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Abstract

Kdump, a kexec based kernel crash dumping mecha-
nism, has witnessed a lot of new significant development
activities recently. Features like, the relocatable kernel,
dump filtering, and initrd based dumping have enhanced
kdump capabilities are important steps towards making
it a more reliable and easy to use solution. New tools
like Linux Kernel Dump Test Module (LKDTM) pro-
vide an opportunity to automate kdump testing. It can
be especially useful for distributions to detect and weed
out regressions relatively quickly. This paper presents
various newly introduced features and provides imple-
mentation details wherever appropriate. It also briefly
discusses the future directions, such as early boot crash
dumping.

1 Introduction

Kdump is a kernel crash dumping mechanism where a
pre-loaded kernel is booted in, to capture the crash dump
after a system crash [12]. This pre-loaded kernel, often
called as capture kernel, runs from a different physical
memory area than the production kernel or regular ker-
nel. As of today, a capture kernel is specifically com-
piled and linked for a specific memory location, and is
shipped as an extra kernel to capture the dump. A re-
locatable kernel implementation gets rid of the require-
ment to run the kernel from the address it has been com-
piled for, instead one can load the kernel at a different
address and run it from there. Effectively the distribu-
tions and kdump users don’t have to build an extra ker-
nel to capture the dump, enhancing ease of use. Section
2 provides the details of relocatable kernel implementa-
tion.

Modern machines are being shipped with bigger and
bigger RAMs and a high end configuration can possess

a tera-byte of RAM. Capturing the contents of the entire
RAM would result in a proportionately large core file
and managing a tera-byte file can be difficult. One does
not need the contents of entire RAM to debug a ker-
nel problem and many pages like userspace pages can
be filtered out. Now an open source userspace utility is
available for dump filtering and Section 3 discusses the
working and internals of the utility.

Currently, a kernel crash dump is captured with the
help of init scripts in the userspace in the capture ker-
nel. This approach has some drawbacks. Firstly, it as-
sumes that the root filesystem did not get corrupted and
is still mountable in the second kernel. Secondly, mini-
mal work should be done in second kernel and one need
not have to run various user space init scripts. This led to
the idea of building a custom initial ram disk (initrd) to
capture the dump and improve the reliability of the op-
eration. Various implementation details of initrd based
dumping are presented in Section 4.

Section 5 discusses the Linux Kernel Dump Test Mod-
ule (LKDTM), a kernel module, which allows one to set
up and trigger crashes from various kernel code paths at
run time. It can be used to automate kdump testing pro-
cedure to identify bugs and eliminate regressions with
lesser efforts. This paper also gives a brief update on de-
vice driver hardening efforts in Section 6 and concludes
with future work in Section 7.

2 Relocatable bzImage

Generally, the Linux R© kernel is compiled for a fixed
address and it runs from that address. Traditionally,
for i386 and x86_64 architectures, it has been com-
piled and run from 1MB physical memory location.
Later, Eric W. Biederman introduced a config option,
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CONFIG_PHYSICAL_START, which allowed a kernel to
be compiled for a different address. This option effec-
tively shifted the kernel in virtual address space and one
could compile and run the kernel from a physical ad-
dress say, 16MB. Kdump used this feature and built a
separate kernel for capturing the dump. This kernel was
specifically built to run from a reserved memory loca-
tion.

The requirement of building an extra kernel for dump
capturing has not gone over too well with distributions,
as they end up shipping an extra kernel binary. Apart
from disk space requirements, it also led to increased
efforts in terms of supporting and testing this extra ker-
nel. Also from a user’s perspective, building an extra
kernel is cumbersome.

The solution to the above problem is a relocatable ker-
nel, where the same kernel binary can be loaded and
run from a different address than what it has been com-
piled for. Jan Kratochvil had posted a set of proto-
type patches to kick- off the discussion on the fastboot
mailing list [6]. Later, Eric W. Biederman came up
with another set of patches and posted them to LKML
for review [8]. Finally, Vivek Goyal picked up Eric’s
patches, cleaned those up, fixed a number of bugs, in-
corporated various review comments, and went through
multiple rounds of reposting to LKML for inclusion into
the mainline kernel. Relocatable kernel implementation
is very architecture dependent and support for i386 ar-
chitecture has been merged with version 2.6.20 of the
mainline kernel. Patches for x86_64 have been posted
on LKML [11] and are now part of -mm. Hopefully,
these will be merged with mainline kernel soon.

