
Zumastor Linux Storage Server

Daniel Phillips
Google, Inc.

phillips@google.com

Abstract

Zumastor provides Linux with network storage func-
tionality suited to a medium scale enterprise storage
role: live volume backup, remote volume replication,
user accessible volume snapshots and integration with
Kerberized network filesystems. This paper examines
the design and functionality of the major system com-
ponents involved. Particular attention is paid to the sub-
jects of optimizing server performance using NVRAM,
and reducing the amount of network bandwidth required
for remote application using various forms of com-
pression. Future optimization strategies are discussed.
Benchmark results are presented for currently imple-
mented optimizations.

1 Introduction

Linux has done quite well at the edges of corpo-
rate networks—web servers, firewalls, print servers and
other services that rely on well standardized protocols—
but has made scant progress towards the center, where
shared file servers define the workflow of a modern or-
ganization. The barriers are largely technical in that
Linux storage capabilities, notably live filesystem snap-
shot and backup, have historically fallen short of the
specialized proprietary offerings to which users have be-
come accustomed.

Zumastor provides Linux with network storage func-
tionality suited to medium scale enterprise storage roles:
live volume backup, remote volume replication, user
accessible volume snapshots and integration with Ker-
berized network filesystems. Zumastor takes the form
of a set of packages that can be added to any Linux
server and will happily coexist with other roles that the
server may serve. There are two major components: the
ddsnap virtual block device, which provides base snap-
shot and replication functionality, and the Zumastor vol-
ume monitor, which presents the administrator with a

simple command line interface to manage volume snap-
shotting and replication. We first examine the low level
components in order to gain an understanding of the de-
sign approach used, its capabilities and limitations.

2 The ddsnap Virtual Block Device

The ddsnap virtual block device provides multiple
read/write volume snapshots. As opposed to the incum-
bent lvm snapshot facility, ddsnap does not suffer from
degraded write performance as number of snapshots in-
creases and does not require a separate underlying phys-
ical volume for each snapshot. A ddsnap virtual device
requires two underlying volumes: an origin volume and
a snapshot store. The origin, as with the lvm snapshot, is
a normal volume except that write access is virtualized
in order to protect snapshotted data. The snapshot store
contains data copied from the origin in in the process of
protecting snapshotted data. Metadata in the snapshot
store forms a btree to map logical snapshot addresses to
data chunks in the snapshot store.

The snapshot store also contains bitmap blocks that con-
trol allocation of space in the snapshot store, a list of cur-
rently held snapshots, a superblock to provide configu-
ration information, and a journal for atomic and durable
updates to the metadata. The ddsnap snapshot store re-
sembles a simple filesystem, but with only a single di-
rectory, the btree, indexed by the logical address of a
snapshot. Each leaf of the btree contains a list of logi-
cal chunk entries; each logical chunk entry in the btree
contains a list of one or more physical chunk addresses;
and for each physical chunk address, a bitmap indicates
which snapshots currently share that physical chunk.
Share bits are of a fixed, 64 bit size, hence the ddsnap
limitation of 64 simultaneous snapshots. This limita-
tion may be removed in the future with a redesign of the
btree leaf format.

• 135 •

136 • Zumastor Linux Storage Server

2.1 Client-server design

DDsnap was conceived as a cluster snapshot—DD
stands for distributed data—with a client-server archi-
tecture. Each ddsnap client (a device mapper device)
provides access to either the underlying, physical ori-
gin volume or to some snapshot of the origin volume.
To implement the copy-before-write snapshot strategy,
a ddsnap origin client communicates with a userspace
server over a socket, requesting permission from this
snapshot server before writing any block so that the
server may move any data shared with a snapshot to the
snapshot store. Similarly, a ddsnap snapshot client re-
quests permission from the snapshot server before writ-
ing any block so that space may be allocated in the snap-
shot store for the write. A snapshot client also requests
permission before reading snapshot data, to learn the
physical location of the data and to serialize the read
against origin writes, preventing the data being read
from moving to a new location during the read. On the
other hand, an origin client need not consult the server
before reading, yielding performance nearly identical to
the underlying physical volume for origin reads.

