
GANESHA, a multi-usage with large cache NFSv4 server

Philippe Deniel Thomas Leibovici Jacques-Charles Lafoucrière
CEA/DIF

{philippe.deniel,thomas.leibovici,jc.lafoucriere}@cea.fr

Abstract

GANESHA is a user-space NFSv2, NFSv3, and NFSv4
server. It runs on Linux, BSD variants, and POSIX-
compliant UNIXes. It is available under the CeCILL
license, which is a French transposition of the GPL and
is fully GPL-compatible. The protocol implementation
is fairly complete, including GSSAPI security hooks.
GANESHA is currently in production at our site, where,
thanks to a large cache and a lot of threads, it delivers
up to a hundred thousand NFS operations per minute.
This paper describes the current implementation as well
as future developments. This includes GANESHA as a
NFS Proxy server and NFSv4.1 enhancements, but also
the access to LDAP and SNMP information using the
file system paradigm.

1 Introduction

NFS is a well known and venerable network protocol
which is used widely. NFSv4 is the latest version of the
protocol. It fully reconsiders its semantic and the way
NFS can be used.

We manage a huge compute center at CEA. In the past
three years, we had to face a strong increase in the
amount of data produced by our supercomputer, up to
tens of terabytes a day. Archived results and files are
stored in HPSS, a third-party vendor’s HSM which had
a NFS interface. NFS fits our need well in terms of files
meta-data management, but there were several limita-
tions in the product that made for a difficult bridge be-
tween the HSM and NFS, and we believed it was time
to step to something new. The HPSS product has a user-
space API, complete enough to do all manipulation on
files and directories. The decision to write a brand new
daemon to handle the NFS interface we needed to HPSS
was natural, but the following ideas lead the design pro-
cess:

• The new product should be able to manage very
large data and meta-data caches (up to millions of
records), to avoid congestion on the underlying file
system.

• The new product should be able to provide the NFS
interface we needed to HPSS, but should also be
able to access other file systems.

• The new product should support the NFSv4 proto-
col, and its related features in term of scalability,
adaptability, and security.

• The new product should be able to scale as much
as possible: software congestion and bottlenecks
should be avoided, the only limits would come
from the hardware.

• The new product should be a free software pro-
gram.

• The new product should be running on Linux, but
portable to other Unix platforms.

These considerations drove the design of GANESHA.
This paper will provide you with additional informa-
tion about it. The generic architecture and the way it
works will be described and you’ll see how GANESHA
can be turned into a “very generic” NFS server (using
only POSIX calls from LibC) or a NFSv4 Proxy as well.
Information will also be provided on the way to write
packages to extend GANESHA in order to make it man-
age various names-spaces.

The paper first describes NFSv4 and the technical rea-
sons that lead to a user-space NFS daemon. The archi-
tecture of the product is then detailed including the is-
sues that were met and how they were solved. Some
actual results are shown before concluding.

• 113 •

114 • GANESHA, a multi-usage with large cache NFSv4 server

2 Why a NFSv4 server in User Space?

GANESHA is not a replacement for the NFSv4 server
implemented in the kernel; it is a brand new program,
with its advantages and disadvantages. For some as-
pects, the NFSv4 server in the kernel should be more ef-
ficient, but there are several domains (for example build-
ing a NFSv4 Proxy server) in which the user-space ap-
proach will provide many interesting things.

First of all, working in user space makes it possible to
allocate very large piece of memory. This memory can
then be used to build internal caches. Feedback of using
GANESHA in production showed that 4 Gigabytes were
enough for making a million-entry cache. On a x86_64
platform, it is possible to allocate even bigger memory
chunks (up to 16 or 32 GB, depending on the machine’s
resources). Caching about 10 million entries becomes
possible.

A second point is portability. If you write kernel code,
then it will be acquainted with the kernel’s structure and
it won’t be possible to port it to a different OS. We kept
Linux (i686 or x86_64) as the primary target, but we
also wanted to compile and run it on different archi-
tectures, keeping them as secondary targets. Most of
the Free Software Community is very close to Linux,
but there are other free operating systems (FreeBSD
or OpenSolaris) and we have wanted to be compatible
with them since the beginning of the project. Another
consideration is the code itself: something that com-
piles and runs on different platforms is generally safer
than a “one target” product. Our experience as devel-
opers showed that this approach always pays back; it
often reveals bugs that would not have been so easily de-
tected on Linux, because resources are managed differ-
ently. Portability doesn’t only mean “running on several
OSes,” for a NFS server it also means “managing differ-
ent file systems.” The NFSv4 semantics bring new ideas
that need to be considered there. The NFSv2 and NFSv3
protocols have semantics very close to the way Unixes
manage file systems. Because of this, it was almost im-
possible to have NFS support for a non UNIX-related
file system. One design consideration of NFSv4 was to
make the protocol able to manage as many file systems
as possible. Because of this, it requires a very reduced
subset of file/directory attributes to be supported by the
underlying file system and can manage things as simple
as a FAT16 file system (which has almost none of the at-
tributes you expect in “regular” file systems). When de-

signing GANESHA, we wanted to keep this idea: man-
aging as many file systems as possible. In fact, it is pos-
sible with the NFSv4 semantics to manage every set of
data whose organization is similar to a file system: trees
whose nodes are directories and leaves are files or sym-
bolic links. This structure (that will be referenced as
the name-space structure in this paper) maps to many
things: files systems of course, but also information ac-
cessible through a SNMP MIB or LDAP-organized data.
We choose to integrate this functionality to GANESHA:
making it a generic NFSv4 server that can manage ev-
erything that can be managed by NFSv4. Doing this is
not very easy within the kernel (kernel programming is
subject to lots of constraints): designing the daemon for
running in user space became then natural.