2.1 Design Approaches

The following design approaches have been discussed
for the relocatable bzImage implementation.

• Modify kernel text/data mapping at run time
At run time, the kernel determines where it has
been loaded by the boot-loader and it updates its
page tables to reflect the right mapping between
kernel virtual and physical addresses for kernel text
and data. This approach has been adopted for the
x86_64 implementation.

• Relocate using relocation information
This approach forces the linker to generate reloca-
tion information. These relocations are processed

and packed into the bzImage. The uncompressed
kernel code decompresses the kernel, performs the
relocations, and transfers control to the protected
mode kernel. This approach has been adopted by
the i386 implementation.

2.2 Design Details (i386)

In i386, kernel text and data are part of linearly mapped
region which has got hard-coded assumptions about vir-
tual to physical address mapping. Hence, it is probably
difficult to adopt the modifying the page table approach
for implementing a relocatable kernel. Instead, a sim-
pler, non-intrusive approach is to ask the linker to gen-
erate relocation information, pack this relocation infor-
mation into bzImage, and the uncompressed kernel code
can process these relocations before jumping to the 32-
bit kernel entry point (startup_32()).

2.2.1 Relocation Information Generation

Relocation information can be generated in many ways.
The initial experiment was to compile the kernel as
shared object file (-shared) which generated the re-
location entries. Eric had posted the patches for this
approach [9] but it was found that the linker also gen-
erated the relocation entries for absolute symbols (for
some historical reason) [1]. By definition, absolute sym-
bols are not to be relocated, but, with this approach, ab-
solute symbols also ended up being relocated. Hence
this method did not prove to be a viable one.

Later, a different approach was taken where
the i386 kernel is built with the linker option
--emit-relocs. This option builds an exe-
cutable vmlinux and still retains relocation information
in a fully linked executable. This increases the size
of vmlinux by around 10%, though this information is
discarded at runtime. The kernel build process goes
through these relocation entries and filters out PC
relative relocations, as these don’t have to be adjusted
if bzImage is loaded at a different physical address. It
also filters out the relocations generated with respect to
absolute symbols because absolute symbols don’t have
to be relocated. The rest of the relocation offsets are
packed into the compressed vmlinux. Figure 1 depicts
the new i386 bzImage build process.



2007 Linux Symposium, Volume One • 169

Link vmlinux with 
--emit-relocs  option

Process Relocations
(relocs.c)

vmlinux.relocs

vmlinux.bin.all

piggy.o

vmlinux

vmlinux.bin

bzImage

vmlinux.bin.gz

Concatenate with
vmlinux.bin

Compress

Link with misc.o
and head.o

Strip

Append Real mode
code

Figure 1: i386 bzImage build process

2.2.2 In-place Decompression

The code for decompressing the kernel has been
changed so that decompression can be done in-place.
Now the kernel is not first decompressed to any other
memory location then merged and put at final destina-
tion and there are no hard-coded assumptions about the
intermediate location [7]. This allows the kernel to be
decompressed within the bounds of its uncompressed
size and it will not overwrite any other data. Figure 2
depicts the new bzImage decompression logic.

At the same time, the decompressor is compiled as po-
sition independent code (-fPIC) so that it is not bound to
a physical location, and it can run from anywhere. This
code has been carefully written to make sure that it runs
even if no relocation processing is done.

Compressed
bzImage

Compressed
bzImage Uncompressed

Kernel

Location where
kernel is run from

Decompress
Kernel (2)

Move kernel
to a safe
location (1)

Location where
kernel is loaded
by boot-loader,
Usually, 1MB

Figure 2: In-place bzImage decompression

2.2.3 Perform Relocations

After decompression, all the relocations are performed.
Uncompressed code calculates the difference between
the address for which the kernel was compiled and the
address at which it is loaded. This difference is added
to the locations as specified by relocation offsets and
control is transferred to the 32-bit kernel entry point.

