
Roadmap to a GL-based composited desktop for Linux

Kevin E. Martin
Red Hat, Inc.

kem@redhat.com

Keith Packard
Intel, Inc.

keith.packard@intel.com

Abstract

Over the past several years, the foundation that
will lead to a GL-based composited desktop has
been laid, but there is still much work ahead
for Linux. Other OSes already have or are well
on their way toward having a solution in this
space. We need a concerted effort across every
level of the OS—from the applications through
the toolkits and libraries into the X server and
the kernel—if we are to be successful.

In this paper, we examine the key technologies
required, solve the limitations of the current X
server design, and bring a GL-based compos-
ited desktop to fruition. For each of these tech-
nologies we will present current development
status, explain how they fit together to create
the GL-based composited desktop, and outline
a roadmap for how to complete the remaining
tasks.

1 Desktop design limitations

The current X server design is starting to show
its age. Recent developments have shown that
it’s possible to create a GL-based composited
desktop, but in order to effectively take advan-
tage of the new technologies we describe in this
paper, we must first understand the key limita-
tions of the current design.

First, the current desktop has been designed
around a 2D display device, while the silicon
on graphics chips has shifted dramatically to
3D support. Integrating 3D into the desktop has
long been the goal, but until recently it has not
been possible. Other operating systems have
also recognized this paradigm shift—Apple is
using OpenGL through its Quartz [1] compos-
itor architecture and Sun has a research project
called Looking Glass [7] to experiment with us-
ing Java3D on their desktop.

A second limitation is that all drawing opera-
tions are being rendered directly into the front
buffer. What this means is that users can see
rendering artifacts while the desktop scene is
being constructed—i.e., the intermediate states
are visible. Most drawing operations are very
fast, so it usually appears as a visually dis-
pleasing blur before the final image is visible,
but sometimes is it much worse and you can
see individual elements being drawn. Tradi-
tionally, toolkits have had to work around this
problem by drawing directly to host-memory
pixmaps and then copying the finished image
to the screen.

A third limitation has been the static nature of
the desktop states and the transitions between
those states are either instantaneous or have
very primitive transition animations. For exam-
ple, when minimizing or un-minimizing win-
dows, they simply pop into or out of existence
or very simple window outlines are drawn in



92 • Roadmap to a GL-based composited desktop for Linux

sequence from the window to the icon in the
panel that show the transition.

Below, we describe an incremental approach
to making the new technology that addresses
these limitations available in the open source
community. The process we describe is to
evolving the existing Xorg X server and its ex-
tensions to provide the new technology. In this
way, we can minimize regressions for the ex-
isting installed base while still making a huge
impact on what is possible.

2 Building on the past

The GL-based composited desktop is built on
top of several key technologies that have been
developed over the past several years. In this
section, we describe three projects—the DRI,
Composite, and Luminocity—which are neces-
sary to understand the new technologies.

2.1 Direct rendering infrastructure

Throughout most of the 1990s, the only open
source implementation of OpenGL was Mesa
[9], which was a software-only client-side li-
brary that implemented the OpenGL interface.
Then, in late 1998, Precision Insight began de-
veloping the Direct Rendering Infrastructure
(DRI) [5], which brought open source hardware
accelerated 3D graphics to the Linux platform.
With this development, we took a huge step for-
ward on the path to addressing the first limita-
tion.

The way the DRI worked was that when an ap-
plication requested a direct-rendering context,
libGL would query the X server to see if a
hardware-specific driver was available and if
one was available, it would dynamically load
that driver and initialize the internal dispatch

table to use the driver for hardware accelerated
rendering. In this way, applications could be
written to the OpenGL library interface (or one
of its toolkits) and not have to have hardware-
specific knowledge.

But, as the name implies, the DRI was imple-
mented to handle direct rendering. The goal
was to eventually use the exact same hardware-
specific driver code to handle accelerated in-
direct rendering as well, but in the initial im-
plementation, indirect rendering was used—the
software Mesa code.

2.2 Composite

With the relatively recent development of the
Composite extension [8], developers now have
the ability to redirect window contents to off-
screen storage—i.e., pixel data that would nor-
mally have been drawn directly to an on-screen
window can instead be drawn to a host-memory
or off-screen pixmap. The pixel data can then
be copied to the display buffer as needed to
update what the user sees on his screen as his
desktop. So, Composite effectively gives us the
ability to double-buffer window data, an ability
that has long been used by OpenGL applica-
tions to eliminate visual artifacts, and addresses
the second limitation of the current desktop de-
sign in such a way that toolkits and individual
apps do not have to implement their own solu-
tions.

The ability to double-buffer window contents
is not new to the X world—the double-buffer
extension (DBE) allowed individual apps to
double-buffer their output. What makes Com-
posite unique is that it allows an external ap-
plication, the Composite Manager, to control
when windows are redirected and how their
pixel data are copied to the display buffer in-
stead of requiring each application to have di-
rect knowledge of DBE.



2006 Linux Symposium, Volume Two • 93

In addition, there are many other benefits from
using the Composite extension because it does
not dictate how the window contents will be
drawn to the display buffer. Various special
effects can be used to render the window con-
tents. For example, the window contents can
be stretched to fit the screen or shrunk to fit
into a window’s icon if stretch operators are
available. Other effects such as tranlucent win-
dows or drop shadows can be implemented if
alpha-blending is available. Many such effects
were demonstrated with the simple composit-
ing manager, xcompmgr. More complex ef-
fects could be implemented if the composite
manager was implemented with OpenGL.