Since all synchronization with the snapshot server is
carried out via messages, the server need not reside on
the same node as an origin or snapshot client, although
with the current single-node storage application it al-
ways does. Some more efficient means of synchroniza-
tion than messages over a socket could be adopted for a
single node configuration, however messaging overhead
has not proved particularly bothersome, with a mes-
sage inter-arrival time measured in microseconds due to
asynchronous streaming. Some functionality required
for clustering, such as failing over the server, upload-
ing client read locks in the process, is not required for
single-node use, but imposes no overhead by its pres-
ence.

Creating or deleting a snapshot is triggered by sending a
message to the snapshot server, as are a number of other
operations such as obtaining snapshot store usage statis-
tics and obtaining a list of changed blocks for replica-
tion. The ddsnap command utility provides a comman-
dline syntax for this. There is one snapshot server for
each snapshot store, so to specify which snapshot server
the command is for, the user gives the name of the re-
spective server control socket. A small extra complexity
imposed by the cluster design is the need for a ddsnap
agent, whose purpose on a cluster is to act as a node’s

central cluster management communication point, but
which serves no useful purpose on a single node. It is
likely that the functionality of agent and snapshot server
will be combined in future, somewhat simplifying the
setup of a ddsnap snapshot server. In any event, the pos-
sibility of scaling up the Zumastor design using cluster-
ing must be viewed as attractive.

2.2 Read/Write Snapshots

Like lvm snapshots, ddsnap snapshots are read/write.
Sometimes the question is raised: why? Isn’t it unnatu-
ral to write to a snapshot? The answer is, writable snap-
shots come nearly for free, and they do have their uses.
For example, virtualization software such as Bochs,
QEMU, UML or Xen might wish to base multiple VM
images on the same hard disk image.1 The copy-on-
write property of a read/write snapshot gives each VM a
private copy in its own snapshot of data that it has writ-
ten. In the context of zumastor, a root volume could be
served over NFS to a number of diskless workstations,
so each workstation is able to modify modify part of its
own copy while continuing to share the unmodified part.

2.3 Snapshotted Volume IO Performance

Like the incumbent lvm snapshot, origin read perfor-
mance is nearly identical to native read performance,
because origin reads are simply passed through to the
underlying volume.

As with the incumbent lvm snapshot, ddsnap uses a
copy-before-write scheme where snapshotted data must
be copied from the origin to the snapshot store the first
time the origin chunk is written to after a new snap-
shot. This can degrade write performance markedly un-
der some loads. Keeping this degradation to a tolerable
level has motivated considerable design effort, and work
will continue in this area. With the help of several opti-
mization techniques discussed below, a satisfactory sub-
jective experience is attained for the current application:
serving network storage.

Compared to the incumbent lvm snapshot, the ddsnap
snapshot design requires more writes to update the
metadata, typically five writes per newly allocated phys-
ical chunk:

1http://en.wikipedia.org/wiki/
Copy-on-write

2007 Linux Symposium, Volume Two • 137

1. Write allocation bitmap block to journal.

2. Write modified btree leaf to journal.

3. Write journal commit block.

4. Write allocation bitmap block to store.

5. Write modified btree leaf to store.

This update scheme is far from optimal and is likely
to be redesigned at some point, but for now a cruder
approach is adopted: add some nonvolatile memory
(NVRAM) to the server.

The presence of a relatively small amount of nonvolatile
RAM can accelerate write performance in a number of
ways. One way we use NVRAM in Zumastor is for
snapshot metadata. By placing snapshot metadata in
NVRAM we reduce the cost of writing to snapshotted
volume locations significantly, particularly since ddsnap
in its current incarnation is not very careful about min-
imizing metadata writes. Unfortunately, this also limits
the maximum size of the btree, and hence the amount of
snapshot data that can be stored. This limit lies roughly
in the range of 150 gigabytes of 4K snapshot chunks
per gigabyte of NVRAM. NVRAM is fairly costly, so
accommodating a large snapshot store be expensive.
Luckily, much can be done to improve the compactness
of the btree, a subject for another paper.

Using NVRAM, snapshot performance is no worse than
the incumbent lvm snapshot, however the size of the
btree and hence the amount of data that can be stored in
the snapshot store is limited by the amount of NVRAM
available. Future work will relax this limitation.