A last point is also to be considered: accessing services
located in user space is very easy when you already are
in user space. NFSv4 support in the kernel introduced
the rpc_pipefs mechanism which is a bridge used by ker-
nel services to address user-space services. It is very
useful for managing security with kerberos5 or when
the idmapd daemon is asked for a user-name conver-
sion. This is not required with GANESHA: it uses the
regular API for the related service.

These reasons naturally lead the project to a user-space
daemon. We also wanted to write something new and
open. There was already an efficient support of NFSv4
support within kernel code. Rewriting something else
would have had no sense. This is why GANESHA is a
user-space daemon.

3 A few words about NFSv4

NFS in general, and more specifically NFSv4, is a cen-
tral aspect to this paper. People are often familiar with
NFS, but less are aware of the features of NFSv4.

NFSv2 was developed by Sun Microsystems in 1984. It
showed limits and this lead to the birth of NFSv3, which
was designed in a more public forum by several com-
panies. Things were a bit different with NFSv4. The
protocol has been fully developed by an IETF working
group (IETF is responsible for standardization of proto-
col like IPv4, IPv6, UDP, TCP, or “higher-level” things
like FTP, DNS, and HTTP). The design began with a
birds-of-a-feather meeting at IETF meetings. One of the
results was the formation of the NFS version 4 working
group in July, 1997.

2007 Linux Symposium, Volume One • 115

Goals of the working group when designing the protocol
were:

• improve access and performance on the Internet;

• strong security with negotiation built into the pro-
tocol;

• easier cross-platform interoperability;

• the protocol should be ready for protocol exten-
sions.

NFSv4 integrates features that allow it to work correctly
on a WAN, which is a network with low bandwidth and
high latency. This is done through using experience ob-
tained with protocols like WebNFS. NFSv4 will then
use compound requests to limit messages and send as
much information as possible in each of them. To re-
duce traffic, the caching capability were truly extended,
making the protocol ready for implementation of very
aggressive caching and an NFSv4 proxy server.

Scalability and availability were improved, too; a strong
stateful mechanism is integrated in the protocol. This
is a major evolution compared to NFSv2 and NFSv3,
which were stateless protocols. A complex negotiation
process occurs between clients and server. Due to this,
NFSv4 can allow a server with a strong load to relocate
some of its clients to a less busy server. This mecha-
nism is also used when a client or server crash occurs to
reduce the time to full recovery on both sides.

Security is enhanced by making the protocol a
connection-oriented protocol. The use of RPC-
SEC_GSS is mandatory (this protocol is an evo-
lution of ONC/RPC that supports extended secu-
rity management—for example the krb5 or SPKM-
3 paradigm—by use of the GSSAPI framework) and
provides “RPC-based” security. The protocol is
connection-oriented, and will require TCP (and not
UDP like NFSv2 and NFSv3), which makes it easier to
have connection-based security.

The structure and semantics of NFSv3 were very close
to those of UNIX. For other platforms, it was difficult
to “fit” in this model. NFSv4 manages attributes as
bitmaps, with absolutely no link to previously defined
structures. Users and groups are identified as strings
which allow platforms that do not manage uid/gid like
UNIX to interoperate via NFSv4.

The protocol can be extended by support of “minor ver-
sions.” NFSv4 is released and defined by RFC3530, but
evolutions are to be integrated in it, providing new fea-
tures. For example, the support of RDMA, the support
of the PNFS paradigm, and the new mechanism for “di-
rectory delegation” are to be integrated in NFSv4. They
will be part of NFSv4.1, whose definition is in process.

4 Overview

This section describes the design consideration for
GANESHA. The next sections will show you how these
goals were achieved.

4.1 The CeCILL License

GANESHA is available as a Free Software product un-
der the terms of the CeCILL license. This license is
a French transposition of GPL made by several French
research organizations, including CEA, CNRS, and IN-
RIA. It is fully GPL-compatible.

The use of the GNU General Public License raised some
legal issues. These issues lead to uncertainties that
may prevent contributions to Free Software. To provide
better legal safety while keeping the spirit of these li-
censes, three French public research organizations, the
CEA, the CNRS, and INRIA, have launched a project
to write Free Software licenses conforming to French
law. CEA, CNRS, and INRIA released CeCILL in July,
2004. CeCILL is the first license defining the principles
of use and dissemination of Free Software in confor-
mance with French law, following the principles of the
GNU GPL. This license is meant to be used by compa-
nies, research institutions, and all organizations willing
to release software under a GPL-like license while en-
suring a standard level of legal safety. CeCILL is also
perfectly suited to international projects.

4.2 A project on Open-Source products

GANESHA was fully written and developed using Free
Software. The resources available for system program-
ming are huge and comprehensive, and this made the
task much easier on Linux than on other Unixes.

