
Linux Telephony
A Short Overview

Paul P. Komkoff
Google Ireland Ltd.
i@stingr.net

Anna Anikina
Saratov State University

anna@sgu.ru

Roman Zhnichkov
Saratov State University

zr@sgu.ru

Abstract

This paper covers the topic of implementing voice ser-
vices in packet-switched Voice Over IP (VoIP) and
circuit-switched (traditional telephony) networks using
Linux and commodity hardware. It contains a short
introduction into general telephony, VoIP, and Public
Switched Telephony Networks (PSTN). It also provides
an overview of VoIP services, including the open-source
software packages used to implement them, and the ker-
nel interfaces they include. It explains kernel support
for connecting Public Switched Telephony Networks us-
ing digital interfaces (E1/T1) via the Zaptel framework,
and user-space integration issues. The conclusion ex-
amines current trends in Linux-based and open-source
telephony.

A basic understanding of networking concepts is helpful
for understanding this presentation.

1 Introduction to general telephony, VoIP and
PSTN

Although VoIP products like SkypeTM and Google TalkTM

are storming the telecommunications landscape, almost
everyone still owns a telephone and uses it daily. Under-
standing how telephony works is still an obscure topic
for most people. As a result, we would like to begin
our paper with a short introduction to telephony in gen-
eral, combined with two major types presently in use—
packet-switched and circuit-switched.

Every telephony system needs to transmit data between
parties, but before it can do so, it needs to find the other
party and a route to it. This is called call setup. Ac-
tivity of this nature is usually performed by a signalling
protocol. Data can be passed via the same route and
channel as signalling, or via the same route and a dif-
ferent channel, or via an entirely different route. There

are obvious quality of service (QOS) requirements for
signalling and data—signalling requires guaranteed de-
livery of every message, and data requires low-latency
transmission, but can lose individual samples/frames.

1.1 VoIP

Voice over IP (VoIP) is widely used to describe various
services, setups, and protocols that pass audio data in
pseudo real-time over IP networks. Although the actual
implementations are very different, the basic require-
ments are to pass voice data in two directions and to
allow two-party conversation. VoIP is packet-switched
telephony because the underlying network is packet-
switched. To make conversations possible a virtual cir-
cuit is built between parties.

There are many protocols used for VoIP conversa-
tions. The most widespread is Session Initiation Pro-
tocol (SIP). This is a signalling protocol in that it only
handles call setup and termination. Actual session setup
between endpoints is handled by SDP (Session Descrip-
tion Protocol), and data is transmitted by RTP (Real-
Time Protocol). SIP is described in RFC3561 and en-
dorsed by IETF as an Internet standard.

Another protocol with a large user-base is H.323. While
SIP is designed mostly by network people it is similar
to HTTP (its messages are text Name:Value pairs).
H.323, being endorsed by ITU—telephony people—
looks like a traditional telephony protocol. Its messages
and information elements are described in ASN.1 (Ab-
stract Syntax Notation) and coded by ASN.1 BER (Ba-
sic Encoding Rules). H.323 is also a signalling protocol,
and also uses RTP for data transmission.

Inter-Asterisk Exchange (IAX) is another major VoIP
protocol. It was invented by the Asterisk R© authors. In
this protocol, data and signalling streams are not sepa-
rated, which allows easier NAT traversal. IAX is also

• 231 •



232 • Linux Telephony

able to pack multiple conversations into a single stream,
thus reducing trunking overhead. There are two versions
of IAX, although IAX1 is deprecated, and IAX2 is used
under name of IAX.

Other lesser known VoIP protocols are either proprietary
(SCCP is used in Cisco phones) or designed for specific
purpose (MGCP—Media Gateway Control Protocol—
used to manipulate VoIP gateways). Some protocols al-
low direct conversation between endpoints while others
require a server to operate.

VoIP protocols define the way voice data should be
transmitted. Conversion of digitized audio into pay-
load (portions of data to be delivered by the VoIP pro-
tocol) is performed by voice codecs. The most popular
voice codecs are: G.711, G.723, G.726-G.729, iLBC,
GSM06.10, and Speex. Each has different bandwidth
requirements, CPU requirements, quality, and patents
associated with them. These codecs are not all VoIP-
specific—G.711 is used in traditional telephony, and
GSM06.10 is used in GSM mobile networks.

