
Driver Tracing Interface

David J. Wilder
IBM Linux Technology Center

dwilder@us.ibm.com

Michael Holzheu
IBM Linux on zSeries Development

holzheu@de.ibm.com

Thomas R. Zanussi
IBM Linux Technology Center

zanussi@us.ibm.com

Abstract

This paper proposes a driver-tracing interface (DTI) that
builds on the existing Relay tool and the proven Debug
Feature model used by IBMTM zSeries Linux. Users of
this infrastructure are provided with individual, manage-
able channels for capturing or passing debug data into
user space. Separate channels are created by each sub-
system or driver. Data is stored in kernel ring buffers
providing flight recorder type functionality. Unwanted
or unconsumed data is simply discarded where pertinent
data can be saved for future analysis. In the instance of
a system crash, all unconsumed tracing data is automat-
ically saved in crash dumps. With support from crash
analysis tools like crash or lcrash, trace data can be ex-
tracted directly from a crash dump, providing an exact
trace of the events leading up to the crash.

Developers of LinuxTM device drivers will be interested
in DTI as a tool to aid in the troubleshooting of their
drivers. Service engineers and support personnel who
are tasked with isolating driver bugs will learn how to
capture DTI data on a live system and extract DTI data
from a crash dump.

1 Introduction

Webster defines a trace as “the track left by the passage
of a person, animal, or object.” Applied to computer
systems, we can adapt this definition to mean the track
left by the execution of a program. A typical program
doesn’t normally leave tracks, other than the expected
side effect of the program. To cause a program to create
tracks so that its passage can meaningfully be tracked,
code that explicitly leaves those tracks must be added
into the execution path of the program. We call the in-
dividual tracks we’ve inserted tracepoints. Two types of
tracepoints can be used.

• Static: Tracks that are added to the source code
and compiled with it.

• Dynamic: Tracks that are added to the execution
stream at run time.

Tracing is the act of causing special-purpose code asso-
ciated with a program to report something specific about
what the program is doing at a given point. The informa-
tion can be simple or complex, high or low-frequency,
binary or text-based, time-based or unsequenced and so
on. The resulting data stream can be continuously per-
sisted to long-term storage, sent to a destination over a
network connection, or it can be endlessly cycled around
a constant-sized buffer. The buffer will only be read
when an event of interest occurs and a user needs details
about the sequence of events that led up to that event,
for example a system crash or afailed assertion in the
normal program flow.

1.1 Why is tracing needed

Tracing is needed because, in many situations, only a
detailed, sequenced, or timestamped history of program
execution can explain the behavior of a program or the
pathology of a problem. In many cases, coarse-grained
statistical or summary information can show the general
area of a problem, but only trace data can show the true
source of the problem.

The detailed data from a complete trace can be post-
processed and summary information or aggregated
statistics can be calculated based on it. The converse
however is not true. Detailed information cannot be ex-
tracted from statistics or summaries, because that infor-
mation is lost in the process. Keeping in mind practical
considerations such as storage costs, it is always better

• 261 •

262 • Driver Tracing Interface

to have the detailed trace information instead of only the
statistics, because the appropriate trace data allows for
more varied and flexible analysis.

2 Current solutions for static tracing

Currently, there are three kernel APIs available to do
static tracing using kernel memory buffers:

• printk

• relay

• s390 debug feature (s390dbf)

2.1 Printk

Printk often is misused for tracing purposes, since there
is no other standard way for device drivers to log debug
information.1 There are multiple printk levels defined,
which indicate the importance of a kernel message. The
kernel messages are written in one global printk buffer,
which can be accessed from the user space with the
syslog() system call or via the /proc/kmesg file. The
dmesg tool prints the content of the message buffer to
the screen, and then the kernel log daemon klogd reads
kernel messages and redirects them either to the syslogd
or into a file. The printk message buffer can also be ac-
cessed from system dumps through the lcrash or other
crash dump analysis tools.

