
Keeping Kernel Performance from Regressions

Tim Chen
Intel Corporation

tim.c.chen@intel.com

Leonid I. Ananiev
leoan@mail.ru

Alexander V. Tikhonov
Intel Corporation

alexander.v.tikhonov@intel.com

Abstract

The Linux* kernel is evolving rapidly with thousands of
patches monthly going into the base kernel. With devel-
opment at this pace, we need a way to ensure that the
patches merged into the mainline do not cause perfor-
mance regressions.

The Linux Kernel Performance project was started in
July 2005 and is Intel’s effort to ensure every dot release
from Linus is evaluated with key workloads. In this pa-
per, we present our test infrastructure, test methodology,
and results collected over the 2.6 kernel development
cycle. We also look at examples of historical perfor-
mance regressions that occurred and how Intel and the
Linux community worked together to address them to
make Linux a world-class enterprise operating system.

1 Introduction

In recent years, Linux has been evolving very rapidly,
with patches numbering up to the thousands going into
the kernel for each major release (see Figure 1) in
roughly a two- to three-month cycle. The performance
and scalability of the Linux kernel have been key ingre-
dients of its success. However, with this kind of rapid
evolution, changes detrimental to performance could
slip in without detection until the change is in the dis-
tributions’ kernels and deployed in production systems.
This underscores the need for a systematic and disci-
plined way to characterize, test, and track Linux kernel
performance, to catch any performance issue of the ker-
nel at the earliest time possible to get it corrected.

Intel’s Open Source Technology Center (OTC)
launched the Linux Kernel Performance Project (LKP)
in the summer of 2005 (http://kernel-perf.
sourceforge.net) to address the need to monitor
kernel performance on a regular basis. A group of OTC
engineers set up the test machines, infrastructure, and

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2.6.20

2.6.19

2.6.18

2.6.17

2.6.16

2.6.15

2.6.14

2.6.13

2.6.12

N
um

be
r

of
 P

at
ch

es
 p

er
 K

er
ne

l R
el

ea
se

Kernel Version

Figure 1: Rate of change in Linux kernel

benchmarks; they started regular testing and analysis of
Linux kernel’s performance. We began to publish our
test data on project website since July 2005.

2 Testing Process

Each release candidate of the Linux kernel triggers our
test infrastructure, which starts running a benchmark
test suite within an hour whenever a new kernel get pub-
lished. Otherwise, if no new -rc version appears within
a week, we pick the latest snapshot (-git) kernel for
testing over the weekend. The test results are reviewed
weekly. Anomalous results are double-checked, and re-
run if needed. The results are uploaded to a database
accessible by a web interface. If there were any sig-
nificant performance changes, we would investigate the
causes and discuss them on Linux kernel mailing list
(see Figure 2).

We also make our data available on our website publicly
for community members to review performance gains
and losses with every version of the kernel. Ultimately,
we hope that this data catches regressions before ma-
jor kernel releases, and results in consistent performance
improvement.

• 93 •

94 • Keeping Kernel Performance from Regressions

Figure 2: Performance testing process.

2.1 Benchmarks Suite

We ran a set of benchmarks covering core components
of the Linux kernel (memory management, I/O subsys-
tem, process scheduler, file system, network stack, etc.).

Table 1 lists and describes the benchmarks. Most of the
benchmarks are open source and can be duplicated eas-
ily by others.

2.2 Test Platforms

Currently we have a mix of Itanium R© SMP machines
and Xeon R© SMP machines to serve as our test plat-
forms, with the configurations as listed below:

4P Intel R© ItaniumTM 2 processor (1.6Ghz)
4P Dual-Core Intel R© Itanium R© processor (1.5Ghz)
2P Intel R© Xeon R© MP processor (3.4Ghz)
4P Dual-Core Intel R© Xeon R© MP processor (3.0Ghz)
2P Xeon R© CoreTM2 Duo processor (2.66Ghz)
2P Xeon R© CoreTM2 Quad processor (2.40Ghz)

2.3 Test Harness

We needed a test harness to automate the regular exe-
cution of benchmarks on test machines. Even though
there were test harnesses from the Scalable Test Plat-
form (http://sourceforge.net/projects/stp)
and Linux Test Project (http://ltp.sourceforge.
net), they did not fully meet all of our testing require-
ments. We elected to create a set of shell scripts for our

Short Description
name

Kbuild Measures the speed of Linux ker-
nel compilation.