1.2 PSTN

Public Switched Telephony Network (PSTN) is the tra-
ditional telephony network. Capable nodes in this
network are addressed using global and unique E.164
addresses—telephone numbers. Nowadays PSTN in-
cludes not only traditional telephones, but mobile
phones as well. Most of the PSTN is digital (except
customer analog lines and very old installments in de-
veloping countries). PSTN is circuit-switched, which
means that the call setup procedure assembles a circuit
between the parties on the call for the duration of the
entire call. The circuit is either fixed-bandwidth digi-
tal (typically 64kbps for traditional telephone networks
and 9600bps for mobile networks) or analog—spanning
multiple units of communication equipment. In digi-
tal networks the circuit is made over E1 (for Europe)
or T1 (America) lines, which contain 31 or 24 DS0
(64kbps) circuits, TDM-multiplexed together and thus
often called timeslots.

The call management, call routing, circuit assignment
and maintenance procedures are performed by the sig-
naling protocol. The de facto standard for intercon-
necting networks is Signaling System 7 (SS7). Connec-
tions to customer PBX (Private Branch Exchange) are
often performed using ISDN PRI (Primary Rate Inter-
face) connections and ISDN Q.931 signaling. SS7 is not

a single protocol, but a protocol stack. It contains parts
which facilitate running SS7 itself and allows user parts
to run on top of it. The user part that is responsible for
voice call setup between parties is called ISUP (ISDN
User Part). Services for mobile subscribers, ranging
from registration to SMS, are handled by MAP over
TCAP (Mobile Application Part over Transaction Capa-
bilities Application Part) of SS7.

2 Implementing VoIP services on Linux

To implement any voice service using VoIP, we do not
need any special hardware. Both clients and servers are
done in software. We only need to implement a particu-
lar VoIP protocol (SIP, H.323, IAX, MGCP, SCCP) and
a particular set of voice codecs.

After we have everything ready on the protocol and
codec sides, we can implement the voice service. For
example, we can build a server that will handle client
registrations and calls to each other. This piece of soft-
ware is typically called a softswitch because it func-
tions much like a hardware switch—building virtual cir-
cuits between parties. Softswitches typically have the
ability to provide optional services commonly found in
traditional proprietary PBXes like conferencing, voice-
mail, and IVR (Interactive Voice Responce) for an addi-
tional charge. Modern opensource VoIP software logic
is driven by powerful scripting languages—domain-
specific (for building dialplans) or general purpose. This
allows us to integrate with almost anything. For exam-
ple, we can try opensource speech synthesis/recognition
software.

Many softswitches utilize special properties of partic-
ular VoIP protocols. For example, SIP and the H.323
architecture provide the ability to pass data directly be-
tween endpoints to reduce contention and minimize la-
tency. Thousands of endpoints can be registered to one
SIP server to control only signalling, allowing billing
and additional services. This is much better than sit-
ting in the middle of RTP streams between those clients.
Moreover, sometimes it is possible to pass data directly
between two endpoints while one of them is using SIP
and another—H.323. This setup is called a signalling
proxy.

Some softswitches are suitable only for VoIP clients (in-
cluding VoIP-PSTN gateways acting as VoIP endpoint)
while more general solutions are able to act as a switch



2007 Linux Symposium, Volume One • 233

between different VoIP protocols and PSTN itself. The
softswitches of the first kind are, for example, SIP
Express Router and sipX, while the major play-
ers of the second kind are: Asterisk, CallWeaver
(described later on), YATE, and FreeSwitch.

To test the most widespread softswitch—Asterisk—
using VoIP only, download its source code from http:

//asterisk.org, compile it, and install. With-
out any additional software you have out-of-the-box
support for SIP and IAX, a working IVR demo (in
extensions.conf file), and many functions which
you can attach to numbers in extensions.conf—asterisk
applications. However, conferencing won’t work and
music-on-hold can stutter.

Call-center solutions based on Asterisk usually utilize
Queue() application. Using different AGI (Asterisk
Gateway Interface) scripts and builtin applications like
SayNumber(), you can build an automatic answer-
ing machine which reports the current time or account
balance. Asterisk can make outgoing calls as well if a
specifically formatted text-file is added to the special di-
rectory for each call.

Another software package to try is Yate. Its architec-
ture is different, however, you still can easily test basic
functions of an IP PBX. Yate can be configured to be
a signalling proxy between H.323 and SIP—a desired
usage when building VoIP exchanges.

What does Linux support for VoIP mean here? It means
fast, capable UDP (and ioctls which permit setting a
particular DSCP on outgoing packets), a CPU sched-
uler which will not starve us receiving (if we are using
blocking/threaded model), sending, and processing, and
a preemptive kernel to reduce receive latency. However,
there are still problems when a large number of clients
are passing data through a single server.