2.2 Relay

Relay provides a basic low-level interface that has a va-
riety of uses, including tracing. In order to define a ker-
nel trace buffer, the relay_open() function is used.
This function creates a relay channel. Relay channels
are organized as wrap around buffers in memory. There
are two mechanisms to write trace data into a channel:

• relay_write(chan, data, length) is used
to place data in the global buffer.

• relay_reserve(chan, length) is used to re-
serve a slot in a channel buffer which can be written
to later.

1This paper is not purposing a replacement for printk. The DTI is
purposed as an additional tool that should be used in place of printk
only when true tracing is needed.

Relay buffers are represented as files in a host file sys-
tem such as debugfs; data previously written into a relay
channel can be retrieved by read(2)ing or mmap(2)ing
these files.

2.3 The s390 debug feature

The s390 debug feature (s390dbf) is a tracing API,
which is used by most of the s390 specific device
drivers. Each device driver creates its own debug feature
in order to log trace records into memory areas, which
are organized as wrap around ring buffers. The s390dbf
uses its own ring buffer implementation. The main pur-
pose of the debug feature is to inspect the trace logs after
a system crash. Dump analysis tools like crash or lcrash
can be used to find out the cause of the crash. If the sys-
tem still runs but only a subcomponent which uses dbf
fails, it is possible to look at the debug logs on a live
system via the Linux debugfs file system.

Device drivers can register themselves to the debug fea-
ture with the debug_register() function. This
function initializes an s390dbf for the caller. For each
s390dbf there are a number of debug areas where ex-
actly one is active at one time. Each debug area consists
of a set of several linked pages in memory. In the de-
bug areas, there are stored debug entries (trace records)
which are written by event and exception calls.

An event call writes the specified debug entry to the ac-
tive debug area and updates the log pointer for the active
area. If the end of the active debug area is reached, a
wrap around in the ring buffer is done and the next de-
bug entry will be written at the beginning of the active
debug area.

An exception call writes the specified debug entry to the
log and switches to the next debug area. This is done
in order to guarantee that the records that describe the
origin of the exception are not overwritten when a wrap
around for the current area occurs.

The debug areas themselves are also ordered in the form
of a ring buffer. When an exception is thrown in the last
debug area, the next debug entries are then written again
in the very first area.

Each debug entry contains the following data:

• Timestamp

2007 Linux Symposium, Volume Two • 263

• Cpu-Number of calling task

• Level of debug entry (0. . . 6)

• Return Address to caller

• Flag that indicate whether an entry is an exception
or not

The trace logs can be inspected in a live system through
entries in the debugfs file system. Files in the debugfs
that were created by s390dbf represent different views
to the debug log. The purpose of s390dbf views is to
format the trace records in a human-readable way. Pre-
defined views for hex/ascii, sprintf and raw binary data
are provided. It is also possible to define other compo-
nent specific views. The content of a view can be seen
by reading the corresponding debugfs file. The standard
views are also available in the dump analysis tools lcrash
and crash. Figure 1 shows an example of an s390dbf
sprintf view.

3 Driver Tracing Interface

This section describes the proposed Driver Tracing In-
terface (DTI) for the Linux kernel. It starts by examin-
ing the project goals and usage models that were consid-
ered in its design. Also provided is a brief description
of two existing subsystems that DTI depends on, the De-
bugFS and relay subsystems.

3.1 Design goals

DTI will add supportability to drivers and subsystems
that adopt it. However, from the support community
viewpoint the deployment of DTI must be propagated
into a significant number of subsystems, drivers, and
system architectures before it usefulness is proven. De-
veloping support tools and process around one off so-
lutions is costly and unproductive to support organiza-
tions, therefore a key aspect of our project goals is to
provide a feature that can easily be adopted by the Linux
development community, thus ensuring its wide use.

• The DTI’s API should be as simple and easy to im-
plement as possible.

• DTI should be architecture independent.

