
Extreme High Performance Computing or Why Microkernels Suck

Christoph Lameter
sgi

clameter@sgi.com

Abstract

One often wonders how well Linux scales. We fre-
quently get suggestions that Linux cannot scale because
it is a monolithic operating system kernel. However, mi-
crokernels have never scaled well and Linux has been
scaled up to support thousands of processors, terabytes
of memory and hundreds of petabytes of disk storage
which is the hardware limit these days. Some of the
techniques used to make Linux scale were per cpu ar-
eas, per node structures, lock splitting, cache line op-
timizations, memory allocation control, scheduler opti-
mizations and various other approaches. These required
significant detail work on the code but no change in the
general architecture of Linux.

The presentation will give an overview of why Linux
scales and shows the hurdles microkernels would have
to overcome in order to do the same. The presentation
will assume a basic understanding of how operating sys-
tems work and familiarity with what functions a kernel
performs.

1 Introduction

Monolithic kernels are in wide use today. One wonders
though how far a monolithic kernel architecture can be
scaled, given the complexity that would have to be man-
aged to keep the operating system working reliably. We
ourselves were initially skeptical that we could go any
further when we were first able to run our Linux kernel
with 512 processors because we encountered a series of
scalability problems that were due to the way the op-
erating system handled the unusually high amounts of
processes and processors. However, it was possible to
address the scalability bottlenecks with some work us-
ing a variety of synchronization methods provided by
the operating system and we were then surprised to only
encounter minimal problems when we later doubled the
number of processors to 1024. At that point the primary

difficulties seemed to shift to other areas having more
to do with the limitation of the hardware and firmware.
We were then able to further double the processor count
to two thousand and finally four thousand processors
and we were still encountering only minor problems that
were easily addressed. We expect to be able to handle
16k processors in the near future.

As the number of processors grew so did the amount of
memory. In early 2007, machines are deployed with 8
terabytes of main memory. Such a system with a huge
amount of memory and a large set of processors creates
the high performance capabilities in a traditional Unix
environment that allows for the running of traditional
applications, avoiding major efforts to redesign the ba-
sic logic of the software. Competing technologies, such
as compute clusters, cannot offer such an environment.
Clusters consist of many nodes that run their own oper-
ating systems whereas scaling up a monolithic operating
system has a single address space and a single operating
system. The challenge in clustered environments is to
redesign the applications so that processing can be done
concurrently on nodes that only communicate via a net-
work. A large monolithic operating system with lots of
processors and memory is easier to handle since pro-
cesses can share memory which makes synchronization
via Unix shared memory possible and data exchange
simple.

Large scale operating systems are typically based on
Non-Uniform Memory Architecuture (NUMA) technol-
ogy. Some memory is nearer to a processor than other
memory that may be more distant and more costly to ac-
cess. Memory locality in such a system determines the
overall performance of the applications. The operating
system has a role in that context of providing heuristics
in order to place the memory in such a way that memory
latencies are reduced as much as possible. These have to
be heuristics because the operating system cannot know
how an application will access allocated memory in the
future. The access patterns of the application should ide-

• 251 •



252 • Extreme High Performance Computing or Why Microkernels Suck

ally determine the placement of data but the operating
system has no way of predicting application behavior.
A new memory control API was therefore added to the
operating system so that applications can set up memory
allocation policies to guide the operating system in allo-
cating memory for the application. The notion of mem-
ory allocation control is not standardized and so most
contemporary programming languages have no ability
to manage data locality on their own.1 Libraries need to
be provided that allow the application to provide infor-
mation to the operating system about desirable memory
allocation strategies.

One idea that we keep encountering in discussions of
these large scale systems is that Micro-kernels should
allow us to handle the scalability issues in a better way
and that they may actually allow a better designed sys-
tem that is easier to scale. It was suggested that a micro-
kernel design is essential to manage the complexity of
the operating systems and ensure its reliable operation.
We will evaluate that claim in the following sections.

2 Micro vs. Monolithic Kernel

Microkernels allow the use of the context control primi-
tives of the processor to isolate the various components
of the operating system. This allows a fine grained de-
sign of the operating system with natural APIs at the
boundaries of the subsystems. However, separate ad-
dress spaces require context switches at the boundaries
which may create a significant overhead for the proces-
sors. Thus many micro kernels are compromises be-
tween speed and the initially envisioned fine grained
structure (a hybrid approach). To some extent that prob-
lem can be overcome by developing a very small low
level kernel that fits into the processor cache (for exam-
ple L4) [11], but then we no longer have an easily pro-
grammable and maintainable operating system kernel.
A monolithic kernel usually has a single address space
and all kernel components are able to access memory
without restriction.

2.1 IPC vs. function call

Context switches have to be performed in order to iso-
late the components of a microkernel. Thus commu-

1There are some encouraging developments in this area with
Unified Parallel C supporting locality information in the language
itself. See Tarek, [2].

nication between different components must be con-
trolled through an Inter Process Communication mech-
anism that incurs similar overhead to a system call in
monolithic kernel. Typically microkernels use message
queues to communicate between different components.
In order to communicate between two components of a
microkernel the following steps have to be performed:

1. The originating thread in the context of the orig-
inating component must format and place the re-
quest (or requests) in a message queue.