2.2.4 Kernel Config Options

Several new config options have been introduced
for relocatable kernel implementation. CONFIG_

RELOCATABLE controls whether the resulting bzImage
is relocatable or not. If this option is not set, no reloca-
tion information is generated in the vmlinux.

Generally, bzImage decompresses itself to the address
it has been compiled for (CONFIG_PHYSICAL_START)
and runs from there. But if CONFIG_RELOCATABLE is
set, then it runs from the address it has been loaded at by
the boot-loader and it ignores the compile time address.

CONFIG_PHYSICAL_ALIGN option allows a user to
specify the alignment restriction on the physical address
the kernel is running from.

2.3 Design Details (x86_64)

In x86_64, kernel text and data are not part of the
linearly mapped region and are mapped in a separate
40MB virtual address range. Hence, one can easily
remap the kernel text and data region depending on
where the kernel is loaded in the physical address space.
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The kernel decompression logic has been changed to do
an in-place decompression. The changes are similar to
those as discussed for i386 architecture.

2.3.1 Kernel text And data Mapping Modification

Normally, the kernel text/data virtual and physical ad-
dresses differ by an offset of __START_KERNEL_map
(0xffffffff80000000UL). At run time, this offset will
change if the kernel is not loaded at the same address
it has been compiled for. Kernel initial boot code deter-
mines where it is running from and it updates its page
tables accordingly. This shift in address is calculated at
run time and is stored in a variable phys_base. Fig-
ure 3 depicts the various mappings.

phys_base

Virtual Addr Space Physical Addr
Space

Kernel load
Addr

Kernel
Compile
Addr

Kernel text/data

Kernel image
Linearly mapped

 region

Figure 3: x86_64 kernel text/data mapping update

2.3.2 __pa_symbol() and __pa() Changes

Given the fact kernel text/data mapping changes at run
time, some __pa()-related macro definitions need to
be modified.

As mentioned previously, the kernel determines the dif-
ference between the address it has been compiled for
and the address it has been loaded at and stores that shift
in the variable phys_base.

Currently, __pa_symbol() is used to determine the
physical address associated with a kernel text/data vir-
tual address. Now this mapping is not fixed and can
vary at run time. Hence, __pa_symbol() has been
updated to take into the account the offset phys_base
while calculating the physical address associated with a
kernel text/data area.

#define __pa_symbol(x) \

({unsigned long v; \

asm("" : "=r" (v) : "0" (x));\

((v − __START_KERNEL_map) + phys_base);})

__pa() should be used only for virtual addresses be-
longing to a linearly mapped region. Currently, this
macro can map both the linearly mapped region and the
kernel/text data region. But, now it has been updated to
map only the kernel linearly mapped region, keeping in
line with the rest of the architectures. As the kernel lin-
early mapped region mappings don’t change because of
kernel image location, __pa() does not have to handle
the kernel load address shift (phys_base).

#define __pa(x) \

((unsigned long)(x) − PAGE_OFFSET)

2.3.3 Kernel Config Options

It is similar to i386, except that there is no option
CONFIG_PHYSICAL_ALIGN and alignment is set to
2MB.

2.4 bzImage Protocol Extension

The bzImage protocol has been extended to com-
municate relocatable kernel information to the boot-
loader. Two new fields, kernel_alignment and
relocatable_kernel, have been added to the bz-
Image header. The first one specifies the physical ad-
dress alignment requirement for the protected mode ker-
nel, and the second one indicates whether this protected
mode kernel is relocatable or not.

A boot-loader can look at the relocatable_
kernel field and decide if the protected mode compo-
nent should be loaded at the hard-coded 1MB address or
it can be loaded at other addresses too. Kdump uses this
feature and kexec boot-loader loads the relocatable bz-
Image at non-1MB address, in a reserved memory area.
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3 Dump Filtering

On modern machines with a large amount of memory,
capturing the contents of the entire RAM could create
a huge dump file, which might be in the range of tera-
bytes. It is difficult to manage such a huge dump file,
both while storing it locally and while sending it to a
remote host for analysis. makedumpfile is a userspace
utility to create a smaller dump file by dump filtering, or
by compressing the dump data, or both [5].

