
Enable PCI Express Advanced Error Reporting in the Kernel

Yanmin Zhang and T. Long Nguyen
Intel Corporation

yanmin.zhang@intel.com, tom.l.nguyen@intel.com

Abstract

PCI Express is a high-performance, general-purpose I/O
Interconnect. It introduces AER (Advanced Error Re-
porting) concepts, which provide significantly higher re-
liability at a lower cost than the previous PCI and PCI-X
standards. The AER driver of the Linux kernel provides
a clean, generic, and architecture-independent solution.
As long as a platform supports PCI Express, the AER
driver shall gather and manage all occurred PCI Express
errors and incorporate with PCI Express device drivers
to perform error-recovery actions.

This paper is targeted toward kernel developers inter-
ested in the details of enabling PCI Express device
drivers, and it provides insight into the scope of imple-
menting the PCI Express AER driver and the AER con-
formation usage model.

1 Introduction

Current machines need higher reliability than before and
need to recover from failure quickly. As one of failure
causes, peripheral devices might run into errors, or go
crazy completely. If one device is crazy, device driver
might get bad information and cause a kernel panic: the
system might crash unexpectedly.

As a matter of fact, IBM engineers (Linas Vepstas and
others) created a framework to support PCI error re-
covery procedures in-kernel because IBM Power4 and
Power5-based pSeries provide specific PCI device er-
ror recovery functions in platforms [4]. However, this
model lacks the ability to support platform indepen-
dence and is not easy for individual developers to get
a Power machine for testing these functions. The PCI
Express introduces the AER, which is a world standard.
The PCI Express AER driver is developed to support the
PCI Express AER. First, any platform which supports
the PCI Express could use the PCI Express AER driver
to process device errors and handle error recovery ac-
cordingly. Second, as lots of platforms support the PCI

Express, it is far easier for individual developers to get
such a machine and add error recovery code into specific
device drivers.

2 PCI Express Advanced Error Reporting
Driver

2.1 PCI Express Advanced Error Reporting Topol-
ogy

To understand the PCI Express Advanced Error Report-
ing Driver architecture, it helps to begin with the ba-
sics of PCI Express Port topology. Figure 1 illustrates
two types of PCI Express Port devices: the Root Port
and the Switch Port. The Root Port originates a PCI
Express Link from a PCI Express Root Complex. The
Switch Port, which has its secondary bus representing
switch internal routing logic, is called the Switch Up-
stream Port. The Switch Port which is bridging from
switch internal routing buses to the bus representing
the downstream PCI Express Link is called the Switch
Downstream Port. Each PCI Express Port device can
be implemented to support up to four distinct services:
native hot plug (HP), power management event (PME),
advanced error reporting (AER), virtual channels (VC).

The AER driver development is based on the service
driver framework of the PCI Express Port Bus Driver
design model [3]. As illustrated in Figure 2, the PCI
Express AER driver serves as a Root Port AER service
driver attached to the PCI Express Port Bus driver.

2.2 PCI Express Advanced Error Reporting Driver
Architecture

PCI Express error signaling can occur on the PCI Ex-
press link itself or on behalf of transactions initiated on
the link. PCI Express defines the AER capability, which
is implemented with the PCI Express AER Extended

• 297 •

298 • Enable PCI Express Advanced Error Reporting in the Kernel

Root Complex
Root Port

 Switch
Upstream
 Port

 Switch
Downstream
 Port

Root
Port

Root
Port

 Up
Port

Down
Port

Down
Port

PCI Express Switch

Figure 1: PCI Express Port Topology

Root Complex

Root
Port

Root
Port

 PBD

PMErs

PMErs

AERrs

AERrs

 HPrs

 HPrs

 VCrs

 VCrs

 AER Port Service Driver

Claim

Figure 2: AER Root Port Service Driver

Capability Structure, to allow a PCI Express compo-
nent (agent) to send an error reporting message to the
Root Port. The Root Port, a host receiver of all error
messages associated with its hierarchy, decodes an er-
ror message into an error type and an agent ID and then
logs these into its PCI Express AER Extended Capabil-
ity Structure. Depending on whether an error reporting
message is enabled in the Root Error Command Reg-
ister, the Root Port device generates an interrupt if an
error is detected. The PCI Express AER service driver
is implemented to service AER interrupts generated by
the Root Ports. Figure 3 illustrates the error report pro-
cedures.