2. The originating thread must somehow notify the
destination component that a message has arrived.
Either interrupts (or some other form of signal-
ing) are used or the destination component must be
polling its message queue.

3. It may be necessary for the originating thread to
perform a context switch if there are not enough
processors around to continually run all threads
(which is common).

4. The destination component must now access the
message queue and interpret the message and then
perform the requested action. Then we potentially
have to redo the 4 steps in order to return the result
of the request to the originating component.

A monolithic operating system typically uses function
calls to transfer control between subsystems that run in
the same operating system context:

1. Place arguments in processor registers (done by the
compiler).

2. Call the subroutine.

3. Subroutine accesses registers to interpret the re-
quest (done by compiler).

4. Subroutine returns the result in another register.

From the description above it is already evident that the
monolithic operating system can rely on much lower
level processor components than the microkernel and
is well supported by existing languages used to code
for operating system kernels. The microkernel has to



2007 Linux Symposium, Volume One • 253

manipulate message queues which are higher level con-
structs and—unlike registers—cannot be directly modi-
fied and handled by the processor.2

In a large NUMA system an even more troubling issue
arises: while a function call uses barely any memory
on its own (apart from the stack), a microkernel must
place the message into queues. That queue must have a
memory address. The queue location needs to be care-
fully chosen in order to make the data accessible in a fast
way to the other operating system component involved
in the message transfer. The complexity of making the
determination where to allocate the message queue will
typically be higher than the message handling overhead
itself since such a determination will involve consult-
ing system tables to figure out memory latencies. If
the memory latencies are handled by another compo-
nent of the microkernel then queuing a message may
require first queuing a message to another subsystem.
One may avoid the complexity of memory placement in
small configurations with just a few memory nodes but
in a very large system with hundreds of nodes the dis-
tances are a significant performance issue. There is only
a small fraction of memory local to each processor and
so it is highly likely that a simple minded approach will
cause excessive latencies.

It seems that some parts of the management of memory
latency knowledge cannot be handled by a subsystem
but each subsystem of the microkernel must include the
necessary logic to perform some form of advantageous
data placement. It seems therefore that each microker-
nel component must at least contain pieces of a memory
allocator in order to support large scale memory archi-
tectures.

2.2 Isolation vs. integration of operating system
components

The fundamental idea of a microkernel is to isolate com-
ponents whereas the monolithic kernel is integrating all
the separate subsystems into one common process envi-
ronment. The argument in favor of a microkernel is that
it allows a system to be fail safe since a failure may be
isolated into one system component.

2There have been attempts to develop processors that handle
message queues but no commercially viable solution exists. In con-
temporary High Performance Computing messages based interfaces
are common for inter process communication between applications
running on different machines.

However, the isolation will introduce additional com-
plexities. Operating systems usually service applica-
tions running on top of them. The operating system
must track the state of the application. A failure of one
key component typically includes also the loss of rele-
vant state information about the application. Some mi-
crokernel components that track memory use and open
files may be so essential to the application that the ap-
plication must terminate if either of these components
fails. If one wanted to make a system fail safe in a mi-
crokernel environment then additional measures, such
as check pointing, may have to be taken in order to
guarantee that the application can continue. However,
the isolation of the operating system state into different
modules will make it difficult to track the overall system
state that needs to be preserved in order for check point-
ing to work. The state information is likely dispersed
among various separate operating system components.

The integration into a single operating system process of
a monolithic operating system enables access to all state
information that the operating system keeps on a certain
application. This seems to be a basic requirement in or-
der to enable fail safe mechanisms like check pointing.
Isolation of operating system components may actually
make reliable systems more difficult to realize.

Performance is also a major consideration in favor of
integration. Isolation creates barriers for accessing op-
erating system state information that may be required
in order for the operating system to complete a certain
task. Integration allows access to all state information
by any operating system component.

Monolithic kernels today are complex. An operating
system may contain millions of lines of code (Linux
currently has 1.4 million lines). There is the impossi-
bility of auditing all that code in order to be sure that the
operating system stays secure. An approach that iso-
lates operating system components is certainly benefi-
cial to insure secure behavior of the components. In a
monolithic kernel methods have to be developed to au-
dit the kernel automatically or manually by review. In
the Linux kernel we have the example of a community
review network that keeps verifying large sections of the
kernel. Problems can be spotted early to secure the in-
tegrity of the kernel. However, such a process may be
only possible for community based code development
where a large number of developers is available. A sin-
gle company may not have the resources to keep up the
necessary ongoing review of source code.



254 • Extreme High Performance Computing or Why Microkernels Suck

2.3 Modularization

Modularization is a mechanism to isolate operating sys-
tem components that may also occur in monolithic ker-
nels. In microkernels this is the prime paradigm and
modularization results in modules with a separate pro-
cess state, a separate executable and separate source
code. Each component can be separately maintained
and built. The strong modularization usually does not
work well for monolithic operating systems. Any part
of the operating system may refer to information from
another part. Mutual dependencies exist between many
of the components of the operating system. Therefore
the operating system kernel has to be built as a whole.
Separate executable portions can only be created by re-
stricting the operating system state information accessi-
ble by the separated out module.

What has been done in monolithic operating systems is
the implementation of a series of weaker modes of mod-
ularization at a variety of levels.