The tools used were:

• gcc (of course. . .)

116 • GANESHA, a multi-usage with large cache NFSv4 server

RPCSEC_GSS Dup Req Module

Mount V1/V3 NFS v4NFS v2/v3

File Content CacheMetadata Cache

File System Abstraction Layer

Name Space API

G
SS

A
PI

Se
cu

ri
ty

H
as

h
T

ab
le

s

M
em

or
y

M
an

ag
er

RPC Dispatcher
A

dm
in

is
tr

at
io

n
M

od
ul

e

L
og

gi
ng

 M
od

ul
e

E
xt

er
na

l C
on

tr
ol

 A
PI

Sy
sl

og
 A

PI
Clients requests

cache fs operations

fs operations

Figure 1: GANESHA’s layered architecture

• gdb for debugging, often used jointly with Electric
Fence or the Dmalloc library for memory debug-
ging.

• valgrind for caring about memory leaks.

• doxygen for generating the various documents
about the APIs’ calls and structures.

• GIT as source code repository manager.

• PERL and SWIG to wrap API calls in order to write
non-regression scripts.

• Connectathon test suite which is a test suite de-
signed for the validation of NFS client-server be-
havior.

• PyNFS a non-regression test tool written in Python
by the CITI folks.1

4.3 A layered product

GANESHA is designed as a layered product. Each layer
is a module dedicated to a specific task. Data and meta-
data caching, RPCSEC_GSS and protocol management,
accessibility to the file system. . . All these functionali-
ties are handled by specific modules. Each module has
a well defined interface that was designed before start-
ing to write a single line of code. Such a modular design
is good for future code maintenance. Furthermore, one
can write new algorithms within a layer without chang-
ing the rest of the code. A better description is that cache
management could change the cache layers, or a differ-
ent name-space could be managed, but these changes

1CITI’s site contains bunches of interesting stuff for people in-
terested in NFSv4.

should not impact the other modules. Efforts were made
to reduce adherences between layers. This was costly at
the beginning of the project, but on a mid-range time
scale, it appeared that this simplified a lot in the rest
of the project. Each layer could be developed indepen-
dently, by different developers, with their own valida-
tion and non-regression tests. A “global make” step can
then re-assemble all the pieces. It should be reduced if
all of them complete their validation tests.

A few modules are the very core of GANESHA:

• The Buddy Malloc module manages the memory
used by GANESHA.

• The RPCSEC_GSS module handles the data trans-
port via the RPCSEC_GSS protocol. It manages
security by accessing the security service (usually
krb5, SPKM-3, or LIPKEY).

• The NFS protocol modules perform the manage-
ment of the structures used for the NFS messages.

• The Cache Inode Layer manages a very large cache
for meta-data.

• The File Content Layer manages data caching. It is
closely acquainted with the Cache Inode Layer.

• The File System Abstraction Layer is a very impor-
tant module: it wraps, via a well defined interface,
the calls to access a name-space. The objects it
addresses are then cached by the Cache Inode and
File Content layers.

• The Hash Table Module provides Red-Black-
Trees-based hash tables. This generic module is
widely used within GANESHA to provide associa-
tive addressing.

These modules will be discussed in more details in the
next sections.

4.4 Managing memory

The main issue is memory management. Almost all
modules within GANESHA’s architecture will have to
perform dynamic memory allocation. For example, a
thread managing a NFS request may need to allocate
a buffer for storing the requested result. If the regular

2007 Linux Symposium, Volume One • 117

LibC malloc/free calls are used, there are risks of frag-
menting memory because some modules will allocate
large buffers when others will use much smaller ones.
This could lead to a situation where part of the mem-
ory used by the program is swapped to disk, and perfor-
mance would quickly drop.

For this reason, GANESHA implements its own mem-
ory manager. This module, which is used by all the other
parts of GANESHA, allows each thread to allocate its
own piece of memory at startup. When a thread needs
a buffer, it will look into this space to find an available
chunk of the correct size. This allocation is managed by
the Buddy Malloc algorithm, the same that is used by
the kernel. Use of the syscall madvise is also made to
tell the Linux memory manager not to move the related
pages. The behavior of the daemon towards memory
will then be to allocate a single large piece of memory.
If there is no other “resource consuming” daemon run-
ning on the same machine, the probability for this piece
of memory not to be swapped is high. This will maintain
performance at a good level.

4.5 Managing the CPU resource

The second resource is the CPU. This is much easier to
manage than memory. GANESHA is massively multi-
threaded, and will have dozens of threads at the same
time (most of them are “worker threads,” as we’ll see
later). POSIX calls for managing threads help us a lot
here, we can use them to tell the Linux scheduler not
to manage the pack of threads as a whole, but to con-
sider each of them separately.2 With a multi-processor
machine, such an approach will allow the workload to
“spread across” all of the CPUs. What is also to be con-
sidered is potential deadlocks. In a multi-threaded envi-
ronment, it is logical to have mutexes to protect some re-
sources from concurrent accesses. But having bunches
of threads is not useful if most of them are stuck on a
bottleneck. Design considerations were taken into ac-
count to avoid this situation.