Recent improvements in the kernel, namely in the
scheduling, preemption, and high-precision timers have
greatly improved its ability to run userspace telephony
applications.

2.1 VoIP clients

There are two primary types of VoIP clients or end-
points—those running on dedicated hardware (handsets
plugged into Ethernet, analog telephone adapters, ded-
icated VoIP gateways), and softphones—installable ap-
plications for your favorite operating system.

Popular open source softphones include: Ekiga (pre-
viously Gnome Meeting), Kphone, and Kiax, which
support major protocols (H.323, SIP, and IAX). The
supported voice codecs list is not as long as it might be
due to patent issues. Even with access to an entirely free
alternative like Speex, the user is forced to use patented
codecs to connect to proprietary VoIP gateways and con-
sumer devices.

SkypeTM , a very popular proprietary softphone, imple-
ments its own proprietary VoIP protocol.

3 Connecting to PSTN

In order to allow PSTN users to use the services de-
scribed above, or at a minimum send and receive calls
from other VoIP users, they need to connect to the
PSTN. There are several ways to do that:

• analog connection, either FXO (office) or FXS
(station) side

• ISDN BRI (Basic Rate Interface) connection

• ISDN PRI or SS7 on E1/T1 line

We will concentrate on the most capable way to connect
a E1/T1 digital interface (supporting ISDN PRI or SS7
directly) to a VoIP server. Carrier equipment is intercon-
nected in this way. E1/T1-capable hardware and kernel
is required to support this.

The “original” digital telephony interface cards compat-
ible with Asterisk are manufactured by Digium R©. Each
contains up to 4 E1/T1/J1 ports. Other manufacturers
have also unveiled similar cards, namely Sangoma and
Cronyx. Clones of the Digium cards are also available
in the wild (OpenVox) which behave in exactly the same
way as the Digium ones.

One way to present telephony interfaces to an applica-
tion is by using the Zaptel framework. The official zap-
tel package, released by Digium together with Asterisk,
contains the zaptel framework and drivers for Digium
and Digium-endorsed hardware. Although drivers for
other mentioned hardware have different architectures,
they implement zaptel hooks and are thus compatible
(to a certain extent) with the largest user base of such
equipment. However, other software can use other ways



234 • Linux Telephony

of interacting with hardware. For example, Yate (par-
tially sponsored by Sangoma), can use native ways of
communicating with Sangoma cards. Extremely high
performance has been shown in those setups.

After you have ISDN PRI provisioned to you and a
Digium card at hand, obtain the latest Zaptel drivers
(also at http://asterisk.org) and compile them.
If everything goes well and you successfully insmod
(load) the right modules (and you have udev), you will
notice a couple of new device nodes under /dev/zap.
Before starting any telephony application, you need to
configure zaptel ports using ztcfg tool. After config-
uration you will have additional nodes /dev/zap/X,
one for each channel you configured. In ISDN PRI, the
16th timeslot of E1 is dedicated signalling channel (D-
chan). As a result it runs Q.931 over Q.921 over HDLC.
All other timeslots are clear-channels (B-chan) and are
used to transmit data. At a minimum, the ISDN PRI ap-
plication needs to talk Q.931 over the D-channel, negoti-
ate B-channel number for conversations, and read/write
digitized audio data from/to the specific B-channel.

Achieving SS7 connectivity is slightly more difficult.
Until 2006, there was no working opensource SS7 im-
plementation. Even today, you still need to find a carrier
who will allow an uncertified SS7 device on their net-
work. On the other hand, when you are the carrier, hav-
ing opensource SS7 is extremely useful for a number of
reasons. One might be your traditional PSTN switch—
which has only SS7 ports free when buying ISDN PRI
ports isn’t an option.

Today there is at least one usable SS7 implementation
for asterisk—Sifira’s chan_ss7, available at http:
//www.sifira.dk/chan-ss7/. An opensource SS7
stack for Yate (yss7) is in progress.

What kind of services can we implement here? VoIP-
PSTN gateway? Indeed, if we are able to capture
the voice onto the system, we can transmit and re-
ceive it over the network. Because we use an open-
source softswitch for this purpose, we get a full-fledged
IP-PBX with PSTN interface, capable of registering
softphones and hardphones and intelligently routing
calls between VoIP and PSTN. This also includes call-
center, IVR, and Voicemail out-of-the-box, and is flexi-
ble enough to add custom logic. If our network requires
multiple such gateways, we can replicate some of the
extra functionality between them and setup call routing
in a way that eliminates unneeded voice transfers over

the network, thus reducing latency.