2.3.1 Filesystem Journal in NVRAM

For filesystems that support separate journals, the jour-
nal may be placed in NVRAM. If the filesystem is fur-
ther configured to journal data writes as well as meta-
data, a write transaction will be signalled complete as
soon as it has been entered into the journal, long before
being flushed to underlying storage. At least until the
journal fills up, this entirely masks the effect of slower
writes to the underlying volume. The practical effect of
this has not yet been measured.

2.3.2 Effect of Chunk Size and Number of Snap-
shots on Write Performance

Untar time on the native (Ext3) filesystem is about 14
seconds. Figure 1 shows that untar time on the virtual
block device with no snapshots held is about 20 sec-
onds, or slower by a factor of 1.43. This represents
the overhead of synchronizing with the snapshot server,
and should be quite tractable to optimization. Snapshot-
ted untar time ranges from about 3.5 times to nearly 10
times slower than native untar time.

Figure 1 also shows the effect of number of currently
held snapshots on write performance and of varying the
snapshot chunk size. At each step of the test, a tar
archive of the kernel source is unpacked to a new direc-
tory and a snapshot is taken. We see that (except for the
very first snapshot) the untar time is scarcely affected by
the number of snapshots. For the smallest chunk size,
4K, we see that untar time does rise very slightly with
the number of snapshots, which we may attribute to in-
creased seek time within the btree metadata. As chunk
size increases, so does performance. With a snapshot
store chunk size of 128KB, the untar runs nearly three
times faster.

2.3.3 Effect of NVRAM on Write Performance

Figure 2 shows the effect of placing the snapshot data in
NVRAM. Write performance is dramatically improved,
and as before, number of snapshots has little or no ef-
fect. Interestingly, the largest chunk size tested, 128KB,
is no longer the fastest; we see best performance with
64K chunk size. The reason for this remains to be in-
vestigated, however this is good news because a smaller
chunk size improves snapshot store utilization. Write
performance has improved to about 2 to 5 times slower
than native write performance, depending on chunk size.

2.3.4 NVRAM Journal compared to NFS Write
Log

NVRAM is sometimes used to implement a NFS write
log, where each incoming NFS write is copied to the
write log and immediately acknowledged, before being
written to the underlying filesystem. Compared to the
strategy of putting the filesystem journal in NVRAM,
performance should be almost the same: in either case,

138 • Zumastor Linux Storage Server

 0

 50

 100

 150

 200

 0 5 10 15 20

R
ea

l t
im

e
(s

)
to

 u
nt

ar
 k

er
ne

l

Number of Snapshots

Time to untar a kernel source tree vs Number of Snapshots

native:normal:128k
native:normal:16k

native:normal:4k
native:normal:64k

Figure 1: Write performance without NVRAM

a write is acknowledged immediately after being writ-
ten to NVRAM. There may be a small difference in the
overhead of executing a filesystem operation as opposed
to a potentially simpler transaction log operation, how-
ever the filesystem code involved is highly optimized
and the difference is likely to be small. On the other
hand, the transaction log requires an additional data
copy into the log, likely negating any execution path ef-
ficiency advantage. It is clear which strategy requires
less implementation effort.

2.3.5 Ongoing Optimization Efforts

A number of opportunities for further volume snapshot
write optimization remain to be investigated. For ex-
ample, it has been theorized that writing to a snapshot
instead of the origin can improve write performance a
great deal by eliminating the need to copy before writ-
ing. If read performance from a snapshot can be main-
tained, then perhaps it would be a better idea to serve a
master volume from a snapshot than an origin volume.

3 Volume Replication

Volume replication creates a periodically updated copy
of a master volume at some remote location. Replication

differs from mirroring in two ways: 1) changes to the
remote volume are batched into volume deltas so that
multiple changes to the same location are collapsed into
a single change and 2) a write operation on the master
is not required to wait for write completion on the re-
mote volume. Batching the changes also allows more
effective compression of volume deltas, and because the
changes are sorted by logical address, applying a delta
to a remote volume requires less disk seeking than ap-
plying each write to a mirror member in write comple-
tion order. Replication is thus suited to situations where
the master and remote volume are not on the same local
network, which would exhibit intolerable remote write
latency if mirrored. High latency links also tend to be
relatively slow, so there is much to be gained by good
compression of volume deltas.