First, reader/writer locks were preferred to simple mu-
texes. Because the behavior of reader/writer locks may
differ from one system to another, a small library was
written to provide this service (which was a required en-
hancement in terms of portability).

2This is the PTHREAD_SCOPE_SYSTEM behavior which is
used here, as opposed to the PTHREAD_SCOPE_PROCESS policy
that would not lead to the expected result.

Second, if threads share resources, this common pool
could turn to a bottleneck when many threads exist to-
gether. This was avoided by allocating resources per
thread. This consideration has a strong impact on the
threads’ behavior, because there can’t be a dedicated
garbage collector. Each thread has to perform its own
garbage collection and has to reassemble its resources
regularly. To avoid congestion, some mechanism (lo-
cated on the “dispatcher thread” described below) will
prevent too many threads from performing this opera-
tion at the same time (a period during which they are
not available for doing their “regular” job). Cache lay-
ers that require this kind of garbage collection to be done
have been designed so that this process could be divided
in several steps, each undertaken by a separate agent.
Experience “in real life” shows that this solution was
suitable when the number of threads is large compared
to the number of threads allowed to start garbage col-
lecting (60 threads running concurrently when 3 could
stop working at the same time). This experience shows
that the required memory chunk was much less that what
is needed for a single request (about 20 times the size).
In this situation, the impact of memory management is
almost invisible: an incoming request finds a non-busy
thread most of the time. Side effects will only become
visible under a very large load (hundreds to thousands
of requests per second).

4.6 The Hash Tables: a core module for associative
addressing

Associative addressing is a service that is required by
many modules in GANESHA—for example, finding an
inode knowing its parent and name, or finding the struc-
ture related to a NFSv4 client, knowing its client ID.
The API for this kind of service is to be called very of-
ten: it has to be very efficient to enhance the daemon’s
global performance. The choice was made to use an
array of Red-Black Trees.3 RBTs have an interesting
feature: they re-balance themselves automatically after
add/update operations and so stay well balanced. RBTs
use a computed value, defined as the RBT value in this
document, to identify a specify contiguous region of the
tree. Several entries stored in the RBT can produce the
same RBT value, they’ll reside the same area, but this
will decrease the performance. Having a function to
compute “well diversified” RBT values is then critical.

3We’ll use the abbreviation RBT for Red-Black Tree in the rest
of this paper.

118 • GANESHA, a multi-usage with large cache NFSv4 server

This supposes an actual knowledge of the data on which
the value is computed. Because of this it is hard to have
a “generic RBT value function,” a new one is to be de-
veloped for each use.

Bottlenecks could occur if a single RBT is used: sev-
eral threads could perform add/update operations at the
same time, causing a conflicting re-balance simultane-
ously. It then appears that RBTs are to be protected by
read/writer locks and this could quickly become a bot-
tleneck. Working around this issue is not difficult: us-
ing several RBTs (stored in an array) will solve it. If
the number of RBTs used is large (more than 15 times
bigger) that the number of concurrent threads that can
access them, the the probability of having two of them
working on the same tree becomes pretty small. This
will not use more memory: each of the 15 (or more)
trees will be 15 times smaller than the single one would
have been. There is an inconvenience: an additional
function is required to compute the index for the RBT
to be used. Implementing two functions is then needed
for a single hash table: one for computing the index, the
other to compute the RBT value. They must be differ-
ent enough to split data across all the trees. If not, some
RBTs would be very small, and others very large. Ex-
perience shows that specific non-regression tests were
necessary to check for the “independence” of these two
functions.

4.7 A massively multi-threaded daemon

GANESHA is running lots of threads internally. As
shown in the previous sections, most of its design
consideration were oriented to this massively multi-
threaded architecture. The threads are of different types:

• GANESHA supports NFSv2, NFSv3, NFSv4, and
the ancillary protocol MOUNT PROTOCOL v1 and
v3. The dispatcher thread will listen for incoming
NFS/MOUNT requests, but won’t decode them. It
will choose the least busy worker and add the re-
quest to its lists of requests to process. Duplicate
request management is done here: this thread keeps
track of the previously managed requests by keep-
ing the replies sent within the last 10 minutes (they
are stored in a hash table and addressed with the
RPC Xid4 value). Before associating a worker with

4See the definition of ONC/RPC protocol for details on this.

a request, it looks at this DRC.5 If a matching RPC
Xid is found, then the former reply is sent back
again to the client. This thread will use the RPC-
SEC_GSS layer, mostly.

• The worker threads do most of the job. Many in-
stances (several dozen) of this kind of thread exist
concurrently. They wait for the dispatcher thread to
provide them with a request to manage. They will
decode it and use Cache Inode API and File Con-
tent API calls to perform the operation required for
this request. These threads are the very core of the
NFS processing in GANESHA.

• The statistics manager collects stats from every
layer for every thread. It periodically writes down
the data in CSV format6 for further treatment. A
dedicated PERL script, ganestat.pl, is avail-
able with the GANESHA rpm as a “pretty printer”
for this CSV file.

• The admin gateway manages a dedicated proto-
col. This allows administrative operations to be
done remotely on the daemon. These operations
include flushing caches, syncing data to FSAL stor-
age, or performing a slow and clean shutdown. The
ganeshadmin program, provided with the distri-
bution, is used to interact with this thread.