Adding code into a driver or subsystem that is not con-
tributing to the core functionality might be seen as un-
necessary. This concern must be addressed by DTI, en-
suring that the added benefit is balanced with low over-
head of the feature.

• DTI should have as little performance impact as
possible.

• DTI should reuse existing code in the Linux kernel.

• DTI must implement per-CPU buffering.

• DTI should minimize the in-kernel processing of
trace data.

The remaining goals specify functionality requirements.

• DTI’s API should be usable in both user context
and interrupt context.

• Trace data must be buffered so that it can be re-
trieved from a crash dump.

• Trace data must be viewable from a live system.

• DTI must allow for a rich set of tools to process
trace data.

3.2 Usage models

Two primary usage models were examined when de-
signing the DTI API.

Usage Model 1: Isolating a driver problem from a
post-mortem cash dump analysis. In this scenario,
the system has crashed and a crashed system image
(crash dump) has been obtained. By analyzing the
crash dump the user suspects there is a problem in the
XYZ driver. Using the DTI commands integrated into
the crash dump analysis tool, the user can extract the
DTI trace buffer from the crash dump and examine the
records. The entire trace buffer containing the last trace
records recorded by the XYZ driver is available. Us-
ing this data the user can obtain a trace showing what
the driver was doing when the crash dump was taken.
This allows the user to learn more about the cause of the
crash.

Usage Model 2: Troubleshooting a driver on a run-
ning system. In this scenario, the user has encountered

264 • Driver Tracing Interface

00 01173807785:527586 0 − 02 00000000001eed86 Subchannel 0.0.4e20 reports non−I/O sc type 0001

00 01173807786:095834 2 − 02 00000000001f0962 reprobe done (rc=0, need_reprobe=0)

00 01173884042:004944 2 − 03 00000000001f7344 SenseID : UC on dev 0.0.1700, lpum 80, cnt 00

Figure 1: Example of the s390dbf sprintf view

a problem that is suspected to be related to one or more
specific drivers. The user would like to examine the
trace data just after the problem has occurred. To do
so the following steps are taken:

1. Set the trace level to an appropriate level to produce
the interested trace records.

2. Wait for the problem to occur, or reproduce the
problem if possible.

3. Switch off tracing on the affected driver. Trace
records produced just before, during, and after the
problem occurred will remain in the DTI buffer.

4. Collect the trace data using a user level trace for-
matting tool.

5. Switch tracing back on.

By integrating DTI with systemtap additional usage
modules can be realized.2

3.3 Debugfs

Debugfs is a minimalistic pseudo-filesystem existing
mainly to provide a namespace that kernel facilities can
hang special-purpose files of off, which in turn provides
file-based access to kernel data. It provides a simple
API for creating files and directories, as well as a set of
ready made file operations which make it easy to cre-
ate and use files that read and write primitive data types
such as integers. For more complex data, it provides a
means for facilities to associate custom file operations
with debugfs files; in the case of relay, the exported
relay_file_operations are associated with the de-
bugfs files created to represent relay buffers. Despite
the name, debugfs is not meant to be used only for de-
bugging applications; it’s enabled by default in many
Linux distributions, and its use is encouraged especially
for things that don’t obviously belong in other pseudo-
filesystems such as procfs or sysfs.

2These advanced usage models will be explored in more detail
in Section 9, Integration With Other Tools.

3.4 Relay

Relay3 is a kernel facility designed for ‘relaying’ poten-
tially large quantities of data from the kernel to the user
space. Its overriding goal is to provide the shortest and
cheapest possible path for a byte of data from the point
it’s generated in the kernel to the point it’s usable by a
program in user space. To accomplish this goal, it allo-
cates a set of pages in the kernel, strings them together
into a contiguous kernel address range via vmap(), and
provides a set of functions designed to efficiently write
data into the resulting relay buffer.