Once the PCI Express AER service driver is loaded, it
claims all AERrs service devices in a system device hi-
erarchy, as shown in Figure 2. For each AERrs service
device, the advanced error reporting service driver con-
figures its service device to generate an interrupt when
an error is detected [3].

Root Complex

Interrupt

Root
Port

 Up
Port

Down
Port

Down
Port

CPU

End Point

Error Message

Switch

Figure 3: PCI Express Error Reporting procedures

When errors happen, the PCI Express AER driver could
provide such infrastructure with three basic functions:

• Gathers the comprehensive error information if er-
rors occurred.

• Performs error recovery actions.

• Reports error to the users.

2.2.1 PCI Express Error Introduction

Traditional PCI devices provide simple error reporting
approaches, PERR# and SERR#. PERR# is parity error,
while SERR# is system error. All non-PERR# errors are
SERR#. PCI uses two independent signal lines to rep-
resent PERR# and SERR#, which are platform chipset-
specific. As for how software is notified about the errors,
it totally depends on the specific platforms.

To support traditional error handling, PCI Express pro-
vides baseline error reporting, which defines the basic
error reporting mechanism. All PCI Express devices
have to implement this baseline capability and must map
required PCI Express error support to the PCI-related
error registers, which include enabling error reporting

2007 Linux Symposium, Volume Two • 299

and setting status bits that can be read by PCI-compliant
software. But the baseline error reporting doesn’t define
how platforms notify system software about the errors.

PCI Express errors consist of two types, correctable er-
rors and uncorrectable errors. Correctable errors include
those error conditions where the PCI Express protocol
can recover without any loss of information. A cor-
rectable error, if one occurs, can be corrected by the
hardware without requiring any software intervention.
Although the hardware has an ability to correct and re-
duce the correctable errors, correctable errors may have
impacts on system performance.

Uncorrectable errors are those error conditions that im-
pact functionality of the interface. To provide more
robust error handling to system software, PCI Express
further classifies uncorrectable errors as fatal and non-
fatal. Fatal errors might cause corresponding PCI Ex-
press links and hardware to become unreliable. System
software needs to reset the links and corresponding de-
vices in a hierarchy where a fatal error occurred. Non-
fatal errors wouldn’t cause PCI Express link to become
unreliable, but might cause transaction failure. System
software needs to coordinate with a device agent, which
generates a non-fatal error, to retry any failed transac-
tions.

PCI Express AER provides more reliable error report-
ing infrastructure. Besides the baseline error reporting,
PCI Express AER defines more fine-grained error types
and provides log capability. Devices have a header log
register to capture the header for the TLP corresponding
to a detected error.

Correctable errors consist of receiver errors, bad TLP,
bad DLLP, REPLAY_NUM rollover, and replay timer
time-out. When a correctable error occurs, the corre-
sponding bit within the advanced correctable error status
register is set. These bits are automatically set by hard-
ware and are cleared by software when writing a “1”
to the bit position. In addition, through the Advanced
Correctable Error Mask Register (which has the similar
bitmap like advanced correctable error status register),
a specific correctable error could be masked and not be
reported to root port. Although the errors are not re-
ported with the mask configuration, the corresponding
bit in advanced correctable error status register will still
be set.

Uncorrectable errors consist of Training Errors, Data
Link Protocol Errors, Poisoned TLP Errors, Flow Con-

trol Protocol Errors, Completion Time-out Errors, Com-
pleter Abort Errors, Unexpected Completion Errors, Re-
ceiver Overflow Errors, Malformed TLPs, ECRC Er-
rors, and Unsupported Request Errors. When an un-
correctable error occurs, the corresponding bit within
the Advanced Uncorrectable Error Status register is set
automatically by hardware and is cleared by software
when writing a “1” to the bit position. Advanced error
handling permits software to select the severity of each
error within the Advanced Uncorrectable Error Severity
register. This gives software the opportunity to treat er-
rors as fatal or non-fatal, according to the severity asso-
ciated with a given application. Software could use the
Advanced Uncorrectable Mask register to mask specific
errors.