4.8 Dealing with huge caches

As stated above, GANESHA uses a large piece of mem-
ory to build large caches. Data and meta-data caches
will be the largest caches in GANESHA.

Let’s focus first on the meta-data cache, located in the
Cache Inode Layer. Each of its entries is associated with
an entry in the name-space (a file, a symbolic link, or
a directory7). This entry is itself associated with a re-
lated object in the File System Abstraction Layer (see
next section) identified by a unique FSAL handle. The
meta-data cache layer will map in memory the struc-
ture it reads from the FSAL calls, and it tries to keep in
memory as many entries as possible, with their parent-
children dependencies. Meta-data cache use hash tables

5Duplicate Request Cache.
6Comma Separated Value, an ASCII based format for storing

spreadsheets.
7For the current version, objects of type socket, character, or de-

vice are not managed by GANESHA.

2007 Linux Symposium, Volume One • 119

intensively to address the entries, using the FSAL han-
dle to address the entry associatively. With the current
version of GANESHA, a simple write-through cache
policy is implemented. The attributes kept for each ob-
ject (the file attributes and the content of the directo-
ries) will expire after a configurable grace period. If
expired, they’ll be renewed if they are accessed before
being erased from the cache. Garbage collection is more
sophisticated. Because there is no common resources
pool, each thread has to perform garbage collection it-
self. Each thread will keep a LRU list of the entries on
which it works. A cached entry can exist only within
one and only one of these lists, so if a thread accesses
an entry which was previously accessed by another, it
acquires this entry, forcing the other thread to release
it. When garbage collection starts, the thread will go
through this list, starting from the oldest entry. It then
use a specific garbage policy to decide whether each en-
try should be kept or purged. This policy is somewhat
specific. The meta-data cache is supposed to be very
large (up to millions of entries) and no garbage col-
lection will occur before at least 90% of this space is
used. We choose to keep as much as possible the “tree
topology” of the name-space viewed by the FSAL in the
cache. In this topology, nodes are directories, and leaves
are files and symbolic links. Leaves are garbage col-
lected before nodes. Nodes are garbage only when they
contain no more leaves (typically an empty directory or
a directory where all entries were previously garbaged).
This approach explicitly considers that directories are
more important than files or symbolic links, but this
should not be an issue. Usually, a name-space will con-
tain a lot more files than directories, so it makes sense
to garbage files first: they occupy most of the available
space. Because the cache is very large, parts of it tend
to be “sleeping areas” that are no longer accessed. The
garbage collection routine within each worker thread,
which manages the oldest entries first, will quickly lo-
cate these and clean them. With our workload and file
system usage, this policy revealed no problem. When
the garbage collection’s high water mark is reached, the
number of entries cached begins to oscillate regularly
between low water mark and high water mark. The pe-
riod of the oscillation is strongly dependent on the aver-
age load on the server.

The data cache is not managed separately: if the con-
tent of a file is stored in data cache, this will become a
characteristic of the meta-data cached entry. The data
cache is then a ‘child cache’ to the meta-data cache: if

a file is data-cached, then it is also meta-data cached.
This avoid incoherencies between this two caches since
they are two sides of the same coin. Contents of the files
which are cached are stored in dedicated directories in
a local file system. A data-cache entry will correspond
to two files in this directory: the index file and the data
file. The index files contain the basic meta-data informa-
tion about the file; the most important one is its FSAL
handle. The data file is the actual data corresponding
to the cached file. The index file is used to rebuild the
data-cache, in the event that the server crashes without
cleanly flushing it: the FSAL Handle will be read from
this file and then the corresponding meta-data cache en-
try will be re-inserted as well, making it point to the data
file for reconstructing the data cached entry. Garbage
collection is performed at the same time as meta-data
cache garbage collection. Before garbaging files, the
meta-data cache asks the data cache if it knows this en-
try or not. If not, regular meta-data garbage collection
is performed. If yes, the meta-data cache asks the data
cache to apply its garbage policy on it, and eventually
flush or purge it. If the file is cleaned from the data
cache, it can be garbaged from meta-data cache. A con-
sequence of this is that a file which has an active entry in
the data cache will never be cleaned from the meta-data
cache. This way of working fits well with the architec-
ture of GANESHA: the worker threads can manage the
data cache and meta-data cache at the same time, in a
single pass. As stated above, the two caches are in fact
the same, so no incoherence can occur between them.
The data cache has no scalability issue (the paths to the
related files are always known by the caches) and does
not impact the performance of the meta-data cache. The
policy used for data cache is “write-back” policy, and
only “small” files (smaller than 10 MB) will be man-
aged; others would be accessed directly, ignoring the
data cache. Smarter or more sophisticated algorithms
can be implemented—for example, the capability, for
very large files, to cache a region of the file but not
the whole file. This implementation could be linked
to NFSv4 improvements like NFSv4 named attributes
or the use of the PNFS paradigm (which is part of the
NFSv4.1 draft protocol).