Reaim7 Stresses the scheduler with up to
thousands of threads each generat-
ing load on memory and I/O.

Volanomark A chatroom benchmark to test
java thread scheduling and net-
work scalability.

Netperf Measures the performance of
TCP/IP network stack.

Tbench Load testing of TCP and process
scheduling.

Dbench A stress test emulating Netbench
load on file system.

Tiobench Multithread IO subsystem perfor-
mance test.

Fileio Sysbench component for file I/O
workloads.

Iozone Tests the file system I/O under dif-
ferent ratio of file size to system
memory.

Aiostress Tests asynchronous I/O perfor-
mance on file system and block
device.

Mmbench Memory management perfor-
mance benchmark.

Httperf Measures web server perfor-
mance; also measures server
power usage information under
specific offered load levels.

Cpu-int/fp An industry standard CPU inten-
sive benchmark suite on integer
and floating point operations.

Java-business An industry standard benchmark
to measure server-side Java*, tests
scheduler scalability.

Table 1: Performance benchmark suite

test harness, which was easy to customize for adding the
capabilities we need.

Our test harness provides a list of services that are item-
ized below:

• It can detect and download new Linux kernels from
kernel.orgwithin 30 minutes after release, and
then automatically install the kernel and initiate
benchmark suites on multiple test platforms.

2007 Linux Symposium, Volume One • 95

• It can test patches on any kernel and compare re-
sults with other kernel version.

• It can locate a patch that causes a performance
change by automating the cycle of git-bisect, ker-
nel install for filtering out the relevant patch.

• It uploads results from benchmark runs for differ-
ent kernels and platforms into a database. The
results and corresponding profile data can be ac-
cessed with a friendly web interface.

• It can queue tasks for a test machine so that differ-
ent test runs can be executed in sequence without
interference.

• It can invoke a different mix of benchmarks and
profiling tools.

We use a web interface to allow easy comparison of
results from multiple kernels and review of profiling
data. The results may be rerun using the web inter-
face to confirm a performance change, or automated git-
bisect command be initiated to locate the patch respon-
sible. The results are published in external site (http:
//kernel-perf.sourceforge.net) after they have
been reviewed.

3 Performance Changes

During the course of the project, our systematic testing
has revealed performance issues in the kernels. A partial
list of the performance changes are listed in Table 2. We
will go over some of those in details.

3.1 Disk I/O

3.1.1 MPT Fusion Driver Bug

There was a sharp drop in disk performance for the
2.6.13 kernel (see Figure 3). Initially we thought that
it was related to the change in system tick from 1000Hz
to 250Hz. After further investigation, it was found that
the change in Hz actually revealed a race condition bug
in the MPT fusion driver’s initialization code.

Our colleague Ken Chen found that there were two
threads during driver initialization interfering with each

other: one for domain validation, and one for host con-
troller initialization. When there were two host con-
trollers, while the second host controller was brought
up, the initialization thread temporarily disabled the
channel for the first controller. However, domain vali-
dation was in progress on first channel in another thread
(and possibly running on another CPU). The effect of
disabling the first channel during in-progress domain
validation was that it caused all subsequent domain val-
idation commands to fail. This resulted in the lowest
possible performance setting for almost all disks pend-
ing domain validation. Ken provided a patch and cor-
rected the problem.

-100

-80

-60

-40

-20

 0

 20

2.6.15-rc5
2.6.15-rc4
2.6.15-rc3
2.6.15-rc2
2.6.15-rc1
2.6.14
2.6.14-rc5
2.6.14-rc4
2.6.14-rc3
2.6.14-rc2
2.6.14-rc1
2.6.13
2.6.13-rc7
2.6.13-rc6
2.6.13-rc5
2.6.13-rc4
2.6.13-rc3
2.6.13-rc2
2.6.13-rc1
2.6.12
2.6.12-rc6
2.6.12-rc5
2.6.12-rc4
2.6.12-rc3
2.6.9

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

(%
)

Kernel

IOZone write throughput

Figure 3: MPT Fusion driver bug

3.2 Scheduler

3.2.1 Missing Inter-Processor Interrupts

During the 2.6.15 time frame, there was a 60% decrease
in Volanomark throughput on Itanium R© test machines
(see Figure 4). It was caused by a patch that caused
rescheduled Inter Processor Interrupts (IPI) not to be
sent from resched_task(), ending up delaying the
rescheduling task until next timer tick, thus causing the
performance regression. The problem was quickly re-
ported and corrected by our team.