2.3.1 Source code modularization

There are a number of ways to modularize source code.
Code is typically arranged into a directory structure that
in itself imposes some form of modularization. Each
C source code piece can also be seen as a modular unit.
The validity of identifiers can be restricted to one source
module only (for example through the static attribute in
C). The scoping rules of the compiler may be used to
control access to variables. Hidden variables are still
reachable within the process context of the kernel but
there is no way to easily reach these memory locations
via a statement in C.

Header files are another typical use of modularization
in the kernel. Header files allow the exposing of a con-
trolled API to the rest of the kernel. The other compo-
nents must use that API in order to use the exported ser-
vices. In many ways this is similar to what the strict iso-
lation in a microkernel would provide. However, since
there is no limitation to message passing methods, more
efficient means of providing functionality may be used.
For example it is typical to define macros for perfor-
mance sensitive operations in order to avoid function
calls. Another method is the use of in line functions that
also avoid function calls. Monolithic kernels have more

flexible ways of modularization. It is not that the gen-
eral idea of modularization is rejected, it is just that the
microkernels carry the modularization approach too far.
The rigidity of microkernel design limits the flexibility
to design APIs that provide the needed performance.

2.3.2 Loadable operating system modules

One way for monolithic operating systems to provide
modularity is through loadable operating system mod-
ules. This is possible by exposing a binary kernel API.
The loaded modules must conform to that API and the
kernel will have to maintain compatibility to that API.
The loaded modules run in the process context of the
kernel but have only access to the rest of the kernel
through the exported API.

The problem with these approaches is that the API be-
comes outdated over time. Both the kernel and the
operating system modules must keep compatibility to
the binary API. Over time updated APIs will invari-
ably become available and then both components may
have to be able to handle different releases of the
APIs. Over time the complexity of API—and the nec-
essary workarounds to handle old versions of the API—
increases.

Some open source operating systems (most notably
Linux) have decided to not support stable APIs. Instead
each kernel version exports its own API. The API fluc-
tuates from kernel release to kernel release. The idea of
a stable binary API was essentially abandoned. These
approaches work because of source code availability.
Having no stable API avoids the work of maintaining
backward compatibility to previous APIs. Changes to
the API are easy since no guarantee of stability has been
given in the first place. If all the source code of the op-
erating system and of the loadable modules is available
then changes to the kernel APIs can be made in one pass
through all the different components of the kernel. This
will work as long as the API stays consistent within the
source of one kernel release but it imposed a mandate to
change the whole kernel on those submitting changes to
the kernel.

2.3.3 Loadable drivers

A loadable driver is simply a particular instance of a
loadable operating system module. The need to support



2007 Linux Symposium, Volume One • 255

loadable device drivers is higher though than the need to
support loadable components of the operating system in
general since operating systems have to support a large
quantity of devices that may not be in use in a particu-
lar machine on which the operating system is currently
running. Having loadable device drivers cuts down sig-
nificantly in terms of the size of the executable of the
operating system.

Loadable device drivers are supported by most operating
systems. Device drivers are a common source of failures
since drivers are frequently written by third parties with
limited knowledge about the operating system. How-
ever, even here different paradigms exist. In the Linux
community, third party writing of drivers is encouraged
but then community review and integration into the ker-
nel source itself is suggested. This usually means an
extended review process in which the third party device
driver is verified and updated to satisfy all the require-
ments of the kernel itself. Such a review process in-
creases the reliability and stability of device drivers and
reduces the failure rate of device drivers.

Another solution to the frequent failure of device drivers
is to provide a separate execution context for these de-
vice drivers (as done in some versions of the Microsoft
Windows operating system). That way failures of de-
vice drivers cannot impact the rest of the operating sys-
tem. In essence this is the same approach as suggested
by proponents of microkernels. Again these concepts
are used in a restricted context. Having a special op-
erating system subsystem that creates a distinct context
for device drivers is expensive. The operating system
already provides such contexts for user space. The logi-
cal path here would be to have device drivers that run in
user space thus avoiding the need to maintain a process
context for device drivers.

3 Techniques Used to Scale Monolithic Ker-
nels

Proper serialization is needed in order for monolithic
operating systems—such as Linux—to run on large pro-
cessor counts. Access to core memory structures needs
to be serialized in such a way that a large number of
processors can access and modify the data as needed.
Cache lines are the units in which a processor handles
data. Cache lines that are read-only are particularly im-
portant for performance since these cache lines can be

shared. A cache line that is written has first to be re-
moved from all processors that have a copy of that cache
line. It is therefore desirable to have data structures that
are not frequently written to.

The methods that were used to make Linux scale are
discussed in the following sections. They are basically
a variety of serialization methods. As the system was
scaled up to higher and higher processor counts a vari-
ety of experiments were performed to see how each data
structure needed to be redesigned and what type of se-
rialization would need to be employed in order to reach
the highest performance. Development of higher scal-
ability is an evolutionary approach that involves vari-
ous attempts to address the performance issues that were
discovered during testing.

3.1 Serialization

The Linux kernel has two basic ways of locking.
Semaphores are sleeping locks that require a user pro-
cess context. A process will go to sleep and the sched-
uler will run other processes if the sleeping lock has al-
ready been taken by another process. Spinlocks are used
if there is no process context. Without the process con-
text we can only repeatedly check if the lock has been
released. A spinlock may create high processor usage
because the processor is busy continually checking for
a lock to be released. Spinlocks are only used for locks
that have to be held briefly.