5 File System Abstraction Layer

FSALs (or File System Abstraction Layers) are a very
important module in GANESHA. They exist in differ-
ent incarnations: HPSS FSAL, POSIX FSAL, NFSv4

120 • GANESHA, a multi-usage with large cache NFSv4 server

Proxy FSAL, SNMP FSAL, and LDAP FSAL. They
provide access to the underlying file name-space. They
wrap all the calls used for accessing it into a well defined
API. This API is then used by the Cache Inode and File
Content module. FSAL can use dedicated APIs to ac-
cess the name-space (for example, the SNMP API in the
case of SNMP FSAL), but this API will completely hid-
den from the other modules. FSAL semantics are very
close to the NFSv4 semantics, an approach that is re-
peated in the Cache Layers. This uniformity of seman-
tics, close to native NFSv4, makes the implementation
of this protocol much easier. Objects within FSAL are
addressed by an FSAL Handle. This handle is supposed
to be persistent-associated with a single FSAL object by
an injective relationship: two different objects will al-
ways have different handles. If an object is destroyed,
its handle will never be re-used for another FSAL ob-
ject. Building a new FSAL is the way to make GANE-
SHA support a new name-space. If the produced FSAL
fits correctly with the provided non-regression and vali-
dation tests, then the GANESHA daemon need only be
recompiled with this new FSAL to provide export over
NFS for it. Some implementation documents are avail-
able in the GANESHA distribution. External contribu-
tors may actively participate to GANESHA by writing
additional FSALs. Templates for FSAL source code are
available in the GANESHA package.

5.1 The HPSS FSAL

This FSAL is not related to Free Software, but a few
words must be said for historical reasons, because it
strongly contributed to the origin of the project. We
are using the HSM named HPSS,8 a third-party vendor
product sold by the IBM company. This HSM manages
a name-space, accessible in user space via dedicated
API, which fully complies with the FSAL pre-requisites.
The name-space is relatively slow, and this led us to im-
prove the caching features in GANESHA. This module
is available, but not within the regular distribution of
GANESHA (you need to have HPSS installed to com-
pile it with the HPSS API libraries).

5.2 The POSIX-based FSAL

This flavor of FSAL uses the regular POSIX calls (open,
close, unlink, stat) from LibC to manage file system

8HPSS stands for High Performance Storage System.

objects. All the file systems managed by the machine
on which the daemon is running (depending on its ker-
nel) will be accessible via these functions; using them
in GANESHA provides generic NFS access to all of
them. The inconvenience is that POSIX calls often use
the pathnames to the objects to identify them. This is no
persistent information about the object (a rename could
be performed on it, changing its name). This does not fit
with the pre-requisite to build FSAL, as described in the
previous subsection. Another “more persistent” identi-
fier is to be found. The choice was made to use an an-
cillary database (basically a PostgreSQL base) to build
and keep the identifier we need. The tuple (inode num-
ber, file system ID, ctime attributes) is enough to fully
identify an object, but the name should be used to call
the POSIX functions. The database will keep parent-
hood relationship between objects, making it possible to
rebuild the full path to it, by making a kind of “reverse
lookup” when needed. SQL optimization and pathname
caching were used a lot in the module. A complete de-
scription of the process would require a full paper. Why
develop such a module when it could be much easier
to use the NFS interface in the kernel? The answer is
linked with the resource we use at our compute center.

GANESHA can access more file systems than most
available kernels at our site. We had the need to access
the LUSTRE file system, but some machines were not
LUSTRE clients. In most cases, they are not Linux ma-
chines. We strongly needed them to be able to access the
LUSTRE name-space. This could not be done via NFS
kernel support: this NFS implementation uses the VFS
layer a lot, a part of the kernel that is often bypassed
by the LUSTRE implementation for optimization. This
approach, using the simple POSIX calls to access LUS-
TRE from GANESHA, was quick to write and not very
costly.

This module is available.

5.3 The NFSv4 Proxy FSAL

When designing GANESHA, we had one thought: hav-
ing a NFSv4 proxy would be great. NFSv4 has lots
of features that are designed for implementing aggres-
sive cache policy (file delegation is a good example of
this feature). GANESHA is designed to manage huge
caches. The “wedding” seems very natural here. The
NFsv4 Proxy FSAL wraps NFSv4 client calls to FSAL
calls. It turns the back-end part of GANESHA into a

2007 Linux Symposium, Volume One • 121

NFSv4 client, turning the whole daemon into a NFSv4
proxy server. The mechanism of file delegation is a fea-
ture in NFSv4 that is quite interesting here. It allows
a file to be “fully acquired” by a client for a given pe-
riod of time. Operations on files, such as IO operations
and modification of its attributes, will be done on the
client directly, without disturbing the server; that guar-
antees that no other clients will access it. Depending on
the kind of delegation used, the server may use transient
callbacks to update information about the file. When the
delegation ends, the server recovers the file, getting the
new state for the file from the client. Delegation, used
jointly with GANESHA meta-data and data caches, is
very efficient: accessing a file’s content will be done
though data cache, once a delegation on the file has been
acquired. The policy for the NFSv4 Proxy FSAL will be
to acquire as many delegations as possible, populating
the GANESHA’s caches. With a well populated cache,
GANESHA will become able to answer by proxy many
requests. In NFSv4.1, a new feature is added: the di-
rectory delegation. This will allow the content of di-
rectories to be delegated and acquired by clients in the
same way that file contents are. Used with GANESHA’s
meta-data cache, this feature will be very interesting.

This module is still under development.