Each relay buffer is represented to user space as a file.
This relay file is the abstraction used by the user space
programs to retrieve the data contained in the relay
buffer. The standard set of file operations allows for
both read(2) and mmap(2) access to the data. These
relay file operations are exported by the kernel, which
allows them to be created in a pseudo-filesystem such
as debugfs or procfs. In fact relay files must be created
in one of these pseudo-filesystems in order for them to
be accessible to user space programs (older versions of
relay did actually include a file system called relayfs but
the fs portion of the code was later subsumed by almost
identical code in debugfs, and thus removed).

Relay buffers are logically subdivided into a number of
equally sized sub-buffers. The purpose of sub-buffers
is to provide the same benefits as double-buffering, but
with more granularity. As data is written, it fills up sub-
buffers, which are then considered ready for consump-
tion by the user space. At the same time data is being
written by the kernel into these unfinished sub-buffers,
user space can be reading and releasing other finished
sub-buffers. Relay channels can be configured to do
double-buffereing or single-buffering if desired, or they
can be configured to use large numbers of sub-buffers.
A sub-buffer isn’t considered readable until it’s full and
the next sub-buffer is entered (a sub-buffer switch). The
latency between when a given event is written and the

3See Documentation/filesystems/relay.txt for complete details.

2007 Linux Symposium, Volume Two • 265

time it’s available to the user increases with the sub-
buffer size. If sub-buffers are small, the latency is small
and the amount of data that would be lost if the machine
were to loses power is small. However, using small
sub-buffers results in more time spent in the sub-buffer
switching code (the slow path) instead of the main log-
ging path (the fast path). Relay was designed with some
reasonable middle ground in mind, efficiently buffering
data implies some nontrivial amount of latency. If an ap-
plication requires more immediacy, another mechanism
should be considered. The assumption is that any mech-
anism that offers more immediacy by definition also cre-
ates more tracing overhead. The implied goal of relay is
to cause as little disruption to a running system as pos-
sible.

By default, a relay buffer is created for each CPU; the
combination of all per-CPU relay buffers along with
associated meta-information is called a relay channel.
Most of the relay API deals with the relay channels, and
almost every aspect of a relay channel are configurable
through the relay API.

4 Proposal for the Driver Tracing Interface

This section describes the purposed DTI architecture.
The kernel API is introduced, trace record formatting
and buffering are also discussed.

4.1 The DTI kernel API

The proposed DTI API can be broken in the following
four major operations:

• Creating a trace handle and binding it to a relay
channel.

• Writing trace records.

• Closing the channel.

• Setting the trace level.

The prototype of the API to the DTI is shown in Fig-
ure 2.

4.2 Creating the trace channel

The creation and binding of the trace handle are per-
formed by calling dti_register(). When called,
dti_register() creates a relay channel, associated
data files and two additional control files in the debug
file system. Upon successful completion, a struct
dti_info pointer is returned. The caller will pass this
pointer to all subsequent calls to the API. The format of
struct dti_info is:

struct dti_info {
struct dentry∗ root;

struct rchan∗ chan;

int level;

struct dentry ∗reset_consumed_ctrl;
struct dentry ∗level_ctrl;

};

4.3 Writing trace records

Trace records are passed to the user using a vari-
able length record as described in the struct dti_
event.

struct dti_event {
__u16 len;

__u64 time;

char data[0];

} __attribute__ ((packed));

Trace record suppliers only need to supply a pointer to
the data buffer containing the raw data and the length of
the data. DTI places no restriction on the format of the
data supplied.

4.4 Trace level

The trace level is used to control what trace records
should be placed in the buffer. Suppliers of trace data
provide a trace level value each time a trace record is
written. The trace level value is compared to the cur-
rent trace level found in dti_info->level. Trace
records are only placed in the buffer if the supplied trace
level is less than or equal to the current trace level.