3.2.2 Scheduler Domain Corruption

During the testing of benchmark Httperf, we noticed
unusual variation on the order of 80% in the response
time of the web server under test for the 2.6.19 ker-
nel. This was caused by a bug introduced when the

96 • Keeping Kernel Performance from Regressions

Kernel Patch causing change Effect
2.6.12-rc4 noop-iosched: kill O(N) merge scan. Degraded IO throughput for noop IO sched-

uler by 32%.
2.6.13-rc2 Selectable Timer Interrupt Frequency of 100,

250, and 1000 HZ.
Degraded IO throughput by 43% due to MPT
Fusion driver.

2.6.15-rc1 sched: resched and cpu_idle rework. Degraded performance of Netperf (-98%) and
Volanomark (-58%) on ia64 platforms.

2.6.15-rc2 ia64: cpu_idle performance bug fix Fixed Volanomark and netperf degradations
in 2.6.15-rc1.

2.6.15-rc5 [SCSI] mptfusion : driver performance fix. Restored fileio throughput.
2.6.16-rc1 x86_64: Clean up copy_to/from_user. Re-

move optimization for old B stepping
Opteron.

Degraded Netperf by 20% on Xeon R© MP.

2.6.16-rc3 x86_64: Undid the earlier changes to remove
unrolled copy/memset functions for Xeon R©

MP.

Reverted the memory copy regression in
2.6.16-rc1.

2.6.18-rc1 lockdep: irqtrace subsystem, move ac-
count_system_vtime() calls into softirq.c.

Netperf degraded by 3%.

2.6.18-rc4 Reducing local_bh_enable/disable overhead
in irq trace.

Netperf performance degradation in 2.6.18-
rc1 restored.

2.6.19-rc1 mm: balance dirty pages Now that we can
detect writers of shared mappings, throttle
them.

IOzone sequential write dropped by 55%.

2.6.19-rc1 Send acknowledge each 2nd received seg-
ment.

Volanomark benchmark throughput reduced
by 10%.

2.6.19-rc1 Let WARN_ON return the condition. Tbench degraded by 14%.
2.6.19-rc2 Fix WARN_ON regression. Tbench performance restored.
2.6.19-rc2 elevator: move the back merging logic into

the elevator core
Noop IO scheduler performance in 2.6.18-rc4
fixed and restored to 2.6.12-rc3 level

Table 2: Linux kernel performance changes seen by test suites

-50

-40

-30

-20

-10

 0

 10

 20

 30

2.6.16-rc6
2.6.16-rc5
2.6.16-rc4
2.6.16-rc3
2.6.16-rc2
2.6.16-rc1
2.6.15
2.6.15-rc7
2.6.15-rc6
2.6.15-rc5
2.6.15-rc4
2.6.15-rc3
2.6.15-rc2
2.6.15-rc1
2.6.14
2.6.14-rc5
2.6.14-rc4
2.6.14-rc3
2.6.14-rc2
2.6.14-rc1
2.6.13
2.6.13-rc7
2.6.13-rc6
2.6.13-rc5
2.6.13-rc4
2.6.13-rc3
2.6.13-rc2
2.6.13-rc1
2.6.12
2.6.12-rc6
2.6.12-rc5
2.6.12-rc4
2.6.12-rc3
2.6.9

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

(%
)

Kernel

Volanomark

Figure 4: IPI scheduling bug

cpu_isolated_map structure was designated as init
data. However, the structure could be accessed again
after the kernel was initialized and booted when a re-
build of sched_domain was triggered by setting the
sched_mc_power_savings policy. Subsequently, the
corrupted sched_domain caused bad load-balancing
behavior and caused erratic response time.

3.2.3 Rotating Staircase Dead Line Scheduler

The recently proposed RSDL (Rotating Staircase Dead
Line) scheduler has generated a lot of interest due to its
elegant handling of interactivity. We put RSDL 0.31 to
test and found that for Volanomark, there is a big 30%
to 80% slowdown. It turned out that the yield semantics
in RSDL 0.31 were too quick to activate the yielding
process again. RSDL 0.33 changed the yield semantics
to allow other processes a chance to run, and the perfor-
mance recovered.