3.1 Filtering Options

Often, many pages like userspace pages, free pages, and
cache pages might not be of interest to the engineer an-
alyzing the crash dump. Hence, one can choose to filter
out those pages. The following are the types of pages
one can filter out:

• Pages filled with zero
makedumpfile distinguishes this page type by
reading each page. These pages are not part of
the dump file but the analysis tool is returned ze-
ros while accessing the filtered zero page.

• Cache pages
makedumpfile distinguishes this page type by
reading the members flags and mapping in
struct page. If both the PG_lru bit and
PG_swapcache bit of flags are on and PAGE_

MAPPING_ANON bit of mapping is off, the page is
considered to be a cache page.

• User process data pages
makedumpfile distinguishes this page type by
reading the member mapping in struct page.
If PAGE_MAPPING_ANON bit of mapping is on,
the page is considered to be a user process data
page.

• Free pages
makedumpfile distinguishes this page type by
reading the member free_area in struct
zone. If the page is linked into the member
free_area, the page is considered to be a free
page.

3.2 Filtering Implementation Details

makedumpfile examines the various memory man-
agement related data structures in the core file to dis-
tinguish between page types. It uses the crashed kernel
vmlinux, compiled with debug information, to retrieve a
variety of information like data structure size, member
offset, symbol addresses, and so on.

The memory management information depends on
the Linux version, the architecture of the processor,
and the memory model (FLATMEM, DISCONTIGMEM,
SPARSEMEM). For example, the symbol name of
struct pglist_data is node_data on linux-2.6.18
x86_64 DISCONTIGMEM, but it is pgdat_list on
linux-2.6.18 ia64 DISCONTIGMEM. makedumpfile
supports these varieties.

To begin with, makedumpfile infers the memory
model used by the crashed kernel, by searching for the
symbol mem_map, mem_section, node_data, or
pgdat_list in the binary file of the production ker-
nel. If symbol mem_map is present, the crashed ker-
nel used FLATMEM memory model or if mem_section
is present, the crashed kernel used SPARSEMEM mem-
ory model or if node_data or pgdat_list is
present, the crashed kernel used DISCONTIGMEM mem-
ory model.

Later it examines the struct page entry of each
page frame and retrieves the members flags and
mapping. The size of struct page and the mem-
ber field offsets are extracted from the .debug_info
section of the debug-compiled vmlinux of the produc-
tion kernel. Various symbol virtual addresses are re-
trieved from the symbol table of production kernel bi-
nary.

The organization of struct page entry arrays,
depends on the memory model used by the ker-
nel. For the FLATMEM model on linux-2.6.18 i386,
makedumpfile determines the virtual address of the
symbol mem_map from vmlinux. This address is trans-
lated into file offset with the help of /proc/vmcore
ELF headers and finally it reads the mem_map array at
the calculated file offset from core file. Other page types
in various memory models are distinguished in similar
fashion.
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3.3 Dump File Compression

The dump file can be compressed using standard com-
pression tools like gzip to generate smaller footprint.
The only drawback is that one will have to uncompress
the whole file before starting the analysis. Alternatively,
one can compress individual pages and decompress a
particular page only when analysis tool accesses it. This
reduces the disk space requirement while analyzing a
crash dump.

makedumpfile allows for the creation of compressed
dump files where compression is done on a per page ba-
sis. diskdump has used this feature in the past and
makedumpfile has borrowed the idea [3].

3.4 Dump File Format

By default, makedumpfile creates a dump file in the
kdump-compressed format. It is based on diskdump
file format with minor modifications. The crash utility
can analyze kdump-compressed format.

makedumpfile can also create a dump file in ELF
format which can be opened by both crash and gdb.
The ELF format does not support compressed dump
files.

3.5 Sample Dump Filtering Results

The dump file size depends on the production kernel’s
memory usage. Tables 1 and 2 show the dump file size
reduction in two possible cases. In the first table, most
of the production kernel’s memory is free, as dump was
captured immediately after a system boot and filtering
out free pages is effective. In the second table, most of
the memory is used as cache, as a huge file was being
decompressed while dump was captured, and filtering
out cache pages is effective.

