
Desktop integration of Bluetooth

Marcel Holtmann
BlueZ Project

marcel@holtmann.org

Abstract

The BlueZ project has enhanced the Bluetooth imple-
mentation for Linux over the last two years. It now
seamlessly integrates with D-Bus and provides a really
simple and easy to use interface for the UI applications.
The current API covers all needed Bluetooth core func-
tionalities and allows running the same daemons on all
Linux distributions, the Maemo or OpenMoko frame-
works, and other embedded systems. The user interface
is the only difference between all these systems. This al-
lows GNOME and KDE applications to share the same
list of remote Bluetooth devices and many more com-
mon settings. As a result of this, the changes to integrate
Bluetooth within the UI guidelines of Maemo or Open-
Moko are really small. In return, all Maemo and Open-
Moko users help by fixing bugs for the Linux desktop
distributions like Fedora, Ubuntu, etc., and vice versa.

1 Introduction

The desktop integration of Bluetooth technology has
always been a great challenge since the Linux kernel
was extended with Bluetooth support. For a long time,
most of the Bluetooth applications were command-line
utilities only. With the D-Bus interface for the BlueZ
protocol stack, it became possible to write desktop-
independent applications. This D-Bus interface has
been explicitly designed for use by desktop and embed-
ded UI applications (see Figure 1).

For the desktop integration of Bluetooth, three main ap-
plications are needed:

• Bluetooth status applet;

• Bluetooth properties dialog;

• Bluetooth device wizard.

Figure 1: D-Bus API overview

2 Bluetooth applet

The Bluetooth applet is the main entry point when it
comes to device configuration and handling of security-
related interactions with the user, like the input of a PIN
code.

One of the simple tasks of the applet is to display a Blue-
tooth icon that reflects the current status of the Blue-
tooth system such as whether a device discovery is in
progress, or a connection has been established, and so
on. It is up to the desktop UI design guidelines to de-
cide if the icon itself should change or if notification
messages should be displayed to inform the user of sta-
tus changes.

Figure 2: Bluetooth applet notification

Besides the visible icon, the applet has to implement
the default passkey and authorization agent interfaces.

• 201 •



202 • Desktop integration of Bluetooth

These two interfaces are used to communicate with the
Bluetooth core daemon. The task of the applet is to dis-
play dialog boxes for requesting PIN codes or authoriza-
tion question to the end user. The input will be handed
back to the daemon which then actually interacts with
the Bluetooth hardware.

Additionally, the applet might provide shortcuts for fre-
quently used Bluetooth tasks. An example would be the
launch of the Bluetooth configuration dialog or device
setup wizard.

Figure 2 shows the notification of a pairing request for
the GNOME Bluetooth applet.

3 Bluetooth properties

While the applet shows the current status of the Blue-
tooth system and handles the security related tasks, the
properties dialog can be used to configure the local
Bluetooth adapter (see Figure 3).

Figure 3: Bluetooth adapter configuration

The D-Bus interface restricts the possible configurable
options to the local adapter name, class of device, and
mode of operation. No additional options have been
found useful. The Bluetooth core daemon can adapt
other options automatically when needed.

Figure 4: Bluetooth adapter configuration

In addition to the Bluetooth adapter configuration, the
Bluetooth properties application can also control the be-
havior of the applet application (see Figure 4)—for ex-
ample, the visibility of the Bluetooth status icon. It is
possible to hide the icon until an interaction with the
user is required.

These additional configuration options are desktop- and
user-specific. The GNOME desktop might implement
them differently than KDE.

4 Bluetooth wizard

With the status applet and the properties dialog, the
desktop task for user interaction, notification, and the
general adapter configuration are covered. The missing
task is the setup of new devices. The Bluetooth wiz-
ard provides an automated process to scan for devices
in range and setup any discovered devices to make them
usable for the user (see Figure 5).

The wizard uses the basic Bluetooth core adapter in-
terface to search for remote devices in range. Then, it
presents the user a list of possible devices filtered by the
class of device. After device selection, the wizard tries
to automatically setup the services. For these tasks it
uses special Bluetooth service daemons.



2007 Linux Symposium, Volume One • 203

Currently the Bluetooth subsystem provides the follow-
ing service daemons that can be used by the wizard or
any other Bluetooth application:

• Network service

– PAN support (NAP, GN and PANU)

– LAN access (work in progress)

– ISDN dialup (work in progress)

• Input service

– HID support (report mode with recent kernel
versions)

– Emulated input devices (headset and propri-
etary protocols)

– Wii-mote and PlayStation3 Remote

• Audio service

– Headset and Handsfree support

– High quality audio support (work in progress)

• Serial service

– Emulated serial ports

Figure 5: Bluetooth device selection

5 Big picture

The BlueZ architecture has grown rapidly and the whole
system became really complex. Figure 6 shows a sim-
plified diagram of the current interactions between the
Bluetooth subsystem of the Linux kernel, the Bluetooth
core daemons and services, and the user interface appli-
cations.

Figure 6: BlueZ architecture

All communication between daemons and a user appli-
cation are done via D-Bus. Figure 7 gives an overview
on how this interaction and communication via D-Bus
works.

Figure 7: D-Bus communication

6 Conclusion

The bluez-gnome project provides an implementation
for all three major Bluetooth applications needed by a
modern GNOME desktop. For KDE 4, a similar set of



204 • Desktop integration of Bluetooth

applications exists that uses the same D-Bus infrastruc-
ture for Bluetooth. A KDE 3 backport is currently not
planned.

The desktop applications don’t have to deal with any
Bluetooth low-level interfaces. These are nicely ab-
stracted through D-Bus. This allows other desktop or
embedded frameworks like Maemo or OpenMoko to re-
place the look and feel quite easily (see Figure 6).

Figure 8: User interface separation

The goal of the BlueZ Project is to unify desktop and
embedded Bluetooth solutions. While the user interface
might be different, the actual protocol and service im-
plementation will be the same on each system.

References

[1] Special Interest Group Bluetooth:
Bluetooth Core Specification Version 2.0 + EDR,
November 2004

[2] freedesktop.org:
D-BUS Specification Version 0.11



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