2007 Linux Symposium, Volume One • 97

3.3 Memory Access

3.3.1 Copy Between Kernel and User Space

During the 2.6.15-rc1 timeframe, we detected a drop up
to 30% in Netperf’s throughput on older Xeon R© pro-
cessor MP-based machines (see Figure 5). This was
caused by a switch in the copy between user and ker-
nel space to use repeat move string instructions which
are slower than loop-based copy on Xeon R© processor
MP. This problem was corrected quickly. Later, when

-25

-20

-15

-10

-5

 0

 5

 10

2.6.20

2.6.19

2.6.18

2.6.17

2.6.16

2.6.16-rc6

2.6.16-rc5

2.6.16-rc4

2.6.16-rc3

2.6.16-rc2

2.6.16-rc1

2.6.15

2.6.14

2.6.13

2.6.12

2.6.9

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

(%
)

Kernel

TCP-streaming throughput

Figure 5: Xeon R© processor MP’s Netperf TCP-
streaming performance made worse using string copy
operations

the newer CoreTM2 Duo based Xeon R©s became available
with efficient repeat move string instructions, a switch
to use string instructions in the 2.6.19 kernel actually
greatly improved throughput. (see Figure 6).

3.4 Miscellaneous

3.4.1 Para-Virtualization

The para-virtualization option was introduced in the
2.6.20 time frame, and we detected a 3% drop in Net-
perf and Volanomark performance. We found that
Para-virtualization has turned off VDSO, causing int
0x80 rather than the more efficient sysenter to be
used for system calls, causing the drop.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2.6.20

2.6.19

2.6.19-rc6

2.6.19-rc5

2.6.19-rc4

2.6.19-rc3

2.6.19-rc2

2.6.19-rc1

2.6.18

2.6.17

2.6.16

2.6.15

2.6.14

2.6.13

2.6.12

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

(%
)

Kernel

TCP-streaming throughput

Figure 6: Xeon R© CoreTM2 Duo’s Netperf TCP-
streaming performance improved with string copy op-
erations

3.4.2 IRQ Trace Overhead

When the IRQ trace feature was intro-
duced in 2.6.18-rc1, it unconditionally added
local_irq_save(flags) and local_irq_
restore(flags) when enabling/disabling bottom
halves. This additional overhead caused a 3% regres-
sion in Netperf’s UDP streaming tests, even when the
IRQ tracing feature was unused. This problem was
detected and corrected.

3.4.3 Cache Line Bouncing

There was a 16% degradation of tbench in 2.6.18-rc14
(see Figure 7) We found that a change in the code trig-
gered an inappropriate object code optimization in older
gcc 3.4.5, which turned a rare write into a global vari-
able into an always write event to avoid a conditional
jump. As a result, cache line bouncing among the cpus
increased by 70% from our profiling. A patch was later
merged by Andrew into the mainline to sidestep this gcc
problem.

4 Test Methodology

4.1 Test Configuration

We tried to tune our workloads so they could sat-
urate the system as much as possible. For a pure

98 • Keeping Kernel Performance from Regressions

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

2.6.19-git5
2.6.19-rc1
2.6.19-rc6-git10
2.6.19-rc6-git2
2.6.19-rc6
2.6.19-rc5
2.6.19-rc4-git9
2.6.19-rc4
2.6.19-rc3-git5
2.6.19-rc3
2.6.19-rc2-git6
2.6.19-rc2
2.6.19-rc1-git3
2.6.19-rc1
2.6.18-git14
2.6.18-git2
2.6.18
2.6.18-rc7-git1
2.6.18-rc7
2.6.18-rc6-git3
2.6.18-rc6
2.6.18-rc5-git6
2.6.18-rc5
2.6.18-rc4-git2
2.6.18-rc4-git1
2.6.18-rc4
2.6.18-rc3
2.6.18-rc2-git1
2.6.18-rc2
2.6.18-rc1-git17

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

(%
)

Kernel

Tbench

Figure 7: Tbench performance problem caused by cache
line bouncing

CPU-bound workload, the CPU utilization was close
to 100%. However for a workload involving I/O,
the system utilization was limited by the time wait-
ing for file and network I/O. The detailed bench-
mark options for each test are described on our
website (http://kernel-perf.sourceforge.
net/about_tests.php). Table 3 gives a sense of
the average loading for different benchmarks. The load-
ing profile is the standard one from vmstat.