The described setup can also be used as a dedicated
PSTN system. With this method, you can still use the
networking features if your setup consists of more than
one node—for configuration data failover or bridging of
calls terminated on different nodes.

Advanced usage scenarios for hardware with single
or multiple E1 interfaces are usually targeted for sig-
nalling. If we take a card with 2 E1 interfaces, cross-
connect together all the timeslots except 16 from port
1 to port 2, and then run an application which speaks
Q.931 on timeslot 16 of port 1, and transparently trans-
late it to SS7 ISUP on timeslot 16 of port 2, we will have
a signalling converter. This is used to connect ISDN-
only equipment to a SS7-only switch. If we implement
SS7 TCAP/MAP, we can create a SMS center out of
the same hardware or build IN SCP (Intelligent Network
Service Control Point).

Although the E1/T1 connection option is used in the ma-
jority of large-scale voice services, you may still need
an analog or ISDN BRI line to connect to your server.
Digium and others vendors offer analog and ISDN BRI
cards which also fit into the Zaptel framework.

3.1 Echo

When interconnecting VoIP and PSTN it is not uncom-
mon to have problems with echo. Hybrid transition
refers to the situation where the incoming and outgo-
ing signals are passed via a single 2-wire line and sep-
arated afterwards, thereby reflecting some of the outgo-
ing signal back. It is also possible for analog phones
or headsets to “leak” audio from headphones or speak-
ers to the microphone. Circuit-switched phone networks
are very fast and as a result echo is not noticeable. This
is because there are two digital-analog conversions on
each side and digitized audio is passed in single-byte
granularity resulting in low latency. VoIP installations
which include voice codecs (adding more overhead) and
passing multiple samples in one packet, may introduce
enough latency to result in noticable echo.

To eliminate echo, echo cancellation can be added
which subtracts the remnants of the outgoing signal
from the incoming channel, thus separating them. It is
worth mentioning, however, that if in an A-B conversa-
tion, party A hears an echo, there is nothing you can do
on the A side—the problem (unbalanced hybrid, audio
leak, broken echo canceller) is on the B side.



2007 Linux Symposium, Volume One • 235

3.2 Fax over IP transmission

Faxing over VoIP networks does not work for a num-
ber of reasons. First, voice codecs used to reproduce
voice data are lossy, which confuses faxmodems. Using
G.711 can be lossless if you are connected using a dig-
ital interface. This is because when used in PSTN DS0
circuits, the unmodified data is passed as the payload to
the VoIP protocol. If you do this, however, then echo
cancellation will still mangle the signal to the point that
modems cannot deal with. As a result, you also need to
turn off echo cancellation. Unfortunately, this means the
internal modem echo-canceller will not be able to deal
with VoIP echo and jitter to the point where it will not
work.

There are a number of solutions for this problem. The
first is called T.37—store and forward protocol. With
store and forward, the VoIP gateway on sending end
captures the fax and transmits it to the gateway on the re-
ceiving side using SMTP. The second method is T.38—
which tries to emulate realtime fax behavior. This is
usually more convenient when you send faxes in the
middle of the conversation.

4 Zaptel architecture

Most digital interface cards come with one or a combi-
nation of interfaces, which together, form a span. Data
in G.703 E1 stream travels continuously, but cards are
usually programmed to signal an interrupt after a pre-
determined configured amount of data is receiveed in a
buffer. In addition, the interrupt is generated when data
transmission is finished.

The Zaptel hardware driver provides the following func-
tionality:

• empty data from the device receive buffer, rear-
range it channelwise (if needed) and fill the zaptel
receive buffer

• call echo cancellation hooks and call zt_
receive(&p->span)—on the receive path

• call zt_transmit(&p->span), call echo can-
cellation hooks, empty data of zaptel transmit
buffer, rearrange it channelwise and put into device
from the transmit buffer, and queue transmission—
on the transmit path.

This basic API makes writing drivers very easy. Ad-
vanced features can also be implemented too. For ex-
ample, some E1 cards have the ability to cross-connect
timeslots without passing the data to the software—
useful when both parties are sharing channels of the
same span, or for special telephony applications. This
feature can be implemented (with some effort) and is
supported by current versions of Asterisk.