4 Kdump initramfs

In the early days of kdump, crash dump capturing was
automated with the help of init scripts in userspace. This
approach was simple and easy, but it assumed that the
root filesystem was not corrupted during system crash
and could still be mounted safely in the second kernel.
Another consideration is that one should not have to run

linux-2.6.18, x86_64 Memory:5GB
Filtering option Size Reduction

Pages filled with zero 76%
Cache pages 16%

User process data pages 1%
Free pages 78%

All the above types 97%

Table 1: Dump filtering on system containing many free
pages

linux-2.6.18, x86_64 Memory:5GB
Filtering option Size Reduction

Pages filled with zero 3%
Cache pages 91%

User process data pages 1%
Free pages 1%

All the above types 94%

Table 2: Dump filtering on system containing many
cache pages

various other init scripts before he/she starts saving the
dump. Other scripts unnecessarily consume precious
kernel memory and possibly can lead to reduced reli-
ability.

These limitations led to the idea of capturing the crash
dump from early userspace (initial ramdisk context).
Saving the dump before even a single init script runs,
probably adds to the reliability of the operation and
precious memory is not consumed by un-required init
scripts. Also, one could specify a dump device other
than the root partition, which is guaranteed to be safe.

A prototype implementation of initrd based dumping
was available in Fedora R© 6. This was a basic scheme
implemented along the lines of nash shell based stan-
dard boot initrd and had various drawbacks like big-
ger ramdisk size, limited dump destination devices sup-
ported, and limited error handling capability because of
constrained scripting environment.

The above limitations triggered the redesign of the initrd
based dumping mechanism. The following sections pro-
vide the details of the new design and also highlight the
short-comings of the existing implementation, wherever
appropriate.
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4.1 Busybox-based Initial RAM Disk

Initial implementation of initrd based dumping was
roughly based on the initramfs files generated by the
mkinitrd utility. The newer design, uses Busybox [2]
utilities to generate the kdump initramfs. The advan-
tages of this scheme become evident in the following
discussion.

4.1.1 Managing the initramfs Size

One of the primary design goals was to keep the
initramfs as small as possible for two reasons. First,
one wants to reserve as little memory as possible for
crash dump kernel to boot and second, out of the re-
served memory, one wants to keep the free memory pool
as large as possible, to be used by kernel and drivers.

Initially it was considered to implement all of the re-
quired functionality for kdump in a statically linked bi-
nary, written in C. This binary would have been smaller
than Busybox, as it would avoid inclusion of unused
Busybox bits. But maintainability of the above approach
was a big concern, keeping in mind the vast array of
functionality it had to support. The feature list included
the ability to copy files to nfs mounts, to local disk
drives, to local raw partitions, and to remote servers via
ssh.

Upon a deeper look, the problem space resembled more
and more that of an embedded system which made the
immediate solution to many of the constraints self evi-
dent: Busybox [2].

Following are some of the utilities which are typically
packed into the initial ramdisk and contribute to the size
bloat of initramfs.

• nash: A non-interactive shell-like environment

• The cp utility

• The scp and ssh utilities: If a scp remote target
is selected

• The ifconfig utility

• The dmsetup and lvm utilities: For software
raided and lvm file systems

Some of these utilities are already built statically. How-
ever, even if one required the utilities to be dynamically
linked, various libraries have to be pulled in to satisfy
dependencies and the initramfs image size skyrockets.
In the case of the earlier initramfs for kdump, depend-
ing on the configuration, the inclusion of ssh, scp,
ifconfig, and cp required the inclusion of the fol-
lowing libraries:

libacl.so.1 libz.so.1
libselinux.so.1 libnsl.so.1
libc.so.6 libcrypt.so.1
libattr.so.1 libgssapi_krb5.so.2
libdl.so.2 libkrb5.so.3
libsepol.so.1 libk5crypto.so.3
linux-gate.so.1 libcom_err.so.2
libresolv.so.2 libkrb5support.so
libcrypto.so.6 ld-linux.so.2
libutil.so.1

Given these required utilities and libraries, the initramfs
was initially between 7MB and 11MB uncompressed,
which seriously cut into the available heap presented to
the kernel and the userspace applications which needed
it during the dump recovery process.

Busybox immediately provided a remedy to many of the
size issues. By using Busybox, the cp and ifconfig util-
ities were no longer needed, and with them went away
the need for most of the additional libraries. With Busy-
box, our initramfs size was reduced to a range of 2MB
to 10MB.