Zumastor implements remote replication via a two step
process: 1) Compute difference list; 2) Generate delta.
To generate the difference list for a given pair of snap-
shots, the ddsnap server scans through the btree to find
all snapshot chunks that belong to one snapshot and not
the other, which indicates that the data for the corre-
sponding chunks was written at different times and is
most probably different. To generate the delta, a ddsnap
utility runs through the difference list reading data from
one or both of the snapshots which is incorporated into

2007 Linux Symposium, Volume Two • 139

 0

 50

 100

 150

 200

 0 5 10 15 20

R
ea

l t
im

e
(s

)
to

 u
nt

ar
 k

er
ne

l

Number of Snapshots

Time to untar a kernel source tree vs Number of Snapshots

native:nvram:128k
native:nvram:16k

native:nvram:4k
native:nvram:64k

Figure 2: Write performance with NVRAM

the output delta file. To allow for streaming replication,
each volume delta is composed of a number of extents,
each corresponding to some number of contiguous logi-
cal chunks.

A variety of compression options are available for delta
generation. A “raw” delta incorporates only literal data
from the destination snapshot. An “xdelta” delta com-
putes the binary difference between source and destina-
tion snapshot. Raw delta is faster to generate and re-
quires less disk IO, is faster to apply to the target vol-
ume, and is more robust in the sense that the code is
very simple. Computing an xdelta delta requires more
CPU and disk bandwidth but should result in a smaller
delta that is faster to transmit.

A volume delta may be generated either as a file or as
a TCP stream. Volume replication can be carried out
manually using delta files:

1. Generate a snapshot delta as a file

2. Transmit the delta or physically transport it to the
downstream host

3. Apply the delta to the origin volume of the down-
stream host

It is comforting to be able to place a snapshot delta and
to know that the replication algorithm is easy enough to
carry out by hand, which might be important in some
special situation. For example, even if network connec-
tivity is lost, volume replication can still be carried out
by physically transporting storage media containing a
delta file.

Zumastor uses ddsnap’s streaming replication facility,
where change lists and delta files are never actually
stored, but streamed from the source to target host and
applied to the target volume as a stream. This saves a
potentially large amount of disk space that would be oth-
erwise be required to store a delta file on both the source
and target host.

From time to time it is necessary to replicate an entire
volume, for example when initializing a replication tar-
get. This ability is provided via a “full volume delta”
that generates a raw, compressed delta as if every logical
chunk had appeared in the difference list. Incidentally,
only the method of delta generation is affected by this
option, not the delta file format.

To apply a volume delta, ddsnap overwrites each chunk
of the target volume with the new data encoded in the
delta in the case of a raw delta, or reads the source snap-
shot and applies the binary difference to it in the case

140 • Zumastor Linux Storage Server

of xdelta. Clearly, it is required that the source snap-
shot exist on the downstream host and be identical to
the source snapshot on the upstream host.

To create the initial conditions for replication:

1. Ensure that upstream and downstream origin vol-
umes are identical, for example by copying one to
the other

2. Snapshot the upstream and downstream volumes

The need to copy an entire volume over the network in
the first step can be avoided in some common cases.
When a filesystem is first created, it is easy to zero both
upstream and downstream volumes, which sets them to
an identical state. The filesystem is then created after
step 2. above, so that relatively few changed blocks
are transmitted in the first replication cycle. In the case
where the downstream volume is known to be similar,
but not identical to the upstream volume (possibly as a
result of an earlier hardware or software failure) then the
remote volume differencing utility rdiff may be used to
transmit a minimal set of changes downstream.

Now, for each replication cycle:

1. Set a new snapshot on the upstream volume.

2. Generate the delta from old to new upstream snap-
shot.

3. Transmit the delta downstream.

4. Set a new snapshot on the downstream volume
(downstream origin and new snapshot are now
identical to the old upstream snapshot).

5. Apply the delta to the downstream origin (down-
stream origin is now identical to the new upstream
snapshot).

For the streaming case, step 4 is done earlier so that the
transmit and apply may iterate:

1. Set a new snapshot on upstream and downstream
volumes.

2. Generate the delta from old to new upstream snap-
shot.

3. Transmit the next extent of the delta downstream.

4. Apply the delta extent to the downstream origin.

5. Repeat at 3 until done.

For streaming replication, a server is started via ddsnap
on the target host to receive the snapshot delta and apply
it to the downstream origin.