Both variants of locking come in a straight lock/unlock
and a reader/writer lock version. Reader/writer locks al-
lows multiple readers and only one writer. Lock/unlock
is used for simple exclusion.

3.2 Coarse vs. fine grained locking

The Linux kernel first became capable of supporting
multiprocessing by using a single large lock, the Big
Kernel Lock (BKL).3 Over time, coarse grained locks
were gradually replaced with finer grained locks. The
evolution of the kernel was determined by a contin-
ual stream of enhancements by various contributors to
address performance limitations that were encountered
when running common computing loads. For example

3And the BKL still exists for some limited purposes. For a the-
oretical discussion of such a kernel, see Chapter 9, “Master-Slave
Kernels,” in [12].



256 • Extreme High Performance Computing or Why Microkernels Suck

the page cache was initially protected by a single global
lock that covered every page. Later these locks did be-
come more fine grained. Locks were moved to the pro-
cess level and later to sections of the address space.
These measures gradually increased performance and
allowed Linux to scale better and better on successively
larger hardware configurations. Thereby it became pos-
sible to support more memory and more processors.4

A series of alternate locking mechanisms were pro-
posed. In addition to the four types of locking men-
tioned above, new locking schemes for special situations
were developed. For example seq_locks emerged as a
solution to the problem of reading a series of values to
determine system time. seq_locks do not block, they
simply repeat a critical section until sequence counters
taken at the beginning and end of the critical section in-
dicate that the result was consistent.5

Creativity to develop finer-grained locking that would
reach higher performance was targeted to specific areas
of the kernel that were particularly performance sensi-
tive. In some areas locking was avoided in favor of
lockless approaches using atomic operations and Read-
Copy-Update (RCU) based techniques. The evolution of
new locking approaches is by no means complete. In the
area of page cache locking there exists—for example—
a project to develop ways to do page cache accesses
and updates locklessly via a combination of RCU and
atomic operations [9].

The introduction of new locking methods involves var-
ious tradeoffs. Finer grained locking requires more
locks and more complex code to handle the locks the
right way. Multiple locks may be interacting in complex
ways in order to ensure that a data structure maintains
its consistency. The justification of complex locking
schemes became gradually easier as processor speeds
increased and memory speeds could not keep up. Pro-
cessors became able to handle complex locking proto-
cols using locking information that is mostly in the pro-
cessor caches to negotiate access to data in memory that
is relatively expensive to access.

3.3 Per cpu structures

Access to data via locking is expensive. It is therefore
useful to have data areas that do not require locking.

4See Chapter 10, “Spin-locked Kernels,” in [12].
5For more details on synchronization under Linux, see [5].

One such natural area is data that can only be accessed
by a single processor. If no other processors use the data
then no locking is necessary. This means that a thread of
execution needs to be bound to one single processor as
long as the per cpu data is used. The process can only be
moved to another processor if no per cpu data is used.

Linux has the ability to switch the rescheduling a ker-
nel thread off by disabling preemption. A counter of the
number of preemptions taken is kept to allow nested ac-
cess to multiple per cpu data structures. The execution
thread will only be rescheduled to run on other proces-
sors if the preemption counter is zero.

Each processor usually has its own memory cache hier-
archy. If a cache line needs to be written then it needs to
be first cleared from the caches of all other processors.
Thus dirtying a cache line is an expensive operation if
copies of a cache line exist in the caches of other pro-
cessors. The cost of dirtying a cache line increases with
the number of processors in the system and with the la-
tency to reach memory.

Per cpu data has performance advantages because it is
only accessed by a single cpu. There will be no need
to clear cache lines on other processors. Memory for
per cpu areas is typically set up early in the bootstrap
process of the kernel. At that point it can be placed in
memory that has the shortest latency for the processor
the memory is attached to. Thus memory accesses to per
cpu memory are usually the fastest possible. The per cpu
cache lines will stay in the cpu caches for a long time—
even if they are dirtied—since no other processor will
invalidate the cache lines by writing to per cpu variables
of another processor.6

A typical use of per cpu data is to manage informa-
tion about available local memory. If a process requires
memory and we can satisfy it from local memory that is
tracked via structures in per cpu memory then the per-
formance of the allocator will be optimal. Most of the
Linux memory allocators are structured in such a way to
minimize access to shared memory locations. Typically
it takes a significant imbalance in memory use for an
allocator to start assigning memory that is shared with
other processors. The sweet point in terms of scalability
is encountered when the allocator can keep on serving
only local memory.

6Not entirely true. In special situations (for example setup and
tear down of per cpu areas) such writes will occur.



2007 Linux Symposium, Volume One • 257

Another use of per cpu memory is to keep statistics.
Maintaining counters about resource use in the system
is necessary for the operating system to be able to adjust
to changing computing loads. However, these counters
should not impact performance negatively. For that rea-
son Linux keeps essential counters in per processor ar-
eas. These counters are periodically consolidated in or-
der to maintain a global state of memory in the system.

The natural use of per cpu data is the maintenance of
information about the processor stats and the environ-
ment of the processor. This includes interrupt handling,
where local memory can be found, timer information as
well as other hardware information.