4.1.2 Enhanced Flexibility

A Busybox based initramfs implementation vastly in-
creased kdump system flexibility. Initially, the nash in-
terpreter allowed us a very small degree of freedom in
terms of how we could capture crash dumps. Given that
nash is a non-interactive script interpreter with an ex-
tremely limited conditional handling infrastructure, we
were forced in our initial implementation to determine,
at initramfs creation time, exactly what our crash proce-
dure would be. In the event of any malfunction, there
was only one error handling path to choose, which was
failing to capture the dump and rebooting the system.

Now, with Busybox, we are able to replace nash with
any of the supported Busybox shells (msh was chosen,
since it was the most bash-like shell that Fedora’s Busy-
box build currently enables). This switch gave us sev-
eral improvements right away, such as an increase in our
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ability to make decisions in the init script. Instead of
a script that was in effect a strictly linear progression
of commands, we now had the ability to create if-then-
else conditionals and loops, as well as the ability to cre-
ate and reference variables in the script. We could now
write an actual shell script in the initramfs, which al-
lowed us to, among many other things, to recover from
errors in a less drastic fashion. We now have the choice
to do something other than simply reboot the system and
lose the core file. Currently, it tries to mount the root
filesystem and continue the boot process, or drop to an
interactive shell within the initramfs so that a system ad-
ministrator can attempt to recover the dump manually.

In fact, the switch to Busybox gave us a good deal of
additional features that we were able to capitalize on.
Of specific note was the additional networking abil-
ity in Busybox. The built-in ifup/ifdown network in-
terface framework allowed us to bring network inter-
faces up and down easily, while the built-in vconfig
utility allowed us to support remote core capture over
vlan interfaces. Furthermore since we now had a truly
scriptable interface, we were able to use the sysfs inter-
face to enslave interfaces to one another, emulating the
ifenslave utility, which in turn allows us to dump cores
over bonded interfaces. Through the use of sysfs, we
are also able to dynamically query the devices that are
found at boot time and create device files for them on
the fly, rather than having to anticipate them at initramfs
creation time. Add to that the ability to use Busybox’s
findfs utility to identify local partitions by disklabel or
uuid, and we are able to dynamically determine our
dump location at boot time without needing to undergo a
kdump initramfs rebuild every time local disk geometry
changes.

4.2 Future Goals

In the recent past, our focus in terms of kdump userspace
implementation has been on moving to Busybox in an
effort to incorporate and advance upon the functionality
offered by previous dump capture utilities, while mini-
mizing the size impact of the initramfs and promoting
maintainability. Now that we have achieved these goals,
at least in part, our next set of goals include the follow-
ing:

• Cleanup initramfs generation – The generation
of the initramfs has been an evolutionary pro-

cess. Current initramfs generation script is a heav-
ily modified version of its predecessor to support
the use of Busybox. This script needs to be re-
implemented to be more maintainable.

• Config file formalization – The configuration file
syntax for kdump is currently very ad hoc, and does
not easily support expansion of configuration di-
rectives in any controlled manner. The configura-
tion file syntax should be formalized.

• Multiple dump targets – Currently, the initramfs
allows the configuration of one dump target, and
a configurable failure action in the event the dump
capture fails. Ideally, the configuration file should
support the listing of several dump targets as alter-
natives in case of failures.

• Further memory reduction – While we have
managed to reduce memory usage in the initramfs
by a large amount, some configurations still require
the use of large memory footprint binaries (most
notably scp and ssh). Eventually, we hope to switch
to using a smaller statically linked ssh client for use
in remote core capture instead, to reduce the top
end of our memory usage.

5 Linux Kernel Dump Test Module

Before adopting any dumping mechanism, it is impor-
tant to ascertain that the solution performs reliably in
most crash scenarios. To achieve this, one needed a tool
which can be used to trigger crash dumps from various
kernel code paths without patching and rebuilding the
kernel. LKDTM (Linux Kernel Dump Test Module) is
a dynamically loadable kernel module, that can be used
for forcing a system crash in various scenarios and helps
in evaluating the reliability of a crash dumping solution.
It has been merged with the mainline kernel and is avail-
able in kernel version 2.6.19.