5.4 The “Ghost FS” FSAL

This FSAL is a very simple one and is not designed for
production use. It just emulates the behavior of a file
system in memory, with no persistent storage. The calls
to this FSAL are very quick to return because all the
work is done in memory, no other resources are used.
Other FSALs are always much slower than the cache
layer.9 It is hard to evaluate meta-data and cache mod-
ules performances. With the “Ghost FS” FSAL, calls
to these layers can be easily qualified, and it is possible
to identify the most costly calls, and thus to optimize
GANESHA.

This module is available.

5.5 The LUSTRE FSAL

As mentioned above, LUSTRE is a file system we use
a lot, and we would like to access it from machines
that are not LUSTRE clients. We already developed

9Otherwise there would have been no need for caches. . .

the POSIX FSAL for this, but having something more
acquainted with LUSTRE would be nicer. Having a
user-space LUSTRE API able to perform operations in
a handle-based way would be something very interest-
ing: it would allow us to wrap the API to a LUSTRE
FSAL, making the access to this file system via the
GANESHA NFSv4 interface much more efficient than
the one we have with the POSIX FSAL. We also hope
to use the NFSv4 named attributes10 to provide clients
for LUSTRE-specific information about the file (the res-
ident OST11 of the file is a good example).

This module is under definition. It will be finalized as
soon as a handle-based LUSTRE API is available.

5.6 The SNMP FSAL

The SNMP protocol organizes sets of data as trees. The
overall structure of the trees is defined by files named
MIB.12 Knowing the MIB yields the ability to compute
the OID13 to access a given management value. This
OID is basically a list of numbers: each of them iden-
tifies a node at the given level in the tree, and the last
one identifies the leaf where the data resides. For ex-
ample, .1.3.6.1.4.1.9362.1.1.0 identifies the
Uptime value in the SNMPv2 MIB. This OID is used to
query a SNMP agent about the time since the last reboot
of the machine. OIDs can also be printed in a “sym-
bolic” way, making them more human readable. In the
previous example, .1.3.6.1.4.1.9362.1.1.0 is
printed as SNMPv2-MIB::system.sysUpTime. This tree
structure is in fact a name space: each SNMP-accessible
variable can be seen as a “file object” whose content
is the value of the variable. There are “directories”
which are the nodes in the MIB structure. OIDs are
very good candidates for being handles to SNMP
objects, and are to be mapped to names (the symbolic
version of the OID). This clearly shows that SNMP has
enough features to build an FSAL on top of it. Using
it with GANESHA will map the SNMP information
into an NFS export, able to be browsed like a file
system. It is then possible to browse SNMP in a
similar way to the /proc file system. In our exam-
ple, Handle .1.3.6.1.4.1.9362.1.1.0 would

10which are basically the way NFSv4 manages extended at-
tributes.

11Object Storage Target: the way LUSTRE views a storage re-
source.

12Management Information Base.
13Object ID.

122 • GANESHA, a multi-usage with large cache NFSv4 server

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
hr

ou
gh

pu
t (

en
tr

ie
s

lis
te

d/
se

c)

Number of GANESHA’s worker threads

Thoughput when scanning a 100k entries filesystem
from an empty server’s cache

Figure 2: Performance with an empty metadata-cache

map to (mounted NFS PATH)/SNMPv2-MIB/
system/sysUpTime. A read operation on
SNMPv2-MIB/system/sysUpTime would yield
the corresponding value.

Some SNMP values are settable: in this approach, they
could be changed by writing to the file corresponding to
them.

This module is under development.

5.7 The LDAP FSAL

The idea for this FSAL is the same as for the SNMP
FSAL. LDAP has a name-space structure and is acces-
sible via a user-space API. This FSAL simply wraps
this API to provide FSAL support, then NFS support
via GANESHA for LDAP. LDAP information will then
be browsed like /proc, via NFS.

This module is under development.

6 Performances and results

In this section, we will show GANESHA’s scalability
feature by an actual test. The test is as follows: a specific
tool was written to perform, in a multi-threaded way (the
number of threads is configurable) what find . -ls
does, which is scanning a whole large tree in a name-
space. This tree contained 2220 directories on 3 levels;
each of them contained 50 files (which means more that
110,000 files were in the whole tree). The test utility
ran on several client nodes (up to 4 machines) using the
same server. The multi-threaded test utility was run of

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
hr

ou
gh

pu
t (

en
tr

ie
s

lis
te

d/
se

c)

Number of GANESHA’s worker threads

Thoughput when scanning a 100k entries filesystem
from a preloaded server’s cache

Figure 3: Performance with a preloaded metadata-cache

each of these 4 clients with 64 threads each. This was
equivalent to 256 cache-less clients operating concur-
rently. The server machine was a IBM x366 server with
four Intel Xeon 3 GHz processors and 4 GB of RAM,
running GANESHA built with the POSIX FSAL. Two
groups of measurements were made. The first one is
done with a server whose meta-data cache is empty (Fig-
ure 2), and the second (Figure 3) with the same server
with a preloaded cache. In this second step, the read
entries exist in the memory of the server, and the perfor-
mance of the meta-data cache can be compared to the
raw FSAL performances.