3.4 Per node structures

A node in the NUMA world refers to a section of the
system that has its own memory, processors and I/O
channels. Per node structures are not as lightweight as
per cpu variables because multiple processors on one
node may use that per node information. Synchroniza-
tion is required. However, per node accesses stay within
the same hardware enclosure meaning that per node ref-
erences are to local memory which is more efficient than
accessing memory on other nodes. It is advantageous if
only local processors use the per node structures. But
other remote processors from other nodes may also use
any per node structures since we already need locks to
provide exclusion for the local processors. Performance
is acceptable as long as the use from remote processors
is not excessive.

It is natural to use per node structures to manage the
resources of such a NUMA node. Allocators typically
have first of all per cpu queues where some objects are
held ready for immediate access. However, if those per
cpu queues are empty then the allocators will fall back
to per node resources and attempt to fill up their queues
first from the local node and then—if memory gets tight
on one node—from remote nodes.

Performance is best if the accesses to per node structures
stay within the node itself. Off node allocation scenar-
ios usually involve a degradation in system performance
but that may be tolerable given particular needs of an ap-
plication. Applications that must access more memory
than available on one node will have to deal with the
effects of intensive off node memory access traffic. In

that case it may be advisable to spread out the mem-
ory accesses evenly via memory policies in order to not
overload a single node.

3.5 Lock locality

In a large system the location of locks is a performance
critical element. Lock acquisition typically means gain-
ing exclusive access to a cache line that may be heav-
ily contended. Some processors in the system may be
nearer to the cache line than others. These will have
an advantage over the others that are more remote. If
the cache line becomes heavily contended then pro-
cesses on remote nodes may not be able to make much
progress (starvation). It is therefore imperative that the
system implement some way to give each processor a
fair chance to acquire the cache line. Frequently such
an algorithm is realized in hardware. The hardware so-
lutions have turned out to be effective so far on the plat-
forms that support high processor counts. It is likely
though that commodity hardware systems now growing
into the space, earlier only occupied by the highly scal-
able platforms, will not be as well behaved. Recent dis-
cussions on the Linux kernel mailing lists indicate that
these may not come with the advanced hardware that
solve the lock locality issues. Software solutions to this
problem—like the hierarchical back off lock developed
by Zoran Radovic—may become necessary [10].

3.6 Atomic operations

Atomic operations are the lowest level synchroniza-
tion primitives. Atomic operations are used as building
blocks for higher level constructs. The locks mentioned
earlier are examples of such higher level synchroniza-
tion constructs that are realized using atomic operations.

Linux defines a rich set of atomic operations that can be
used to improvise new forms of locking. These opera-
tions include both bit operations and atomic manipula-
tion of integers. The atomic operation themselves can
be used to synchronize events if they are used to gener-
ate state transitions. However, the available state transi-
tions are limited and the set of state transitions observ-
able varies from processor to processor. A library of
widely available state transitions via atomic operations
has been developed over time. Common atomic opera-
tions must be supported by all processors supported by
Linux. However, some of the rarer breeds of processors



258 • Extreme High Performance Computing or Why Microkernels Suck

may not support all necessary atomic operations. Emu-
lation of some atomic operations using locking may be
necessary. Ironically the higher level constructs are then
used to realize low level atomic operations.

Atomic operations are the lowest level of access to
synchronization. Many of the performance critical
data structures in Linux are customarily modified using
atomic operations that are wrapped using macros. For
example the state of the pages in Linux must be modi-
fied in such a way. Kernel components may rely on state
transitions of these flags for synchronization.

The use of these lower level atomic primitives is com-
plex and therefore the use of atomic operations is typ-
ically reserved for performance critical components
where enough human resources are available to main-
tain such custom synchronization schemes. If one of
these schemes turns out to be unmaintainable then it is
usually replaced by a locking scheme based on higher
level constructs.

3.7 Reference counters

Reference counters are a higher level construct real-
ized in Linux using atomic operations. Reference coun-
ters use atomic increment and decrement instructions
to track the number of uses of an object in the kernel,
that way concurrent operation on objects can be per-
formed. If a user of the structure increments the ref-
erence counter then the object can be handled with the
knowledge that it cannot concurrently be freed. The
user of a structure must decrement the reference counter
when the object is no longer needed.

The state transition to and from zero is of particular im-
portance here since a zero counter is usually used to in-
dicate that no references exist anymore. If a reference
counter reaches zero then an object can be disposed and
reclaimed for other uses.

One of the key resources managed using reference coun-
ters are the operating system pages themselves. When a
page is allocated then it is returned from the page allo-
cator with a reference count of one. Over the lifetime
multiple references may be established to the page for
a variety of purposes. For example multiple applica-
tions may map the same memory page into their process
memory. The function to drop a reference on a page
checks whether the reference count has reached zero.

If so then the page is returned to the page allocator for
other uses.

One problem with reference counters is that they re-
quire write access to a cache line in the object. Con-
tinual establishment of new references and the drop-
ping of old references may cause cache line contention
in the same way as locking. Such a situation was re-
cently observed with the zero page on a 1024 proces-
sor machine. A threaded application began to read con-
currently from unallocated memory (which causes ref-
erences to the zero page to be established). It took a long
time for the application to start due to the cache line with
the reference counter starting to bounce back and forth
between the caches of various processors that attempted
to increment or decrement the counter. Removal of ref-
erence counting for the zero page resulted in dramatic
improvements in the application startup time.