The current trace level is set using dti_set_level()

or by the user writing a new trace level to the level con-
trol file. Trace levels are defined as an integer between
–1 and DTI_LEVEL_MAX. A value of –1 means no trac-
ing is to be done. When a trace channel is first registered
the current trace level is set to DTI_LEVEL_DEFAULT.

266 • Driver Tracing Interface

/∗∗
∗ dti_register: create new trace

∗ @name: name of trace

∗ @size_in_k: size of subbuffer in KB

∗
∗ returns trace handle or NULL, if register failed.

∗/
struct dti_info ∗dti_register(const char ∗name,

int size_in_k);

/∗∗
∗ dti_unregister: unregister trace

∗ @trace: trace handle

∗/
void dti_unregister(struct dti_info ∗trace);

/∗∗
∗ dti_printk_raw: Write formatted string to trace

∗ @trace: trace handle

∗ @fmt: format string

∗ @...: parameters

∗
∗ returns 0, if event is written. Otherwise -1.

∗/
int dti_printk_raw(struct dti_info ∗trace, int prio, const char∗ fmt, ...);

/∗∗
∗ dti_event_raw: Write buffer to trace

∗ @trace: trace handle

∗ @prio: priority of event (the lower, the higher the priority)

∗ @buf: buffer to write

∗ @len: length of buffer

∗
∗ returns 0, if event is written. Otherwise -1.

∗/
int dti_event_raw(struct dti_info ∗trace, int prio, char∗ buf, size_t len);

/∗∗
∗ dti_set_level: set trace level

∗ @trace: trace handle

∗/
void dti_set_level(struct dti_info ∗trace, int new_level);

Figure 2: Prototype of the DTI API

2007 Linux Symposium, Volume Two • 267

• Three sub-buffers are shown.

• The numbers represent the trace records.

• The 1st and the 2nd trace records have already been
overwritten.

Sub-buffer 1 13 14 03 04

Sub-buffer 2 05 06 07 08

Sub-buffer 3 09 10 11 12

When relay data is read, the following records are re-
turned:

05 06 07 08 09 10 11 12 13 14

Figure 3: An example of reading relay buffers

4.5 Data buffering

DTI depends on relay to handle the data buffering. Re-
lay arranges trace records into a fixed number of sub-
buffers arraigned in a ring. Each sub-buffer may contain
one or more trace records or may be unused. Records
are never split across sub-buffers. As sub-buffers are
filled, new records are placed in the next sub-buffer in
the ring. If no unconsumed sub-buffers are available,
the sub-buffer containing the oldest data is overwritten.

When trace records are read by the user using the relay
read interface, the oldest complete sub-buffer returned
first, then the second oldest and so on. Therefore, the
trace records are returned in the exact the same order
they were written. For the current (newest) sub-buffer,
the trace records up to the latest written trace record is
returned. We lose the rest of the trace records (the oldest
ones) of the current sub-buffer. This is acceptable, if
enough sub-buffers are used. This process is illustrated
in Figure 3.

4.6 Picking a buffer size

When the DTI trace is registered, you supply a size-in-
k value, which is the total size of each relay channel
buffer:

dti_register(name, size_in_k)

DTI automatically divides size-in-k by 8 and calls the
exported __dti_register() function:

__dti_register(name, subbuf_size,

n_subbufs)

Users normally use the dti_register() version
which does the calculation on behalf of the user. The
user is not required to understand buffer internals, how-
ever if the user wants more control over the internal
sub-buffer sizes, the __dti_register() version is
available.4

4.7 Record time stamps

The time field in the struct dti_event is gener-
ated by the DTI. Its purpose is to provide both a time
reference for when the trace record was written and a
tool to sequence the records chronologically. The order
of the trace records in a buffer of a single CPU is guaran-
teed to be in chronological order. DTI creates one relay
buffer for each CPU. Therefore, the user must fully read
each per-CPU buffer, then order the records correctly.
It is possible for records read from different per-CPU
buffers to contain the same time stamp. The choice of a
sufficiently high resolution timer reduces the possibility
of duplicate time-stamps; if the possibility is small, it
might be acceptable.