2.2.2 PCI Express AER Driver Designed To Handle
PCI Express Errors

Before kernel 2.6.18, the Linux kernel had no root port
AER service driver. Usually, the BIOS provides basic
error mechanism, but it couldn’t coordinate correspond-
ing devices to get more detailed error information and
perform recovery actions. As a result, the AER driver
has been developed to support PCI Express AER en-
abling for the Linux kernel.

2.2.2.1 AER Initialization Procedures
When a machine is booting, the system allocates in-

terrupt vector(s) for every PCI Express root port. To
service the PCI Express AER interrupt at a PCI Express
root port, the PCI Express AER driver registers its in-
terrupt service handler with Linux kernel. Once a PCI
Express root port receives an error reported from the
downstream device, that PCI Express root port sends an
interrupt to the CPU, from which the Linux kernel will
call the PCI Express AER interrupt service handler.

Most of AER processing work should be done under
a process context. The PCI Express AER driver cre-
ates one worker per PCI Express AER root port virtual
device. Depending on where an AER interrupt occurs
in a system hierarchy, the corresponding worker will be
scheduled.

Most BIOS vendors provide a non-standard error pro-
cessing mechanism. To avoid conflict with BIOS while
handling PCI Express errors, the PCI Express AER

300 • Enable PCI Express Advanced Error Reporting in the Kernel

driver must request the BIOS for ownership of the PCI
Express AER via the ACPI _OSC method, as specified
in PCI Express Specification and ACPI Specification. If
the BIOS doesn’t support the ACPI _OSC method, or
the ACPI _OSC method returns errors, the PCI Express
AER driver’s probe function will fail (refer to Section 3
for a workaround if the BIOS vendor does not support
the ACPI _OSC method).

Once the PCI Express AER driver takes over, the BIOS
must stop its activities on PCI Express error processing.
The Express AER driver then configures PCI Express
AER capability registers of the PCI Express root port
and specific devices to support PCI Express native AER.

2.2.2.2 Handle PCI Express Correctable Errors

Because a correctable error can be corrected by the hard-
ware without requiring any software intervention, if one
occurs, the PCI Express AER driver first decodes an er-
ror message received at PCI Express root port into an er-
ror type and an agent ID. Second, the PCI Express AER
driver uses decoded error information to read the PCI
Express AER capability of the agent device to obtain
more details about an error. Third, the PCI Express AER
driver clears the corresponding bit in the correctable er-
ror status register of both PCI Express root port and the
agent device. Figure 4 illustrates the procedure to pro-
cess correctable errors. Last but not least, the details
about an error will be formatted and output to the sys-
tem console as shown below:

+—— PCI-Express Device Error —–+
Error Severity : Corrected
PCIE Bus Error type : Physical Layer
Receiver Error : Multiple
Receiver ID : 0020
VendorID=8086h, DeviceID=3597h, Bus=00h, Device=04h,
Function=00h

The Requester ID is the ID of the device which reports
the error. Based on such information, an administrator
could find the bad device easily.

2.2.2.3 Handle PCI Express Non-Fatal Errors
If an agent device reports non-fatal errors, the PCI
Express AER driver uses the same mechanism as de-
scribed in Section 2.2.2 to obtain more details about an
error from an agent device and output error information
to the system console. Figure 5 illustrates the procedure
to process non-fatal errors.

Root Complex

Root
Port

End Point: E1

AER Driver

1) Get Source ID/
Error Type,
Clear Root Status

2) Get Detailed Error Type,
Clear Correctable Error Status

Figure 4: Procedure to Process Correctable Errors

Root Complex

Root
Port

 End Point: E1

AER Driver

End Point
 Driver

1) Get Source ID/
Error Type
Clear root status

2) Get Detailed Error
Type and Log

3) Error Recovery

Figure 5: Procedures to Process Non-Fatal Errors

The first two steps are like the ones to process cor-
rectable errors. During Step 2, the AER driver need to
retrieve the packet header log from the agent if the error
is TLP-related.