For the disk-bound test workload, we reduced the
amount of main memory booted to only 1GB (that’s
only a quarter to one-eighth of the memory of our sys-
tem). The test file size was a few times of the size of
memory booted. This made the actual effect of I/O dom-
inant and reduced the effect of file I/O cache.

Name % cpu % io % mem % user % sys
Reaim7 100 1 68 85 15
Aiostress 1 36 83 0 1
Dbench 37 28 95 1 36
Fileio 1 14 100 0 1
IOzone 1 23 99 0 1
Kbuild 79 9 90 74 5
Mmbench 2 66 99 0 2
Netperf 40 0 34 2 38
Cpu-int/fp 100 0 75 100 0
Java-business 39 0 89 39 0
tbench 97 0 41 5 92
Volanomark 99 0 96 45 54

Table 3: Sample system loading under benchmarks

4.2 Dealing with Test Variation

Variations in performance measurements are part of any
experiment. To some extent the starting state of the sys-
tem, like cpu cache, file I/O cache, TLB, and disk ge-
ometry, played a role. However, a large variation makes
the detection of change in performance difficult.

To minimize variation, we do the following:

• Start tests with a known system state;

• Utilize a warm-up workload to bring the system to
a steady state;

• Use a long run time and run the benchmark mul-
tiple times to get averages of performance where
possible.

To get our system in known state, we rebooted our sys-
tem before our test runs. We also reformatted the disk
and installed the test files. This helped to ensure the lay-
out of the test file and the location of journal on the disk
to remain the same for each run.

We also ran warm-up workloads before the actual
benchmark run. This helped bring the CPU caches,
TLB, and file I/O cache into a steady state before the
actual testing.

The third approach we took was to either run the bench-
mark for a long time or to repeat the benchmark run mul-
tiple times and measure the average performance. Short
tests like Kbuild, when run repeatedly for 15 times in
our test run, got a good average value with standard de-
viation below 1%. The average performance value has
reduced variance and resembles more closely a well be-
haved Gaussian distribution [5]. Single run results for
some benchmarks are far from a Gaussian distribution.
One such example is Tbench.

Figure 8 superimposes the distribution of throughput
from a single run of Tbench versus a normal distribu-
tion with the same standard deviation. It can be seen
that the distribution from a single benchmark run is bi-
modal and asymmetric. Therefore using a single mea-
surement for comparison is problematic with the issues
raised in [1-4]. For these cases, a more accurate per-
formance comparison is made by using average values,
which resemble much more closely a normal distribu-
tion and have smaller deviations.

2007 Linux Symposium, Volume One • 99

 0

 5

 10

 15

 20

 25

 30

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fr
eq

ue
nc

y
(%

)

Deviation from Average

normal dist.
tbench throughput dist.

Figure 8: Tbench throughput distribution

Sometimes we can better understand the underlying rea-
son for performance variation by correlating the perfor-
mance variation with changes in other profiling data.
For example, with Tbench, context switch has a 0.98
correlation coefficient with the throughput (see Fig-
ure 9). This gives an indication that the variation in
context switch rate is highly correlated with the varia-
tion in throughput. Another example is Kbuild (see Fig-
ure 10), where we find the number of merged IO blocks
had a –0.96 correlation coefficient with the kernel com-
pile time, showing that the efficiency of disk I/O opera-
tions in merging IO blocks is critical to throughput.

This kind of almost one-to-one correlation between
throughput and profiling data can be a big help to check
whether there is a real change in system behavior. Even
though there are variations in throughput from each run,
the ratio between the throughput and profile data should
be stable. So when comparing two kernels, if there is a
significant change in this ratio, we will know that there
are significant changes in the system behavior.

We have also performed a large number of runs of
benchmarks on a baseline kernel to establish the bench-
mark variation value. Both max and min values are
saved in a database to establish a confidence interval for
a benchmark. This value is used for results compari-
son: if the difference in measured performance values
is more than the confidence interval, then there is a sig-
nificant change in the kernel performance that should
be looked into. In general, disk-I/O-bound benchmarks
have much higher variation, making it much harder to
detect small changes in performance in them.