5 DTI handle API

This section describes an extension to the basic DTI
API called DTI handles. The DTI handle API simpli-
fies writing kernel code that utilizes DTI. The features
provided by the DTI handle API are:

• Auto-registration

• Support for early boot time tracing

Auto-registration eliminates the need to explicitly call
dti_register(). Both modules and built-in drivers
are supported. Registration of the DTI handle is auto-
matically performed the first time trace data is written.

Early boot time tracing allows built-in drivers to log
trace data before kmalloc memory is available. Static
buffers are used to hold DTI events until it is safe to
setup the relay channels. The DTI handle code creates

4See Section-3.4 Relay for a summary of sub-buffer size trade-
offs to consider when choosing buffer/sub-buffer sizes.

268 • Driver Tracing Interface

#include <linux/dti.h>

static struct dti_handle my_handle

#ifdef MODULE

/∗ On the first event, channel will be auto-registered. ∗/
DEFINE_DTI_HANDLE(my_handle, DRV_NAME, 4096 ∗ 32, DTI_LEVEL_DEBUG,NULL);

#endif

#ifdef KERNEL

/∗
∗ Built-in drivers can optionally provide a static buffer used for

∗ early tracing.

∗/
static char my_buf[4096 ∗ 4] __initdata;

DEFINE_DTI_HANDLE(my_handle, DRV_NAME, 4096 ∗ 32, DTI_LEVEL_DEBUG,my_buf);

#endif

static int __init init_mydriver(void)

{
....

INIT_DTI_HANDLE(my_handle);

....

}

my_driver_body(..)

{
....

/∗ trace some events ∗/
dti_printk(my_handle, DTI_LEVEL_DEFAULT, format, _fmt, ## _args);

....

}

void cleanup_mydriver(void)

{
....

CLEANUP_DTI_HANDLE(my_handle);

....

}

module_init(init_testdriver);

module_exit(cleanup_testdriver);

Figure 4: Example of using DTI handles

2007 Linux Symposium, Volume Two • 269

a postcore_initcall to switch tracing from static
buffers to relay channels. All trace records written into
static buffers are made available to the user interface af-
ter the postcore_initcall has run.

An example of using DTI handles is shown in Figure 4.

6 User interface

The section covers how trace data is read by the user on
a running system and how tracing is controlled by the
user.

6.1 File structure and control files

When a trace handle is bound, the following files are
created in the traces directory of the root of the mounted
debug file system.

dti/
driver−name/
data0 ... data[max−cpus]

level
reset_consumed

6.2 Retrieving trace data

One data file per CPU is created for each registered DTI
trace provider. Trace records (struct dti_event)
are read from the data files using a user supplied trace
formatting tool. A trace formatting tool should read
each per-CPU data file for a specified trace provider then
arrange records according to the time stamp field of the
struct dti_event.

The sequence of events normally followed when reading
trace data is:

1. Switch off tracing by writing a –1 into the level file.

2. Read each of the per-CPU data files.

3. Switch tracing back on.

6.3 Trace level

The level file is used to inform the DTI provider of the
level of trace records that should be placed in the data
buffer. Reading the level file will return an ASCII value
indicating the current level of tracing. The level can be
changed by writing the ASCII value of the desired trac-
ing level into the level file.

6.4 Reset consumed

When trace records are read, the records are marked
as consumed by the relay subsystem as they are read.
Therefore, subsequent reads will only return unread or
new records in the buffers. If the desired behavior of a
trace formatting tool is to return all records in the buffer
each time the tools executed, the tool must reset the con-
sumed value after reading all records currently in the
buffer. Resetting the consumed value is performed by
writing any value into the reset-consumed file.

7 Dump analysis tool support

Analysis of trace data from a crashed system is one of
the most important use-cases for DTI. As such, sup-
port will be added to the crash and lcrash dump analysis
tools enabling those tools to extract and make use of the
DTI trace buffers and related trace information from a
crashed system image.

