacker—into the
query. It is usually done through parameters to GET
or POST requests by taking advantage of naïve—or
nonexistent—attempts to protect the query from the pa-
rameter values.

In Figure 2, there is an example of how a SQL injection
can happen. The SQL query is generated by interpolat-
ing the FORM variables for username and password into
the statement. Under normal circumstances, when a user
is trying to log in, the SQL statement works fine to select
an ID if the username/password matches someone in the
database. If an attacker types in the ’ OR 1=1; --4

string for the password, he modifies the query as shown.
This has the effect of returning every row in the users ta-
ble. Typically application code is written to just take the

4The “--” tells the SQL engine to ignore the rest of the query,
similar to a comment.

2008 Linux Symposium, Volume One • 127

first returned result in that case, which should be a valid
user—and may in fact be the first user added, which is
often the administrative user.

Depending on how the web application is structured and
what database system is used, other abuses are possible.
Some databases allow multiple statements separated by
“;” so a password of ’; DROP TABLE users; --
would end up removing all users from the database.
There are ways to use SQL injection to discover all of
the tables in the database and their contents, again de-
pending on the database system.5

When trying to work out how to create a SQL injec-
tion for a site, an attacker may need to try multiple dif-
ferent techniques. The error messages returned by the
web application often make it easier to determine what
needs to be added to the injection to make it work be-
cause they disclose what the problem is (i.e., “Missing
parentheses,” “Unterminated string,” and the like). Even
unhelpful error messages can give clues to an attacker if
the application responds differently to well-formed SQL
that uses correct table and column names versus illegal
SQL. That difference can be exploited by a technique
known as blind SQL injection.

Thankfully, there are straightforward ways to avoid all
SQL injection attacks. Converting an existing codebase
may be somewhat tedious and time-consuming, but the
method is easy. Essentially all of the techniques boil
down to having the database treat the user input as a sin-
gle entity that is used in the proper place in the query—
as opposed to textually substituting that text into a query
string.

The overall best technique is to use prepared statements
with placeholders for the values that are to be used
in the query. Different database systems use different
placeholder syntax—and various languages’ database li-
braries obscure it more—but a common choice is the “?”
character.

Queries are then created using the placeholder and
passed to the database prepare() function. Figure 3
gives an example in a kind of pseudocode. Instead of
textually substituting the $name and $pword variables
into the query, the database system uses them internally
to match. Doing it that way, the only way the query will

5Microsoft’s SQL Server is said to be particularly susceptible to
this.

return any results is if there is a user named x with the
password ’ OR 1=1; --.

If the database (or language library) does not have place-
holder support, strong consideration should be given to
changing to one that does. If that is impossible, any
database library should have some kind of support for a
database-specific quote() function. This will take the
user input and do whatever necessary to escape special
characters in the input so that they can be used directly
in the query string.

Stored procedures offer similar protections to prepared
statements, but are set up in the database itself ahead
of time. It is somewhat less flexible than just tossing a
query in where needed, but will also handle parameters
in a safe method.

7 Authentication bypass

Authentication bypass comes in various flavors, but at
the core it is a way to circumvent logging in while
still being able to perform privileged actions. Unlike
cracking a password—which still uses the standard au-
thentication mechanism—authentication bypass, as the
name implies, circumvents the authentication method
completely. It abuses some aspect of the application to
“reach around” the requirement to be logged in.

While not truly an authentication bypass, default pass-
words that remain unchanged have essentially the same
effect. If default passwords are for some reason
required—and finding a way to not require them would
be a better choice—it should be difficult to get very far
with the application without changing the default.

Applications should be structured in such a way that it
is impossible to view or submit a page that is privileged
without also supplying the proper credentials. One com-
mon mistake is for an application to check the URL
against a list of privileged URLs, requiring authenti-
cated users for any that are on the list. This kind of
testing can fall prey to aliasing.

Most web servers will allow multiple URLs to reach the
same page, but those URLs can look quite different. A
trivial example is http://vulnsite/foo//bar
which is equivalent—in web server terms—to http:
//vulnsite/foo/bar, but is very different when

128 • Introduction to Web Application Security Flaws

matching the URL. By adding the extra slash, an at-
tacker gets around the authentication requirement. Sim-
ilar things can be done using HTML URL encoding (us-
ing %2F instead of /, for example).

Another common mistake is to assume that any links or
forms that are only presented to the user after they have
logged in are somehow protected. While in the normal
course of events, the user has no access to those ele-
ments through the application, there is nothing stopping
an attacker from using them. Some applications will
use a separate program to process FORM submissions—
without checking authentication—believing that be-
cause those FORM URLs are only presented post-login,
they cannot be accessed otherwise. Both of these are
a kind of “security through obscurity” that provides no
protection at all.

It is imperative that the code for each page that requires
authentication check for it before displaying or taking
any action. If a separate program is used to process
FORMs, it must also check authentication. No matter
what kind of aliasing might be happening, the page code
must be invoked, so that is the proper place for checking
credentials.

8 Session hijacking

As described above, sessions are a standard way for
adding state to HTTP. A session is assigned a particu-
lar ID that is stored in a cookie. Each HTTP request
from the client is accompanied by the session ID, allow-
ing the application to track a related series of requests.
For applications that require authentication, the session
stores the status of that authentication. This means that
a valid session ID can be presented to the application by
an attacker to hijack it.

This hijacking works only as long as the session is valid.
Short-lived sessions—on the order of minutes—reduce
the window of vulnerability, but can be annoying to
users because they have to reauthenticate whenever the
session times out. For sensitive web applications, it is
worth the user annoyance.

An attacker can gain access to the values of a victim’s
cookies in a number of ways. If the application runs on
an unencrypted connection, cookie values can be sniffed
on the wire. XSS provides another means to get access
to cookie values. Some web applications do not even

use cookies—instead sending the session ID in the URL
or a hidden FORM element—making it even easier to
access them.

Some applications store IP address information in the
session which is verified on each subsequent request.
This technique is not particularly useful, as there are
often lots of computers sharing a single IP address
(e.g. NAT); also, some ISPs effectively assign a new
IP on each request which would require the user to re-
authenticate for each page accessed.

Re-authentication is an important safeguard for ex-
tremely sensitive operations. It can be annoying, but
does protect against leaked session IDs.

9 Conclusion

The vulnerabilities presented are the most common
flaws that are found in web applications. There are oth-
ers, of course, but these should be at the top of any web
application designer’s list. Properly handling user in-
put while ensuring that authentication is correctly im-
plemented will go a long way towards securing these
applications.

Modern web frameworks—like Ruby on Rails, Django,
and others—often provide mechanisms to eliminate or
seriously lessen these vulnerabilities. Quite a bit of
thought has gone into the security model of these frame-
works and there is typically an active security group
maintaining them. For new web applications, it is worth
looking into them so as to benefit from those protec-
tions.

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