Below is an example of non-fatal error output to the sys-
tem console.
+—— PCI-Express Device Error ——+
Error Severity : Uncorrected (Non-Fatal)
PCIE Bus Error type : Transaction Layer
Completion Timeout : Multiple
Requester ID : 0018
VendorID=8086h, DeviceID=3596h, Bus=00h, Device=03h,
Function=00h

Unlike correctable errors, non-fatal errors might cause

2007 Linux Symposium, Volume Two • 301

some transaction failures. To help an agent device driver
to retry any failed transactions, the PCI Express AER
driver must perform a non-fatal error recovery proce-
dure, which depends on where a non-fatal error occurs
in a system hierarchy. As illustrated in Figure 6, for
example, there are two PCI Express switches. If end-
point device E2 reports a non-fatal error, the PCI Ex-
press AER driver will try to perform an error recovery
procedure only on this device. Other devices won’t take
part in this error recovery procedure. If downstream port
P1 of switch 1 reports a non-fatal error, the PCI Express
AER driver will do error recovery procedure on all de-
vices under port P1, including all ports of switch 2, end
point E1, and E2.

Root Complex

Root
Port

 Up
Port

Switch 1

Down
Port: P1

 Up
Port

Down
Port

Down
Port

Switch 2

End Point: E1 End Point: E2

Figure 6: Non-Fatal Error Recovery Example

To take part in the error recovery procedure, specific de-
vice drivers need to implement error callbacks as de-
scribed in Section 4.1.

When an uncorrectable non-fatal error happens, the
AER error recovery procedure first calls the error_
detected routine of all relevant drivers to notify their
devices run into errors by the deep-first sequence. In
the callback error_detected, the driver shouldn’t
operate the devices, i.e., do not perform any I/O on the
devices. Mostly, error_detected might cancel all
pending requests or put the requests into a queue.

If the return values from all relevant error_
detected routines are PCI_ERS_RESULT_CAN_

RECOVER, the AER recovery procedure calls all resume

callbacks of the relevant drivers. In the resume func-
tions, drivers could resume operations to the devices.

If an error_detected callback returns PCI_ERS_
RESULT_NEED_RESET, the recovery procedure will call
all slot_reset callbacks of relevant drivers. If
all slot_reset functions return PCI_ERS_RESULT_
CAN_RECOVER, the resume callback will be called to
finish the recovery. Currently, some device drivers pro-
vide err_handler callbacks. For example, Intel’s
E100 and E1000 network card driver and IBM’s POWER
RAID driver.

The PCI Express AER driver outputs some information
about non-fatal error recovery steps and results. Below
is an example.

+—— PCI-Express Device Error —–+
Error Severity : Uncorrected (Non-Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0500
VendorID=14e4h, DeviceID=1659h, Bus=05h, Device=00h,
Function=00h
TLB Header:
04000001 0020060f 05010008 00000000
Broadcast error_detected message
Broadcast slot_reset message
Broadcast resume message
tg3: eth3: Link is down.
AER driver successfully recovered

2.2.2.4 Handle PCI Express Fatal Errors
When processing fatal errors, the PCI Express AER

driver also collects detailed error information from the
reporter in the same manner as described in Sections
2.2.2.2 and 2.2.2.3. Below is an example of non-fatal
error output to the system console:

+—— PCI-Express Device Error ——+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0200
VendorID=8086h, DeviceID=0329h, Bus=02h, Device=00h,
Function=00h
TLB Header:
04000001 00180003 02040000 00020400

When performing the error recovery procedure, the ma-
jor difference between non-fatal and fatal is whether

302 • Enable PCI Express Advanced Error Reporting in the Kernel

the PCI Express link will be reset. If the return val-
ues from all relevant error_detected routines are
PCI_ERS_RESULT_CAN_RECOVER, the AER recovery
procedure resets the PCI Express link based on whether
the agent is a bridge. Figure 7 illustrates an example.

Root Complex

 Root
Port: P0

 Up
Port: P1

 Down
Port: P2

 Down
Port: P3

 End Point: E1

 Switch

Figure 7: Reset PCI Express Link Example

In Figure 7, if root port P0 (a kind of bridge) reports a
fatal error to itself, the PCI Express AER driver chooses
to reset the upstream link between root port P0 and up-
stream port P1. If end-point device E1 reports a fatal
error, the PCI Express AER driver chooses to reset the
upstream link of E1, i.e., the link between P2 and E1.