Clear channels, used for voice data, are passed to
userspace unmodified. Signalling channels, however,
need modification performed by the Zaptel level. ISDN
signalling (Q.931 on top of Q.921) requires HDLC
framing in the channel, which must be implemented in
the kernel. The ztcfg tool is used to configure the
channel as D-chan.

While HDLC framing is done at the kernel-level, Q.931
signalling itself must be done in userspace. Digium of-
fers a library (libpri) for this. This driver was origi-
nally used in the zaptel channel driver in asterisk—used
now in most ISDN-capable software. SS7 signalling is
slightly more difficult as it requires continuous Fill-In
Signal Unit (FISU) generation which must be placed in
the kernel (at the zaptel level) for reliability.

4.1 Code quality issues

Although the zaptel-related hardware driver part seems
straighforward, zaptel itself isn’t that good. Its 200-
kilobyte, 7,000 line single source file includes every-
thing plus the kitchen sink which Asterisk depends
heavily on. Due to the continuous flow of data, zap-
tel devices are often used a as stable source of timing,
particularly in the IAX trunking implementation and for
playing Music-On-Hold to VoIP clients. To use this
feature without Zaptel hardware you need the special
ztdummy driver which uses RTC and emulates the zap-
tel timing interface. Also, for reasons we cannot ex-
plain, the zaptel kernel module contains a user-space
API for conferencing. This module allows the attach-
ment of multiple readers/writers to a particular device
node and does all mixing in kernel space. Thus, to en-
able asterisk conferencing, you also need zaptel hard-
ware or ztdummy. Echo cancellation is selectable and
configurable only at compile-time. This is inconvenient
when troubleshooting echo problems.

Consistent with every external kernel module that is
supposed to work with 2.4 and 2.6 kernels, zaptel con-
tains lots of #ifdefs and wrapper macros. It is unclear



236 • Linux Telephony

if Digium will ever try to push Zaptel to mainline—in its
current state we think that is impossible.

4.2 Cost, scalability and reliability

Most telco equipment is overpriced. Although we have
found PBXes with an E1 port and 30 customer ports for
a reasonable price, the base feature set is often very lim-
ited. Each additional feature costs additional money and
you still will not receive the level of flexibility provided
by open-source software packages. Options for inter-
connecting PSTN and IP are even more expensive.

Telco equipment is overpriced for a number of
reasons—mostly due to reliability and scalability. By
building a telco system out of commodity hardware, the
only expensive part is the E1 digital interface. Even
with this part we are able to keep the cost of single
unit low enough to allow 1+1 (or even 1+1+1spare)
configuration, and the price of hardware will still be
much lower. This approach allows us to reach an even
higher level of reliability than simply having one tele-
phony switch. This is because we can take units down
for maintenance one-by-one.

Combining different existing solutions also reduces
some limitations. For example, if the number of VoIP
clients in our VoIP-PBX with PSTN connection is so
high that asterisk cannot handle the load, we can put a
lightweight SIP proxy (OpenSER) in front of it, and all
internal VoIP calls will close there.

4.3 Performance issues

There are some inefficiencies in PSTN processing from
a performance point of view, which are dictated by the
Zaptel architecture. Some cards generate interrupts for
each port. For example, with a sample length of 1ms
(ZT_CHUNKSIZE == 8) there will be 1,000 interrupts
per second per port. If we add a large number of ports
in a single machine, this number will be multiplied ac-
cordingly. There are ways to reduce interrupt load. For
example, the card can generate a single interrupt for all
its ports. Another way is to use larger samples, but this
introduces significant latency and is thus discouraged.

Another zaptel problem is that it creates individual de-
vice nodes for every channel it handles. Although with
recent kernels, we can easily handle lots of minors, read-
ing from individual channels just does not scale. This

can be optimized by feeding all channels via a single
device node—but we need to be careful here, because
there will be signalling in some timeslots. Also, echo
cancellation and DTMF detection can double CPU load.
Offloading them to dedicated hardware can save 50% of
CPU time.

Better performance can also be achieved by simplifying
the hardware driver architecture by eliminating complex
processing—echo cancellation or DTMF detection—
in the kernel (or interrupt context) by coupling clear
channels together before feeding them to userspace.
Echo cancellation can be performed on hardware or
software—in userspace. However, using software echo
cancellation and DTMF detection can be more cost-
effective—compare the cost of adding another CPU vs.
the cost of hardware EC/DTMF detectors.