LKDTM is based on LKDTT (Linux Kernel Dump Test
Tool) [10], but has an entirely different design. LKDTT
inserts the crash points statically and one must patch and
rebuild the kernel before it can be tested. On the other
hand, LKDTM makes use of jprobes infrastructure
and allows crash points to be inserted dynamically.

5.1 LKDTM Design

LKDTM artificially induces system crashes at prede-
fined locations and triggers dump for correctness test-
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ing. The goal is to widen the coverage of the tests, to
take into account the different conditions in which the
system might crash, for example, the state of the hard-
ware devices, system load, and context of execution.

LKDTM achieves the crash point insertion by using
jumper probes (jprobes), the dynamic kernel instru-
mentation infrastructure of the Linux kernel. The mod-
ule places a jprobe at the entry point of a critical func-
tion. When the kernel control flow reaches the function,
as shown in Figure 4, the probe causes the registered
helper function to be called before the actual function
is executed. At the time of insertion, each crash point
is associated with two attributes: the action to be trig-
gered and the number of times the crash point is to be hit
before triggering the action (similar to LKDTT). In the
helper function, if it is determined that the count associ-
ated with the crash point has been hit, the specified ac-
tion is performed. The supported action types, referred
to as Crash Types, are kernel panic, oops, exception, and
stack overflow.

jprobe registered

insert lkdtm.ko

trigger crash

Y

N

Dump capture

jprobe hit

jprobe handler
    executed

count 
    is
   0 ?

      return from
   jprobe handler

Figure 4: LKDTM functioning

jprobes was chosen over kprobes in order to en-
sure that the action is triggered in the same context as
that of the critical function. In the case of kprobes,
the helper function is executed in the int 3 trap con-
text. Whereas, when the jprobe is hit, the underly-
ing kprobes infrastructure points the saved instruc-
tion pointer to the jprobe’s handler routine and returns

from the int3 trap (refer Documentation/kprobes.txt for
the working of kprobes/jprobes). The helper rou-
tine is then executed in the same context as that of the
critical function, thus preserving the kernel’s execution
mode.

5.2 Types of Crash Points

The basic crash points supported by LKDTM are same
as supported by LKDTT. These are as follows:

IRQ handling with IRQs disabled (INT_
HARDWARE_ENTRY) The jprobe is placed at the
head of the function __do_IRQ, which processes
interrupts with IRQs disabled.

IRQ handling with IRQs enabled (INT_HW_IRQ_
EN) The jprobe is placed at the head of the func-
tion handle_IRQ_event, which processes inter-
rupts with IRQs enabled.

Tasklet with IRQs disabled (TASKLET) This crash
point recreates crashes that occur when the tasklets are
being executed with interrupts disabled. The jprobe is
placed at the function tasklet_action.

Block I/O (FS_DEVRW) This crash point crashes the
system when the filesystem accesses the low-level block
devices. It corresponds to the function ll_rw_block.

Swap-out (MEM_SWAPOUT) This crash point causes
the system to crash while in the memory swapping is
being performed.

Timer processing (TIMERADD) The jprobe is placed
at function hrtimer_start.

SCSI command (SCSI_DISPATCH_CMD) This
crash point is placed in the SCSI dispatch command
code.
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IDE command (IDE_CORE_CP) This crash point
brings down the system while handling I/O on IDE
block devices.

New crash points can be added, if required, by making
changes to drivers/misc/lkdtm.c file.

5.3 Usage

The LKDTM module can be built by enabling the
CONFIG_LKDTM config option under the Kernel
hacking menu. It can then be inserted into the run-
ning kernel by providing the required command line ar-
guments, as shown:

#modprobe lkdtm cpoint_name=<> cpoint_

type=<> [cpoint_count={>0}] [recur_

count={>0}]

5.4 Advantages/disadvantages of LKDTM

LKDTT has kernel space and user space components. In
order to make use of LKDTT, one has to apply the ker-
nel patch and rebuild the kernel. Also, it makes use of
the Generalised Kernel Hooks Interface (GHKI), which
is not part of the mainline kernel. On the other hand,
using LKDTM is extremely simple and is merged into
mainline kernels. The crash point can be injected into a
running kernel by simply inserting the kernel module.