The establishment of a reference count on an object
is usually not sufficient in itself because the reference
count only guarantees the continued existence of the ob-
ject. In order to serialize access to attributes of the ob-
ject, one still will have to implement a locking scheme.
The pages in Linux have an additional page lock that has
to be taken in order to modify certain page attributes.
The synchronization of page attributes in Linux is com-
plex due to the interaction of the various schemes that
are primarily chosen for their performance and due to
the fluctuation over time as the locking schemes are
modified.

3.8 Read-Copy-Update

RCU is yet another method of synchronization that be-
comes more and more widespread as the common lock-
ing schemes begin to reach their performance limits.
The main person developing the RCU functionality for
Linux has been Paul McKenney.7 The main advantage
of RCU over a reference counter is that object existence
is guaranteed without reference counters. No exclusive
cache line has to be acquired for object access which is
a significant performance advantage.

RCU accomplishes that feat through a global serializa-
tion counter that is used to establish when an object can
be freed. The counter only reaches the next state when

7See his website at http://www.rdrop.com/users/
paulmck/RCU/. Retrieved 12 April, 2007. A recent publication
is [3], which contains an extensive bibliography.



2007 Linux Symposium, Volume One • 259

no references to RCU objects are held by a process. Ob-
jects can be reclaimed when they have been expired. All
processes referring to the object must have only refer-
enced the object in earlier RCU periods.

RCU is frequently combined with the use of other
atomic primitives as well as the exploiting of the atom-
icity of pointer operations. The combination of atomic
operations and RCU can be tricky to manage and it is
not easy to develop a scheme that is consistent and has
no “holes” where a data structure can become inconsis-
tent. Projects to implement RCU measures for key sys-
tem components can take a long time. For example the
project to develop a lockless page cache using RCU has
already taken a couple of years.8

3.9 Cache line aliasing / placement

Another element necessary to reach high performance
is the careful placement of data into cache lines. Ac-
quiring write access to a cache line can cause a perfor-
mance issue because it requires exclusive access to the
cache line. If multiple unrelated variables are placed
in the same cache line then the performance of the ac-
cess to one variable may be affected by frequents up-
dates of another (false aliasing) because the cache line
may need to be frequently reacquired due to eviction to
exclusive accesses by other processors. A hotly updated
variable may cause a frequently read variable to become
costly to access because the cache line cannot be contin-
ually kept in the cache hierarchy. Linux solves this issue
by providing a facility to arrange variables according to
their access patterns. Variables that are commonly read
and rarely written to can be placed in a separate sec-
tion through a special attribute. The cache lines from
the mostly read section can then be kept in the caches of
multiple processors and are rarely subject to expulsion
due to a write request.

Fields of key operating system structures are similarly
organized based on common usage and frequency of us-
age. If two fields are frequently needed in the same
function then it is advantageous to put the fields next
to each other which increases the chance that both are
placed in the same cache line. Access to one field makes
the other one available. It is typical to place frequently
used data items at the head of a structure to have as many
as possible available with a single cache line fetch. In

8See the earlier mentioned work by Nick Piggin, [9].

order to guarantee the proper cache line alignment of
the fields it is customary to align the structure itself on a
cache line boundary.

If one can increase the data density in the cache lines
that are at the highest level of the cpu cache stack then
performance of the code will increase. Rearranging data
in proper cache lines is an important measure to reach
that goal.

3.10 Controlling memory allocation

The arrangement in cache lines increases the density of
information in the cpu cache and can be used to keep
important data near to the processor. In a large system,
memory is available at various distances to a proces-
sor and the larger the system the smaller the amount of
memory with optimal performance for a processor. The
operating system must attempt to provide fast memory
so that the processes running on the processor can run
efficiently.

However, the operating system can only provide heuris-
tics. The usual default is to allocate memory as local
to the process as possible. Such an allocation method
is only useful if the process will keep on running ex-
clusively on the initial processor. Multithreaded appli-
cations may run on multiple processors that may have
to access a shared area of memory. Care must be taken
about how shared memory is allocated. If a process is
started on a particular processor and allocates the mem-
ory it needs then the memory will be local to the startup
processor. The application may then spawn multiple
threads that work on the data structures allocated. These
new processes may be moved to distant processors and
will now overwhelmingly reference remote memory that
is not placed optimally. Moreover all new processes
may concurrently access the memory allocated on the
node of the initial processor which may exhaust the pro-
cessing power of the single memory node.

It is advisable that memory be allocated differently in
such scenarios. A common solution is to spread the
memory out over all nodes that run processes for the ap-
plication. This will balance the remote cache line pro-
cessing load over the system. However, the operating
system has no way of knowing what the processes of the
application will do. Linux has a couple of subsystems
that allow the processes to specify memory allocation
policies and allocation constraints for a process. Mem-
ory can be placed optimally if an application sets up the



260 • Extreme High Performance Computing or Why Microkernels Suck

proper policies depending on how it will access the data.
However, this memory control mechanism is not stan-
dardized. One will have to link programs to special li-
braries in order to make use of these facilities. There
are new languages on the horizon though that may inte-
grate the locality specification into the way data struc-
tures are defined.9 These new languages may eventually
standardize the specification of allocation methods and
avoid the use of custom libraries.