The reset is executed by the port. If the agent is a port,
the port will execute reset. If the agent is an end-point
device, for example, E1 in Figure 7, the port of the up-
stream link of E1, i.e., port P2 will execute reset.

The reset method depends on the port type. As for root
port and downstream port, the PCI Express Specifica-
tion defines an approach to reset their downstream link.
In Figure 7, if port P0, P2, P3, and end point E1 report
fatal errors, the method defined in PCI Express Specifi-
cation will be used. The PCI Express AER driver im-
plements the standard method as default reset function.

There is no standard way to reset the downstream
link under the upstream port because different switches
might implement different reset approaches. To facili-
tate the link reset approach, the PCI Express AER driver
adds reset_link, a new function pointer, in the data
structure pcie_port_service_driver.

struct pcie_port_service_driver {
...
/* Link Reset Capability - AER service

driver specific */
pci_ers_result_t (*reset_link) (struct

pci_dev *dev);
...

};

If a port uses a vendor-specific approach to reset link, its
AER port service driver has to provide a reset_link
function. If a root port driver or downstream port ser-
vice driver doesn’t provide a reset_link function,
the default reset_link function will be called. If
an upstream port service driver doesn’t implement a
reset_link function, the error recovery will fail.

Below is the system console output example printed by
the PCI Express AER driver when doing fatal error re-
covery.

+—— PCI-Express Device Error —–+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : (Unaccessible)
Unaccessible Received : First
Unregistered Agent ID : 0500
Broadcast error_detected message
Complete link reset at Root[0000:00:04.0]
Broadcast slot_reset message
Broadcast resume message
tg3: eth3: Link is down.
AER driver successfully recovered

2.3 Including PCI Express Advanced Error Re-
porting Driver Into the Kernel

The PCI Express AER Root driver is a Root Port ser-
vice driver attached to the PCI Express Port Bus driver.
Its service must be registered with the PCI Express Port
Bus driver and users are required to include the PCI Ex-
press Port Bus driver in the kernel [5]. Once the ker-
nel configuration option CONFIG_PCIEPORTBUS is in-
cluded, the PCI Express AER Root driver is automati-
cally included as a kernel driver by default (CONFIG_
PCIEAER = Y).

3 Impact to PCI Express BIOS Vendor

Currently, most BIOSes don’t follow PCI FW 3.0 to
support the ACPI _OSC handler. As a result, the PCI
Express AER driver will fail when calling the ACPI

2007 Linux Symposium, Volume Two • 303

control method _OSC. The PCI Express AER driver
provides a current workaround for the lack of ACPI
BIOS _OSC support by implementing a boot param-
eter, forceload=y/n. When the kernel boots with
parameter aerdriver.forceload=y, the PCI Ex-
press AER driver still binds to all root ports, which im-
plements the AER capability.

4 Impact to PCI Express Device Driver

4.1 Device driver requirements

To conform to AER driver infrastructure, PCI Express
device drivers need support AER capability.

First, when a driver initiates a device, it needs to enable
the device’s error reporting capability. By default, de-
vice error reporting is turned off, so the device won’t
send error messages to root port when it captures an er-
ror.

Secondly, to take part in the error recovery procedure, a
device driver needs to implement error callbacks as de-
scribed in the pci_error_handlers data structure
as shown below.

struct pci_error_handlers {
/* PCI bus error detected on this device */
pci_ers_result_t (*error_detected)(struct

pci_dev *dev, enum pci_channel_state error);
/* MMIO has been re-enabled, but not DMA */
pci_ers_result_t (*mmio_enabled)(struct

pci_dev *dev);
/* PCI slot has been reset */
pci_ers_result_t (*slot_reset)(struct

pci_dev *dev);
/* Device driver may resume

normal operations */
void (*resume)(struct pci_dev *dev);

};

In data structure pci_driver, add err_handler
as a new pointer to point to the pci_error_
handlers. In kernel 2.6.14, the definition of pci_
error_handlers had already been added to support
PCI device error recovery [4]. To be compatible with
PCI device error recovery, PCI Express device error re-
covery also uses the same definition and follows a sim-
ilar rule. One of our starting points is that we try to
keep the recovery callback interfaces as simple as we
can. If the interfaces are complicated, there will be no
driver developers who will be happy to add error recov-
ery callbacks into device drivers.