Fortunately for most users, all these steps are handled
transparently by the Zumastor volume manager, de-
scribed below.

Multi level replication from a master volume to a chain
of downstream volumes is handled by the same algo-
rithm. We require only that two snapshots of the master
volume be available on the upstream volume and that
the older of the two also be present on the downstream
volume. A volume may be replicated to multiple targets
at any level in the chain. In general, volume replica-
tion topology is a tree, with the master volume at the
root and an arbitrary number of target volumes at inte-
rior and leaf nodes. Only the master is writable; all the
target volumes are read-only.

3.1 Delta Compression

Compression of delta extents is available as an op-
tion, either using zlib (gzip) or in the case of xdelta,
an additional Huffman encoding stage. A compressed
xdelta difference should normally be more compact than
gzipped literal data, however, one can construct cases
where the reverse is true. A further (extravagant) “best”
compression option computes both the gzip and xdelta
compression for a given extent and use the smaller for
the output delta. Which combination of delta genera-
tion options is best depends largely on the amount of
network bandwidth available.

Figure 3 illustrates the effect of various compression op-
tions on delta size. For this test, the following steps are
performed:

1. Set snapshot 0.

2. Untar a kernel tree.

3. Set snapshot 1.

2007 Linux Symposium, Volume Two • 141

Figure 3: Delta Compression Effectiveness

4. Apply a (large) patch yielding the next major ker-
nel release.

5. Set snapshot 2.

Three delta files are generated, the two incremental
deltas from snapshot 0 to snapshot 1 and from snapshot
1 to snapshot 2, and the cumulative delta from snapshot
0 to snapshot 2. We observe a very large improvement
in delta size, ranging up to a factor of 10 as compared to
the uncompressed delta.

XDelta performs considerably better on the snapshot 1
to snapshot 2 delta, which is not surprising because this
delta captures the effect of changing many files as op-
posed to adding new files to the filesystem, so it is only
on this delta that there are many opportunities to take
advantage of similarity between the two snapshots.

The “best” method gives significantly better compres-
sion on the snapshot 1 to snapshot 2 delta, which indi-
cates that some delta extents compress better with gzip
than they do with xdelta. (As pointed out by the author
of xdelta, this may be due to suboptimal use of com-
pression options available within xdelta.) Figure 4 re-

expresses the delta sizes of Figure 3 as compression ra-
tios, ranging from 5 to 13 for the various loads.

Delta compression directly affects the time required to
transmit a delta over a network. This is particularly im-
portant when replicating large volumes over relatively
low bandwidth network links, as is typically the case.
The faster a delta can be transmitted, the fresher the re-
mote copy will be. We can talk about the “churn rate” of
a volume, that is, the rate at which it changes. This could
easily be in the neighborhood of 10% a day, which for a
100 gigabyte disk would be 10 gigabytes. Transmitting
a delta of that size over a 10 megabit link would require
10000 seconds, or about three hours. An 800 gigabyte
volume with 10% churn a day would require more than
a day to transmit the delta, so the following delta will
incorporate even more than 10% churn, and take even
longer. In other words, once replication falls behind, it
rapidly falls further and further behind, until eventually
nearly all the volume is being replicated on each cycle,
which for our example will take a rather inconvenient
number of days.

In summary, good delta compression not only improves
the freshness of replicated data, it delays the point at

142 • Zumastor Linux Storage Server

Figure 4: Delta Compression Effectiveness

which replication lag begins to feed on itself and enables
timely replication of larger, busier volumes over lower
speed links.

3.2 NFS Snapshot Rollover

Exporting a replicated volume via NFS sounds easy ex-
cept that we expect the filesystem to change state “spon-
taneously” each time a new volume delta arrives, with-
out requiring current NFS clients to close their TCP con-
nections. To create the effect of jumping the filesystem
from state to state as if somebody had been editing the
filesystem locally, we need to unmount the old snapshot
and mount the new snapshot so that future NFS accesses
will be to the new snapshot. The problem is, the Linux
server will cache some elements of the client connec-
tion state such as the file handle of the filesystem root,
which pins the filesystem and prevents it from being un-
mounted.