 1380

 1390

 1400

 1410

 1420

 1430

 1440

 1450

 1460

 1470

 535000 540000 545000 550000 555000 560000 565000 570000 575000 580000

T
hr

ou
gh

pu
t

Number of Context Switches

Figure 9: Tbench throughput vs. context switches

 76.5

 77

 77.5

 78

 78.5

 79

 79.5

 80

 150 160 170 180 190 200 210 220 230 240 250 260

R
un

 T
im

e
(s

ec
)

Number of Merged Writes

Figure 10: Kbuild runtime vs. number of merged IO
blocks

4.3 Profiling

Our test harness collected profiling data during bench-
mark runs with a set of profiling tools: vmstat,
iostat, sar, mpstat, ps, and readprofile.
The profiling data provided information about the load
on the CPU from user applications and the activities of
the kernel’s subsystems: scheduler, memory, file, net-
work, and I/O. Information about I/O queue length and
hot kernel functions had been useful for us in locating
bottlenecks in the kernel and to investigate the cause of
performance changes. The waiting time from vmstat
can be combined with wchan information from ps
to gain insight to time spent by processes waiting for
events. Table 4 provides a profile of waited events for
a run snapshot of Aiostress and Reaim7 benchmarks as
an example.

100 • Keeping Kernel Performance from Regressions

Aiostress Reaim7
1209 pause 18075 pause

353 io_getevents 8120 wait
13 get_write_access 1218 exit
12 sync_buffer 102 pipe_wait

6 stext 62 start_this_handle
3 sync_page 1 sync_page
1 congestion_wait 2 sync_page
1 get_request_wait 2 cond_resched

Table 4: The events waited by Aiostress and Reaim7

4.4 Automated Git-Bisect

The git bisect utility is a powerful tool to locate the patch
responsible for a change in behavior of the kernel from
a set of patches. However, manually running it to bisect
a large patch-set repeatedly to find a patch is tedious.
One has to perform the steps of bisecting the patch set
into two, rebuild, install, and reboot the kernel for one
patch set, run the benchmark to determine if the patch
set causes an improvement or degradation to the perfor-
mance, and determine which subset of the two bisected
patch sets contains the patch responsible for the change.
Then the process repeats again on a smaller patch set
containing the culprit. The number of patches between
two rc releases are in the hundreds, and often 8 to 10
repetitions are needed. We added capability in our test
harness to automate the bisect process and benchmark
run. It is a very useful tool to automatically locate the
patch responsible for any performance change in O(log
n) iterations.

4.5 Results Presentation

After our benchmark runs have been completed, a wrap-
per script collects the output from each benchmark
and puts it into a ‘comma separated value’ format
file that is parsed into a MySQL* database. The re-
sults are accessible through an external web site http:
//kernel-perf.sourceforge.net as a table and
chart of percentage change of the performance com-
pared to a baseline kernel (selected to be 2.6.9 for older
machines, and 2.6.18 for newer ones). Our internal web
site shows additional runtime data, kernel config file,
profile results, and a control to trigger a re-run or to per-
form a git bisect.

4.6 Performance Index

It is useful to have a single performance index that sum-
marizes the large set of results from all the benchmarks
being run. This approach has been advocated in the liter-
ature (see [1]-[4]). This is analogous to a stock market
index, which gives a sense of the overall market trend
from the perspective of individual stock, each weighted
according to a pre-determined criterion.

Benchmark
Number

of
subtests

Deviation
%

Weight
per

metric
Reaim7 1 0.46 2
Aiostress 8 12.8 0.01
Cpu-int/fp 2 0.6 1
Dbench 1 11.3 0.1
fileio 1 11.8 0.1
Iozone 21 14.7 0.01
Kbuild 1 1.4 1
Mmbench 1 4.9 0.2
Netperf 7 1.6 0.15
Java-Business 1 0.6 1
tbench 1 12.7 0.5
Tiobench 9 11.4 0.01
Volanomark 1 0.8 1

Table 5: Number of subtests, variations weights on sub-
tests for each benchmark

We use the geometric mean of ratios of performance
metric to its baseline value of each benchmark as a per-
formance index, as suggested in [2]. We weigh each
benchmark according to its reliability (i.e., benchmarks
with less variance are weighed more heavily). If a
benchmark has a large number of subtests producing
multiple metrics, we put less weight on each metric so
the benchmark will not be over-represented in the per-
formance index. Table 5 shows the weights being cho-
sen for some of our benchmarks.