7.1 Retrieving trace data from a crash dump

When a DTI trace is registered through dti_
register(), a text name is specified as one of the pa-
rameters. This string not only identifies the trace to the
user, but is also effectively concatenated with a prefix
string, unlikely to be used by a user, in order to make the
complete identifying string easily locatable in a mem-
ory dump for example if a trace name is given as “my-
driver” by the user, the string the dump tool would use
to find the corresponding dti_info struct would be
__DTI__mydriver. When this string is located, it’s
a straightforward exercise to locate the associated relay
channel and its buffers. For example, assuming a sim-
plified dti_info struct:

struct dti_info
{
struct rchan ∗chan;
char dti[7] = "__DTI__";
char name[DTI_TRACENAME_LEN];
.
.
.

}

The dump tool would locate the beginning of the dti[]
array, and subtracting the size of a pointer would find
the pointer to the struct rchan:

270 • Driver Tracing Interface

struct rchan
{
size_t subbuf_size;
size_t n_subbufs;
struct rchan_buf[NR_CPUS];
.
.
.

}

From the pointer to the rchan, you can locate each of the
buffers that make up the channel and its size.

struct rchan_buf
{
/∗ start of buffer ∗/
void ∗start;
/∗ start of current sub-buffer ∗/
void ∗data;
/∗ write offset into the current

sub-buffer ∗/
size_t offset;
/∗ number of sub-buffers

consumed ∗/
size_t consumed;
.
.
.

}

From this information, you can extract all the available
data from each buffer and send it to the post-processing
tool to be combined and sorted as usual.

8 Sample implementations

8.1 Port of the S390 dbf

Most of the s390 device drivers currently use the
s390dbf. Examples are:

• ZFCP: SCSI host adapter device driver

• QETH: Ethernet network device driver

• DASD: s390 harddisk driver

• TAPE: Driver for 3480/90 and 3590/92 channel at-
tached tape devices

s390dbf API DTI API
debug_register() dti_

register()
debug_unregister() dti_

unregister()
debug_event() dti_event_

raw()
debug_sprintf_
event()

dti_printk_
raw()

debug_set_level() dti_set_
level()

Table 1: Mapping of the s390dbf API to the DTI API

All the users of the s390dbf API can be quite easily con-
verted to use the new DTI API. Table 1 shows functions
that can be mapped directly.

There is no DTI equivalent for the s390dbf exception
calls. Those must be replaced by the appropriate DTI
event functions. The exception functionality used to
switch debug areas is not frequently used by the s390
device drivers. Therefore it is acceptable to remove this
functionality in order to keep the API small and simple.

The functions debug_register_view() and
debug_unregister_view() are not needed any
more, since formatting of DTI traces is done in the user
space.

Currently the s390 ZFCP device driver uses non-default
self-defined s390dbf views. For that driver, it is nec-
essary to implement a user space tool with the same
formatting functionality as the ZFCP specific s390dbf
view.

Some details of the port have not yet been resolved.

• How should the number of pages value used by
debug_register be mapped to the buffer size
used in dti_register()?

• Is an equivalent for debug_stop_all() needed?

8.2 Port of some other drivers

There are currently a large number of custom logging
APIs in the kernel, each mainly restricted to logging
formatted debugging string data related to a particu-
lar driver or subsystem. Most of them are a varia-
tion on #define DPRINTK(x...) printk(x...).

2007 Linux Symposium, Volume Two • 271

These can easy be ported to DTI using the DTI handle
API. However, DTI’s strength is focused on continuous
tracing to a buffer which can be retrieved when neces-
sary rather than the continuous logging implemented by
these special-purpose facilities.

There are, however, a handful of continuous tracing fa-
cilities similar to DTI in the kernel, varying from very
minimalistic to fairly full-featured. Included in this cat-
egory is the current s390dbf facility, which is presently
the most advanced. Briefly examined are some of the
others that tracing facilities that would be candidates for
porting to the proposed DTI API.