However, using more servers with less E1 ports may be
wise from a reliability point of view. Modern CPUs have
enough processing power to drive 4 E1 interfaces even
with a totally unoptimized zaptel stack and userspace.
Thus, for large setups we can have any number of 4-port
servers connected to a high-speed network. If we are
interconnecting with VoIP clients here, we can split the
load across the 4-port nodes, and the maximum number
of VoIP clients will be no more than 120.

5 Current trends

Until recently, Asterisk dominated the opensource tele-
phony landscape. Zaptel and Asterisk were directed by
Digium which sells its own telephony hardware. Re-
cently, however, other players stepped up both on the
hardware and software fronts.

Sangoma Technologies, a long time procucer of E1/T1
cards, modified its WANPIPE drivers to support Zap-
tel. Cronyx Engineering’s new drivers package also in-
cludes the zaptel protocol module.

There are three issues in the Asterisk universe which
resulted in the forking of OpenPBX, later renamed to
CallWeaver. Those issues are:

1. Requirement to disclaim all copyrights to Digium
on code submission, due to Asterisk dual-licensing
and Digium commercial offerings.



2007 Linux Symposium, Volume One • 237

2. Because of dual licensing, Asterisk is not depen-
dent on modern software libraries. Instead, it con-
tains embedded (dated) Berkeley DB version 1 for
internal storage.

3. Strict Digium control on what changes go into the
software.

CallWeaver was forked from Asterisk 1.2 and its devel-
opment is progressing very rapidly. Less than a year
ago they switched from a fragile custom build system
to automake, from zaptel timing to POSIX timers, from
zaptel conferencing to a userspace mixing engine, from
internal DSP functions to Steve Underwood’s SpanDSP
library, and from awkward db1 to flexible SQLite. Call-
Weaver has working T.38 support, and is still compatible
with zaptel hardware. CallWeaver developers are also
trying to fix architectural flaws in Asterisk by allow-
ing proper modularization and changing internal storage
from linked lists to hash tables.

Although CallWeaver contains many improvements
over Asterisk, it still shares its PBX core, which was de-
signed around some PSTN assumptions. For example,
it is assumed that audio data is sampled at 8khz. This is
good for pure PSTN applications (or PSTN/VoIP gate-
waying), but in VoIP environments we might want to
support other sampling rates and data flows.

FreeSWITCH is designed from the ground up to be
more flexible in its core, and uses as many existing li-
braries and tools as it can. Its development started in
January 2006, and although there aren’t any official re-
leases at the time of writing this paper, the feature set is
already complete—for a softswitch. Unfortunately there
is only basic support for PSTN, a native module for San-
goma.

Another software package is Yate, started three years
ago. It is written in C++, its source code is an order
of magnitude smaller than Asterisk, and it has a cleaner
architecture which grants much more flexibility. Yate
can use the native WANPIPE interface to drive Sangoma
hardware, delivering extremely high performance with
high-density Sangoma cards.

6 Conclusion

Running telephony systems with Linux implementaions
for the past three years has resulted in the following suc-
cessful working setups:

1. Pure VoIP IVR and information service for call-
center employees using Asterisk.

2. Software load testing of proprietary VoIP equip-
ment using Asterisk.

3. VoIP exchange using Yate.

4. Softswitch with call-center and two E1 PSTN in-
terfaces using Asterisk and Digium E1 equipment.

5. ISDN signalling proxy in Python, using Cronyx E1
equipment.

6. Hybrid PSTN/VoIP telephony network for Sara-
tov State University—multiple gateways using As-
terisk and (lately) OpenPBX plus OpenSER on
Cronyx E1 equipment.

All implementations were based on i386 and x86_64
hardware platforms and Linux as the operating system
kernel. Since these setups were put into operation, we
have had no problems with the reliability, stability, or
performance of the software we chose. This was a re-
sult of careful capacity planning, clustering, and 1 + 1
reservations of critical components.

In this paper, we have provided reasons for why build-
ing a softswitch or PSTN-connected system from com-
modity hardware and open-source software may be de-
sirable, and why Linux is a good platform for imple-
menting voice services. However, there are some defi-
ciencies in the current implementations, both in the ker-
nel and in some of the opensource packages, that can
potentially result in scalability issues. There are ways to
avoid these issues or solve them completely. Our sug-
gestions include improving the Zaptel framework or in-
troducing a new, more efficient framework.

7 References

VOIP Wiki, http://voip-info.org

Nathan Willis. Finding voice codecs for free software.
http://software.newsforge.com/
article.pl?sid=05/09/28/1646243



238 • Linux Telephony



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