3.11 Memory coverage of Translation Lookaside
Buffers (TLB)

Each of the processes running on modern processors has
a virtual address space context. The address space con-
text is provided by TLB entries that are cached by the
processor in order to allow a user process access to phys-
ical memory. The amount of TLB entries in a processor
is limited and the limit on the number of TLB entries in
turn limits the amount of physical memory that a pro-
cessor may access without incurring a TLB miss. The
size of available physical memory is ever growing and
so the fraction of memory physically accessible without
a TLB miss is ever shrinking.

Under Linux, TLB misses are a particular problem since
most architectures use a quite small page size of 4 kilo-
bytes. The larger systems support 16 kilobytes. On the
smaller systems—even with a thousand TLB entries—
one will only be able to access 4 megabytes without a
TLB miss. TLB miss overhead varies between proces-
sors and ranges from a few dozen clock cycles if the
corresponding page table entry is in the cache (Intel-
64) to hundreds and occasionally even a few thousand
cycles on machines that require the implementation of
TLB lookups as an exception handler (like IA64).

For user processes, Linux is currently restricted to a
small 4k page size. In kernel space an attempt is made
to directly map all of memory via 1-1 mappings. These
are TLB entries that provide no translation at all. The
main use of these TLBs is to specify the access param-
eters for kernel memory. Many processors also support
a larger page size. It is therefore common that the ker-
nel itself use larger TLB entries for its own memory.
This increases the TLB coverage when running in kernel
mode significantly. The sizes in use on larger Linux ma-
chines (IA64) are 16M TLB entries whereas the smaller

9As realized for example in Unified Parallel C.

(Intel-64 based) machines provide 2M TLB entries to
map kernel memory.

In order to increase the memory coverage, another sub-
system has been added to Linux that is called the hugetlb
file system. On Intel-64 this will allow the management
of memory mapped via 2M TLB entries. On IA64 mem-
ory can be managed in a variety of sizes from 2M to 1
Gigabytes. However, hugetlb memory cannot be treated
like regular memory. Most importantly files cannot be
memory mapped using hugetlbfs. I/O is only possible
in 4 kilobyte blocks through buffered file I/O and direct
I/O. Projects are underway to use huge pages for exe-
cutables and provide transparent use of huge pages for
process data [6].

A microkernel would require the management of ad-
ditional address spaces via additional TLB entries that
would compete for the limited TLB slots in a proces-
sor. TLB pressure would increase and we would have
more overhead coming about through the separate ad-
dress spaces of a microkernel that would degrade per-
formance.

4 Multicore / Chip Multithreading

Recent developments are leading to increased multi
threading on a single processor. Multiple cores are
placed on a single chip. The inability to increase the
clock frequency of processors further leads to the de-
velopment of processors that are able to execute a large
number of threads concurrently. In essence we see the
miniaturization of contemporary supercomputers on a
chip. The complex interaction of the memory caches of
multi core processors will present additional challenges
to organizing memory and to balancing of a computing
load to run with maximum efficiency. It seems that the
future is owned by multithreaded applications and oper-
ating system kernels that have to use complex synchro-
nization protocols in order to extract the maximum per-
formance from the available computational resources.

Rigid microkernel concepts require isolation of kernel
subsystems. It is likely going to be a challenge to imple-
ment complex locking protocols between kernel compo-
nents that can only communicate via messages or some
form of inter process communication. Instead processes
wanting to utilize the parallel execution capabilities to
the fullest must have a shared address space in which it
is possible to realize locking schemes as needed to deal
with the synchronization of the individual tasks.



2007 Linux Symposium, Volume One • 261

5 Process Contention for System Resources

The scaling of individual jobs on a large system de-
pends on the use of shared resources. Processes that
only access local resources and that have separate ad-
dress spaces run with comparable performance to that
on smaller machines since there is minimal locking
overhead. On a machine with a couple of thousand pro-
cessors, one can run a couple of thousand independent
processes that all work with their own memory with-
out scaling concerns. This ability shows that the op-
erating system itself has been optimized to fully take
advantage of process isolation for scaling. The situa-
tion becomes different if all these processes share a sin-
gle address space. In that case certain functions—like
the mapping of a page into the common memory space
of these processes—must be serialized by the operating
system. Performance bottlenecks can result if many of
the processes perform operations that require the same
operating system resource. At that point the synchro-
nization mechanisms of the operating system become
key to reduce the performance impact of contention for
operating system resources.

However, the operating system itself cannot foresee,
in detail, how processes will behave. Policies can be
specified describing how the operating system needs to
manage resources but the operating system itself can
only provide heuristics for common process behavior.
Invariably sharing resources in a large supercomputer
for complex applications requires careful planning and
proper setup of allocation policies so that bottleneck can
be avoided. It is necessary to plan how to distribute
shared memory depending on the expected access pat-
terns to memory and common use of operating system
resources. Applications can be run on supercomputers
without such optimizations but then memory use, oper-
ating system resource use may not be optimal.