Figure 2 shows that saturation of the FSAL occurs
quickly. Increasing the number of worker threads in-
creases the performance, but no larger throughput than
5,000 entries read per second can be reached. Observa-
tions made on the server showed that no CPU or mem-
ory contention led to this saturation effect. The rea-
son was that the POSIX FSAL on top of the underlying
POSIX calls did not scale to these values.

Figure 3 shows different results. Due to the meta-data
cache, most of the operations are done directly in mem-
ory, reducing greatly the calls to POSIX FSAL. The
throughput raises up to 90,000 entries read per second.
The dependence between this throughput and the num-
ber of worker threads is linear, which shows the scalabil-
ity of the process. After 11 worker threads, we can’t see
such linearity. The reason for this was due to CPU con-
gestion. The OS could not allocate enough CPU time to
all the workers, and they start waiting to be scheduled.
This test should be performed on a larger platform.

This test shows that the multi-thread architecture in

2007 Linux Symposium, Volume One • 123

GANESHA provides good scalability.

7 Conclusion and perspectives

GANESHA has been in production at our site for more
than one full year. It fits the needs we had when the
decision was taken to start the project. Its large cache
management capability allowed an increase of the in-
coming NFS requests on the related machines, a need
that was critical for several other projects.

When the product started in full production, in January,
2006, this provided us with very useful feedback that
helped in fixing bugs and improved the whole daemon.
Thanks to this, GANESHA is a very stable product in
our production context at our site. Making GANESHA
Free Software is an experience that will certainly be very
positive; we expect the same kind of feedback from the
Open Software community. GANESHA can also be
of some interest for this community; we actually be-
lieve that is could serve well as a NFSv4 Proxy or as
an SNMP or LDAP gateway.

NFSv4 is also a very exciting protocol, with plenty of in-
teresting features. It can be used in various domains and
will probably be even more widely used that the former
version of NFS. Lots of work is done around this pro-
tocol, like discussion about implementing its features
or extending it with new features (see NFSv4.1 drafts).
GANESHA will evolve as NFSv4 will. We hope that
you will find this as exciting as we did, and we are happy
to share GANESHA with the community. We are ea-
gerly awaiting contributions from external developers.

References

[1] S. Shepler, B. Callaghan, D. Robinson, Sun
Microsystems Inc., C. Beame, Hummingbird Ltd.,
M. Eisler, D. Noveck, Network Aplliance Inc.
“Network File System (NFS) version 4 Protocol,”
RFC 3530, The Internet Society, 2003.

[2] Callaghan, B., Pawlowski, B. and P.Staubach,
“NFS Version 3 Protocol Specification,” RFC
1813, The Internet Society, June, 1995.

[3] Sun Microsystems, Inc., “NFS: Network File
System Protocol Specification,” RFC 1094, The
Internet Society, March, 1989.

[4] Shepler, S., “NFS Version 4 Design
Considerations,” RFC 2624, The Internet Society,
June, 1999.

[5] Adams, C., “The Simple Public-Key GSS-API
Mechanism (SPKM),” RFC 2025, The Internet
Society, October, 1996.

[6] Eisler, M., Chiu, A. and L. Ling, “RPCSEC_GSS
Protocol Specification,” RFC 2203, The Internet
Society, September, 1997.

[7] Eisler, M., “NFS Version 2 and Version 3 Security
Issues and the NFS Protocol’s Use of
RPCSEC_GSS and Kerberos V5,” RFC 2623, The
Internet Society, June, 1999.

[8] Linn, J., “Generic Security Service Application
Program Interface, Version 2, Update 1,” RFC
2743, The Internet Society, January, 2000.

[9] Eisler, M., “LIPKEY—A Low Infrastructure
Public Key Mechanism Using SPKM,” RFC 2847,
The Internet Society, June, 2000.

[10] Shepler, S., Callaghan, B., Robinson, D.,Thurlow,
R., Beame, C., Eisler, M. and D. Noveck, “NFS
version 4 Protocol,” RFC 3010, The Internet
Society, December, 2000.

[11] B. Callaghan, “NFS Illustrated,” Addison-Wesley
Longman Ltd., Essex, UK, 2000.

[12] CITI. Projects: NFS Version 4 Open Source
Reference Implementation,
http://www.citi.umich.edu/
projects/nfsv4/linux, June, 2006.

[13] Connectathon. Connectathon web site,
http://www.connectathon.org.

[14] S. Khan. “NFSv4.1: Directory Delegations and
Notifications,” Internet draft,
http://tools.ietf.org/html/
draft-ietf-nfsv4-directory-
delegation-01, Mar 2005.

[15] Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, and R.
Thurlow, “The NFS Version 4 Protocol,” In
Proceedings of Second International System
Administration and Networking (SANE)
Conference, May, 2000.

124 • GANESHA, a multi-usage with large cache NFSv4 server

[16] A. Charbon, B. Harrington, B. Fields, T.
Myklebust, S. Jayaraman, J. Needle, “NFSv4 Test
Project,” In Proceedings to the Linux Symposium
2006, July, 2006.

[17] P. Åstrand, “Design and Implementation of a Test
Suite for NFSv4 Servers,” September, 2002.

[18] CEA, CNRS, INRIA. “CeCILL and Free
Software,” http:
//www.cecill.info/index.en.html.

Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