• drivers/scsi/mesh.c provides the dlog()
function for logging formatted records. It keeps
data in a ring of structs. The dump function printk’s
the whole buffer.

• drivers/net/wan/lmc/lmc_debug.h
provides LMC_EVENT_LOG() which logs two u32
args along with an event number and jiffies.

• drivers/char/ip2 provides ip2trace()
which is used to trace any number of longs into a
buffer containing 1000 longs. It provides a read(2)
interface to read the data.

• drivers/isdn/hardware/eicon/
debug.c provides an extensive API and set
of functions used to log and maintain a queue of
debug messages.

• fs/xfs/support/ktrace.c provides a sim-
ple yet extensive API for tracing the xfs file system.
The main logging function is ktrace_enter(),
which allows up to 16 values to be logged per en-
try into a buffer containing 64 ktrace entries.

9 Integration of other tools

DTI tracing is of course, useful in its own right. Com-
bined with a trace analysis tool such as SystemTap5 it
can become an even more powerful tool. A DTI trace
can be used to see with great detail exactly what happens
within a particular driver over a given time interval, but
it doesn’t have any other context associated with it, such
as system calls or interrupt activity that may have trig-
gered activity within the driver. In many cases, it would

5http://sourceware.org/systemtap

be extremely useful to have such associated data avail-
able for analysis. DTI’s strength is its data-gathering
functionality. Using Systemtap, DTI’s functionality can
be extended by adding context to the data, perform time
analysis of the data being gathered or maintain a sum-
mary information about the trace. For example, if a
certain pattern of interest only occurs intermittently, the
user could detect it and either halt the trace, preserving
the events that led up to it, or alert the user of the con-
dition. In addition, SystemTap can be used to gather
aggregated summaries of the data over long periods of
time (longer than the limited size of a relay buffer would
allow) to get an overall picture of activity with respect
to the driver and associated context.

The DTI tapset is being developed to allow SystemTap
to put kprobes on the high-level DTI tracing functions,
which makes all data passing through them accessible
to SystemTap. Note that doing this in no way affects the
normal flow of DTI events; the only additional effect is
the probe effect, which means that each event recorded
in this way incurs a penalty equal to the time required to
fire the probe and run the SystemTap handler.

Systemtap can also be used to dynamically place new
probe points into a driver. To do this Systemtap places
a kprobe in the driver where a trace point is to be added
and all data available at the probe point is fed back into
the DTI data stream. The DTI post-processing tools can
then be used to format and display this external data
along with the normal DTI trace output. To do this,
users make use of the ‘DTI-control’ tapset, which al-
lows SystemTap scripts to control and log data to DTI
via the standard DTI kernel interface.

10 Conclusion

Customers of s390 systems demand very high reliability
and quick turnaround time for bug fixes. Since its intro-
duction early in the history of Linux on the s390, the
s390 Debug Facility has proven itself as an invaluable
tool for meeting customers’ reliability expectations. The
ability to analyze trace data in a crash dump and perform
first fault analysis is key to the s390dfb’s success. The
question has been posed, “Why reinvent functionality
that already exists?” The answer is simple: DTI intends
to exploit the s390db model and bring this technology to
all Linux platforms. Service organizations gain not only
by the additions of DTI functionality but by the unifor-
mity of a tracing infrastructure between all platforms. In

272 • Driver Tracing Interface

addition, DTI utilizes the existing relay subsystem that
did not exist when s390dbf was written. Therefore, DTI
can be implemented with a much smaller footprint than
the s390dbf.

s390 drivers provide the perfect sandbox for porting
drivers to the DTI and testing its implementation. We
plan to pursue this effort as well as encouraging other
driver developers to adopt DTI.

Legal statement

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e (logo) server,
and xSeries are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States
and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trade-
marks or service marks of others.

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