6 Conclusion

A monolithic operating system such as Linux has no re-
strictions on how locking schemes can be developed. A
unified address space exists that can be accessed by all
kernel components. It is therefore possible to develop
a rich multitude of synchronization methods in order to
make best use of the processor resources. The freedom
to do so has been widely used in the Linux operating
system to scale to high processor counts. The lock-
ing methodology can be varied and may be alternatively

coarse grained or more refined depending on the per-
formance requirements for a kernel component. Critical
operating system paths can be successively refined or
even be configurable for different usage scenarios. For
example the page table locking scheme in Linux is con-
figurable depending on the number of processors. For a
small number of processors, there will be only limited
contention on page table and therefore a single page ta-
ble lock is sufficient. If a large number of processors ex-
ists in a system then contention may be an issue and hav-
ing smaller grained locks is advantageous. For higher
processor counts the Linux kernel can implement a two
tier locking scheme where the higher page table layers
are locked by a single lock whereas the lowest layer has
locks per page of page table entries. The locking scheme
becomes more complicated—which will have a slight
negative performance impact on smaller machines—but
provides performance advantages for highly concurrent
applications.

As a result, the Linux operating system as a mono-
lithic operating system can adapt surprisingly well to
high processor counts and large memory sizes. Perfor-
mance bottlenecks that were discovered while the sys-
tem was gradually scaled up to higher and higher pro-
cessor counts were addressed through alternating ap-
proaches using a variety of locking approaches. In 2007
Linux supports up to 4096 processors with around 16
terabytes of memory on 1024 nodes. Configurations
of up to 1024 processors are supported by commercial
Linux distributions. There are a number of supercom-
puter installation that use these large machines for sci-
entific work at the boundaries of contemporary science.

The richness of the locking protocols that made the scal-
ing possible requires an open access policy within the
kernel. It seems that microkernel based designs are
fundamentally inferior performance-wise because the
strong isolation of the components in other process con-
texts limits the synchronization methods that can be em-
ployed and causes overhead that the monolithic kernel
does not have to deal with. In a microkernel data struc-
tures have to be particular to a certain subsystem. In
Linux data structures may contain data from many sub-
systems that may be protected by a single lock. Flex-
ibility in the choice of synchronization mechanism is
core to Linux success in scaling from embedded sys-
tems to supercomputers. Linux would never have been
able to scale to these extremes with a microkernel based
approach because of the rigid constraints that strict mi-



262 • Extreme High Performance Computing or Why Microkernels Suck

crokernel designs place on the architecture of operating
system structures and locking algorithms.

References

[1] Catanzaro, Ben. Multiprocessor Systems
Architectures: A Technical Survey of
Multiprocessor/ Multithreaded Systems using
SPARC, Multilevel Bus Architectures and Solaris
(SunOS). Mountain View: Sun Microsystems,
1994.

[2] El-Ghazawi, Tarek, William Carlson, Thomas
Sterling, and Katherine Yelick. UPC: Distributed
Shared-Memory Programming. Wiley
Interscience, 2003.

[3] Hart, Thomas E., Paul E. McKenney, and Angela
D. Brown. Making Lockless Synchronization Fast:
Performance Implications of Memory Reclaim.
Parallel and Distributed Processing Symposium,
2006.

[4] Hwang, Kai and Faye A. Briggs. Computer
Architecture and Parallel Processing.
McGraw-Hill, New York: 1984.

[5] Lameter, Christoph. Effective Synchronization on
Linux/NUMA Systems. Palo Alto: Gelato
Foundation, 2005. Retrieved April 11, 2006.
http://kernel.org/pub/linux/
kernel/people/christoph/gelato/
gelato2005-paper.pdf

[6] H.J. Lu, Rohit Seth, Kshitij Doshi, and Jantz Tran.
“Using Hugetlbfs for Mapping Application Text
Regions” in Proceedings of the Linux Symposium:
Volume 2. pp. 75–82. (Ottawa, Ontario: 2006).

[7] Milojic, Dejan S. Implementation for the Mach
Microkernel. Friedrich Vieweg & Sohn Verlag,
1994.

[8] Mosberger, David. Stephane Eranian. ia-64 linux
kernel: design and implementation. New Jersey:
Prentice Hall, 2002.

[9] Piggin, Nick. “A LockLess Page Cache in Linux”
in Proceedings of the Linux Symposium: Volume 2
(Ottawa, Ontario: 2006). Retrieved 11 April 2006.
http://ols2006.108.redhat.com/
reprints/piggin-reprint.pdf.

[10] Radovic, Zoran. Software Techniques for
Distributed Shared Memory. Uppsala: Uppsala
University, 2005, pp. 33–54.

[11] Roch, Benjamin. Monolithic kernel vs.
Microkernel. Retrieved 9 April 2007.
http://www.vmars.tuwien.ac.at/
courses/akti12/journal/04ss/
article_04ss_Roch.pdf.

[12] Schimmel, Kurt. UNIX Systems for Modern
Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers. New York:
Addison-Wesley, 1994.

[13] Tannenbaum, Andrew S. Modern Operating
Systems. New Jersey: Prentice Hall, 1992.

[14] Tannenbaum, Andrew S., Albert S. Woodhul.
Operating Systems Designs and Implementation
(3rd Edition). New Jersey: Prentice-Hall, 2006.



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