We use a weighted version of the geometric mean to
aid us in summarizing the performance of the kernel.
This weighted geometric index, though somewhat sub-
jective, is a very useful tool to monitor any change in
overall kernel performance at a glance and help guide
us to the specific benchmarked component causing the
change. Figure 11 shows the performance index pro-
duced over our benchmark suite. It is interesting to note
that from the limited perspective of the benchmark suite

2007 Linux Symposium, Volume One • 101

-6

-5

-4

-3

-2

-1

 0

 1
2.6.20
2.6.20-rc7
2.6.20-rc6
2.6.20-rc5
2.6.20-rc4
2.6.20-rc3
2.6.20-rc2
2.6.20-rc1
2.6.19
2.6.19-rc6
2.6.19-rc5
2.6.19-rc4
2.6.19-rc3
2.6.19-rc2
2.6.19-rc1
2.6.18
2.6.18-rc7
2.6.18-rc6
2.6.18-rc5
2.6.18-rc4
2.6.18-rc3
2.6.18-rc2
2.6.18-rc1
2.6.17
2.6.17-rc6
2.6.17-rc5
2.6.17-rc4
2.6.17-rc3
2.6.17-rc2
2.6.17-rc1
2.6.16
2.6.16-rc6
2.6.16-rc5
2.6.16-rc4
2.6.16-rc3
2.6.16-rc2
2.6.16-rc1
2.6.15
2.6.15-rc7
2.6.15-rc6
2.6.15-rc5
2.6.15-rc4
2.6.15-rc3
2.6.15-rc2
2.6.15-rc1
2.6.14
2.6.14-rc5
2.6.14-rc4
2.6.14-rc3
2.6.14-rc2
2.6.14-rc1
2.6.13
2.6.13-rc7
2.6.13-rc6
2.6.13-rc5
2.6.13-rc4
2.6.13-rc3
2.6.13-rc2
2.6.13-rc1
2.6.12
2.6.12-rc6
2.6.12-rc5
2.6.12-rc4
2.6.12-rc3
2.6.9

Pe
rc

en
t C

ha
ng

e
fr

om
 B

as
el

in
e

Figure 11: Weighted geometric mean performance for all benchmarks

we run regularly, the index for the 2.6 kernel series has
been trending upwards.

5 Conclusion

Our project set up the infrastructure to systematically
test every kernel release candidate across multiple plat-
forms and benchmarks, and also made the test data
available to the community on the project website,
http://kernel-perf.sourceforge.net. As a re-
sult, we have been able to catch some kernel regressions
quickly, and worked with the community to fix them.
However, with rapid changes in the kernel, the limited
coverage from our regular benchmark runs could un-
cover only a portion of performance regressions. We
hope this work will encourage more people to do regu-
lar and systematic testing of the Linux kernel, and help
prevent performance problems from propagating down-
stream into distribution kernels. This will help to solid-
ify Linux’s position as a world-class enterprise system.

Acknowledgments

The authors are grateful to our previous colleagues Ken
Chen, Rohit Seth, Vladimir Sheviakov, Davis Hart, and
Ben LaHaise, who were instrumental in the creation
of the project and its execution. A special thanks to
Ken, who was a primary motivator and contributor to
the project.

Legal

This paper is copyright c© 2007 by Intel. Redistribution rights
are granted per submission guidelines; all other rights are re-
served.

*Other names and brands may be claimed as the property of
others.

References

[1] J.E. Smith, “Characterizing Computer
Performance with a Single Number,”
Communications of ACM, 31(10):1202–1206,
October 1988.

[2] J.R. Mashey, “War of the Benchmark Means:
Time for a Truce” ACM SIGARCH Computer
Architecture News. Volume 32, Issue 4
(September 2004), pp. 1–14. ACM Press, New
York, NY, USA.

[3] J.R. Mashey, “Summarizing Performance is No
Mean Feat” Workload Characterization
Symposium, 2005. Proceedings of the IEEE
International. 6–8 Oct. 2005 Page(s): 1. Digital
Object Identifier 10.1109/IISWC.2005.1525995

[4] L. John, “More on finding a Single Number to
indicate Overall Performance of a Benchmark
Suite,” Computer Architecture News, Vol. 32, No
1, pp. 3–8, March 2004.

102 • Keeping Kernel Performance from Regressions

[5] D.J. Lilja, “Measuring computer performance: a
practitioner’s guide,” Cambridge University Press,
2005.

Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