The only shortcoming of LKDTM is that the crash point
cannot be placed in the middle of the function without
changing the context of execution, unlike LKDTT.

5.5 Kdump Testing Automation

So far kdump testing was done manually but it was diffi-
cult and very time consuming process. Now it has been
automated with the help of LKDTM infrastructure and
some scripts.

LTP (Linux Test Project) seems to be the right place for
such testing automation framework. A patch has been
posted to LTP mailing list [4]. This should greatly help
distributions in quickly identify regressions with every
new release.

These scripts set up a cron job which starts on a re-
boot and inserts either LKDTM or an elementary testing
module called crasher. Upon a crash, a crash dump

is automatically captured and saved to a pre-configured
location. This is repeated for various crash points as
supported by LKDTM. Later, these scripts also open the
captured dump and do some basic sanity verification.

The tests can be started by simply executing the follow-
ing from within the tarball directory:

# ./setup
# ./master run

The detailed instructions on the usage have been docu-
mented in the README file, which is part of the tarball.

6 Device Driver Hardening

Device driver initialization in a capture kernel contin-
ues to be a pain point. Various kinds of problems have
been reported. A very common problem is the pending
messages/interrupts on the device from previous the ker-
nel’s context. This interrupt is delivered to the driver in
the capture kernel’s context and it often crashes because
of state mismatch. A solution is based on the fact that
the device should have a way to allow the driver to reset
it. Reset should bring it to a known state from where the
driver can continue to initialize the device.

PCI bus reset can probably be of help here, but it is
uncertain how the PCI bus can be reset from software.
There does not seem to be a generic way, but PowerPC R©

firmware allows doing a software reset of the PCI buses
and the Extended Error Handling (EEH) infrastructure
makes use of it. We are looking into using EEH func-
tionality to reset the devices while the capture kernel
boots.

Even if there is a way to reset the device, device drivers
might not want to reset it all the time as resetting is gen-
erally time consuming. To resolve this issue, a new com-
mand line parameter reset_devices has been intro-
duced. When this parameter is passed on the command
line, it is an indication to the driver that it should first try
to reset the underlying device and then go ahead with the
rest of the initialization.

Some drivers like megaraid, mptfusion, ibmvscsi and ib-
mveth reported issues and have been fixed. MPT tries to
reset the device if it is not in an appropriate state and
megaraid sends a FLUSH/ABORT message to the de-
vice to flush all the commands sent from previous ker-
nel’s context. More problems have been reported with
aacraid and cciss drivers which are yet to be fixed.
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7 Early Boot Crash Dumping

Currently, kdump does not work if the kernel crashes be-
fore the boot process is completed. For kdump to work,
the kernel should be booted up so that the new kernel
is pre-loaded. During the development phase, many de-
velopers run into issues when the kernel is not booting
at all, and making crash dumps work in those scenarios
will be useful.

One idea is to load the kernel from early userspace (ini-
trd/initramfs), but that does not solve the problem en-
tirely because the kernel can crash earlier than that.

Another possibility is to use the kboot boot-loader to
pre-load a dump capture kernel in the memory some-
where and then launch the production kernel. This pro-
duction kernel will jump to the already loaded capture
kernel in case of a boot time crash. Figure 5 illustrates
the above design.

Dump Capture
Kernel

Production Kernel

Kboot

Boot into
kboot 
boot-loader (1)

Kboot pre-loads
dump capture
kernel (2)

Kboot loads
and boots into
production 
kernel (3)

Production
Kernel 
crashes
during
boot (4)

Figure 5: Early boot crash dumping

8 Conclusions

Kdump has come a long way since the initial implemen-
tation was merged into the 2.6.13 kernels. Features like
the relocatable kernel, dump filtering, and initrd-based
dumping have made it an even more reliable and easy
to use solution. Distributions are in the process of merg-
ing these features in upcoming releases for mass deploy-
ment.

The only problem area is the device driver initialization
issues in the capture kernel. Currently, these issues are
being fixed on a per-driver basis when they are reported.
We need more help from device driver maintainers to
fix the reported issues. We are exploring the idea of per-
forming device reset using EEH infrastructure on Power
and that should further improve the reliability of kdump
operation.
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