Zumastor solves this problem by introducing a nfsd sus-
pend/resume operation. This flushes all cached client
state which forces the use count of the exported filesys-
tem snapshot to one, the mount point. This allows the
old snapshot to be unmounted and the new snapshot to

be mounted in its place, before resuming. Interestingly,
the patch to accomplish this is only a few lines, because
most of the functionality to accomplish it already ex-
isted.

3.3 Incremental Backup using Delta Files

Ddsnap delta files are not just useful for replication, they
can also be used for incremental backup. From time to
time, a “full volume” delta file can be written to tape,
followed periodically by a number of incremental deltas.
This should achieve very rapid backup and economical
use of tape media, particularly if deltas are generated
with more aggressive compression options. To restore,
a full (compressed) volume must be retrieved from tape,
along with some number of delta files, which are applied
sequentially to arrive at a volume state as some particu-
lar point in time. Restoring a single file would be a very
slow process, however it is also expected to be a rare
event. It is more important that backup be fast, so that it
is done often.

2007 Linux Symposium, Volume Two • 143

4 Zumastor volume monitor

The Zumastor volume monitor takes care of most of
the chores of setting up virtual block devices, includ-
ing making socket connections between the ddsnap
user space and kernel components, creating the vir-
tual devices with dmsetup, organizing mount points and
mounting volumes. It maintains a simple database im-
plemented as a directory tree that stores the configura-
tion and operating status of each volume on a particular
host, and provides the administrator with a simple set
of commands for adding and removing volumes from
the database, and defining their operational configura-
tion. Finally, it takes care of scheduling snapshots and
initiating replication cycles.

The Zumastor volume database is organized by vol-
umes, where each volume is completely independent
from the others, not even sharing daemons. Each Zu-
mastor volume is either a master or a target. If a master,
it has a replication schedule. If a target, then it has an
upstream source. In either case, it may have any number
of replication targets. Each replication target has exactly
one source, which prevents cycles and also allows auto-
matic checking that the correct source is replicating to
the correct target.

The replication topology for each volume is completely
independent. A given host may offer write/write access
to volumes that are replicated to other hosts and read-
only access to volumes replicated to it from other hosts.
So for example, two servers at widely separated geo-
graphic locations might each replicate a volume to the
other, which not provides a means of sharing data, but
also provides a significant degree of redundancy, partic-
ularly if each server backs up both its own read/write
volume and the replicated read-only volume to tape.

The replication topology for each volume is a tree,
where only the master (root of the tree) behaves differ-
ently from the other nodes. The master generates snap-
shots either periodically or on command. Whenever one
of its target hosts is ready to receive a new snapshot
delta, the master creates a new snapshot and replicates it
to the target, ensuring that the downstream host receives
as fresh as possible a view of the master volume. On
all other hosts, snapshot deltas are received from an up-
steam source and simply passed along down the chain.

Zumastor replication is integrated with NFS in the sense
that Zumastor knows how to suspend NFS while it re-

mounts a replicated volume to the latest snapshot, ef-
fecting the snapshot rollover described above.

5 The Future

In the future, Zumastor will continue to gain new func-
tionality and improve upon existing functionality. It
would be nice to have a graphical front end to the
database, and a web interface. It would be nice to see
the state of a whole collection of Zumastor servers to-
gether in one place, including the state of any replica-
tion cycles in progress. It would be natural to integrate
more volume management features into Zumastor, such
as volume resizing. Zumastor ought to be able to mir-
ror itself to a local machine and fail over NFS service
transparently. Zumastor should offer its own incremen-
tal backup using delta files. Another creative use of delta
files would be to offer access to “nearline” snapshots,
where a series of archived reverse deltas are applied to
go back further in time than is practical with purely on-
line snapshots.

There is still plenty of room for performance opti-
mization. There is a lot more that can be done with
NVRAM, and things can be done to improve the per-
formance without NVRAM, perhaps making some of
Zumastor’s replication and backup capabilities practical
for use on normal workstations and the cheapest of the
cheap servers.

All in all, there remains plenty of work to do and plenty
of motivation for doing it.

144 • Zumastor Linux Storage Server

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