4.2 Device driver helper functions

To communicate with device AER capabilities, drivers
need to access AER registers in configuration space. It’s
easy to write incorrect code because they must access/
change the bits of registers. To facilitate driver program-
ming and reduce coding errors, the AER driver provides
a couple of helper functions which could be used by de-
vice drivers.

4.2.1 int pci_find_aer_capability
(struct pci_dev *dev);

pci_find_aer_capability locates the PCI Ex-
press AER capability in the device configuration space.
Since offset 0x100 in configuration space, PCI Express
devices could provide a couple of optional capabilities
and they link each other in a chain. AER is one of them.
To locate AER registers, software needs to go through
the chain. This function returns the AER offset in the
device configuration space.

4.2.2 int pci_enable_pcie_error_reporting (struct
pci_dev *dev);

pci_enable_pcie_error_reporting enables
the device to send error messages to the root port when
an error is detected. If the device doesn’t support PCI-
Express capability, the function returns 0. When a de-
vice driver initiates a device (mostly, in its probe func-
tion), it should call pci_enable_pcie_error_
reporting.

4.2.3 int pci_disable_pcie_error_reporting (struct
pci_dev *dev);

pci_disable_pcie_error_reporting dis-
ables the device from sending error messages to the root
port. Sometimes, device drivers want to process errors
by themselves instead of using the AER driver. It’s not
encouraged, but we provide this capability.

4.2.4 int pci_cleanup_aer_uncorrect_
error_status (struct pci_dev *dev);

pci_cleanup_aer_uncorrect_error_
status cleans up the uncorrectable error status

304 • Enable PCI Express Advanced Error Reporting in the Kernel

register. The AER driver only clears correctable
error status register when processing errors. As for
uncorrectable errors, specific device drivers should
do so because they might do more specific process-
ing. Usually, a driver should call this function in its
slot_reset or resume callbacks.

4.3 Testing PCI Express AER On Device Driver

It’s hard to test device driver AER capabilities. By lots
of experiments, we have found that UR (Unsupported
Request) can be used to test device drivers. We trig-
gered UR error messages by probing a non-existent de-
vice function. For example, if a PCI Express device only
has one function, when kernel reads the ClassID from
the configuration space of the second function of the
device, the device might send an Unsupported Request
error message to the root port and set the bit in uncor-
rectable error status register. By setting different values
in the corresponding bit in uncorrectable error mask reg-
ister, we could test both non-fatal and fatal errors.

5 Conclusion

The PCI Express AER driver creates a generic infras-
tructure to support PCI Express AER. This infrastruc-
ture provides the Linux kernel with an ability to capture
PCI Express device errors and perform error recovery
where in a hierarchy an agent device reports. Last but
not least the system administrators could get formatted,
useful error information to debug device errors.

Linux kernel 2.6.19 has accepted the PCI Express AER
patches. Future work includes enabling PCI Express
AER for every PCI Express device by default, blocking
I/O when an error happens, and so on.

6 Acknowledgement

Special thanks to Steven Carbonari for his contributions
to the architecture design of PCI Express AER driver,
Rajesh Shah for his contributions to code review, and
the Linux community for providing great input.

Legal Statement

This paper is copyright c© 2007 by Intel Corporation. Per-
mission to redistribute in accordance with Linux Sympo-
sium submission guidelines is granted; all other rights are
reserved.

References

[1] PCI Express Base Specification Revision 1.1.
March 28, 2005. http://www.pcisig.com

[2] PCI Firmware Specification Revision 3.0,
http://www.pcisig.com

[3] Tom Long Nguyen, Dely L. Sy, & Steven
Carbonari. “PCI Express Port Bus Driver Support
for Linux.” Proceedings of the Linux Symposium,
Vol. 2, Ottawa, Ontario, 2005.
http://www.linuxsymposium.org/
2005/linuxsymposium_procv2.pdf

[4] pci-error-recovery.txt. Available from:
2.6.20/Documentation.

[5] PCIEBUS-HOWTO.txt. Available from:
2.6.20/Documentation.

[6] pcieaer-howto.txt. Available from:
2.6.20/Documentation.

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