2.3 Luminocity

In late 2004, some of the developers at Red Hat
began the Luminocity project [2] to experiment
with using OpenGL in a composite manager.
The basic idea behind Luminocity was to create
OpenGL textures from each redirected window
and then render rectangles to the framebuffer
using those textures. This is similar to what Ap-
ple was doing with Quartz and Sun was doing
in the Looking Glass project.

A significant difference between Luminoc-
ity and previous composite managers (e.g.,
xcompmgr) was that it handled both window-
ing and compositing operations in the same
process. By combining the two, Luminocity
could not only copy window data to the screen
and render static effects like drop shadows, but
it could also animate various state transitions.
For example, Red Hat created the wobbly win-
dow effect, where windows were modeled with
by simple spring system so that dragging a win-
dow around would distort it as if you were
pulling on one of the springs.

Since the only open source hardware-
accelerated OpenGL available at that time

was through the DRI, Luminocity was devel-
oped to use direct rendering. However, this
quickly led them to discover one of the primary
performance problems: the number of data
copies required to get the redirected window
pixel data into a texture that could be used
by the hardware were killing performance.
Luminocity first had to copy the redirected
window data from a host-memory pixmap in
the X server to the client application, which
required a slow XGetImage call, or a copy
of the redirected pixmap data to a shared
memory pixmap. The image data could then
be reformatted to send to the OpenGL driver,
which might also have to reformat the pixel
data (depending on which driver and what
data format was supported by the driver), and
then the driver would upload the texture to the
video card. Ultimately, we want to get to the
point where no data copying is necessary—i.e.,
a redirected window could be drawn to a
pixmap resident in the framebuffer and have
the pixmap format be the same as what the
driver requires so that it can be used directly
by the hardware’s 3D engine.

3 Roadmap to the new desktop

With the DRI, the Composite extension, and
Luminocity, the three main limitations of the
current desktop design were addressed, but in
order to turn these solutions into something that
performs well, supports the myriad of X exten-
sions, and is robust enough to use in an enter-
prise environment, much more work is needed.
Many new technologies are currently under de-
velopment in the X, DRI, Mesa, kernel, toolkit,
and desktop communities. Below we survey
the technologies that will allow us to achieve
our GL-based composited desktop goal.



94 • Roadmap to a GL-based composited desktop for Linux

3.1 Accelerated indirect rendering

As noted earlier, indirect rendering was left
completely unaccelerated in the initial DRI
project. The plan had always been to imple-
ment accelerated indirect rendering using the
same card-specific driver code that is loaded on
the client-side by libGL; however, it was not a
simple task, and the driving issue to make this
happen did not occur until the GL-based com-
posited desktop became feasible.

The software Mesa driver used in the initial
DRI work was based on the libX11 version of
Mesa, which translated OpenGL requests into
X11 drawing commands. This code, which
previously called Xlib functions directly, was
modified to instead call the equivalent internal
X server function. This version of the client-
side GL code was called GLcore.

The interface used to initialize and call
into GLcore were the __GLinterface and
__GLdrawablePrivate structs, which are
part of the OpenGL sample implementation
(SI) [12]. However, the interface to the DRI
card-specific driver code was based on Mesa in-
ternals, which is quite different than the GLcore
interface based on the SI. In order to use
the same driver code on both with the client-
side DRI and the server side GLX code, this
impedance mismatch had to be solved and was
one of the reasons that it took so long to imple-
ment accelerated indirect rendering.

The AIGLX project is currently under devel-
opment in the Xorg community, and its goals
are to solve the impedance mismatch between
the client and server-side driver code while still
allowing unaccelerated indirect rendering code
with the software Mesa driver when no card-
specific driver is available or when the user re-
quests it. This work is both part of and built on
top of the GLX client-side code rewrite [11].

The initial development stage of AIGLX is part
of the X11R7.1 release.

In this project, a new abstraction layer [3]
based on the DRI interface was developed
to provide the glue logic between the server-
side GLX extension code and the card-specific
driver. The new interface provides three ob-
jects: __GLXscreen, __GLXcontext, and
__GLXdrawable. Methods for allocating the
DRI-specific objects and calling into the card-
specific driver are contained entirely within the
abstraction layer, which are called the DRI
provider.

Since not all graphics cards have card-specific
3D drivers and since several other servers (e.g.,
Xnest) that provide GLX support cannot use
hardware drivers, the GLcore module must re-
main available and the top level of the GLcore
module had to be rewritten to use the new in-
terface. This allows it to be used in place of the
card-specific drivers when needed or desired,
and is called the GLcore provider.

To initialize the GL module for each screen,
a stack of GL providers are called and the
first provider that returns a non-NULL __

GLXscreen claims that screen. This mecha-
nism allows for future GL modules to imple-
ment their own __GLXprovider and hook into
the provider stack.

Future development will be needed to add sup-
port for GLX 1.3 (see below) and to continue
reworking GLX visual initialization [11].

3.2 GLX 1.3 support

Much of the support for GLX 1.3 has already
been added to the client and sever-side code,
but several key pieces are currently missing. In
particular, support for pbuffers will need to be
implemented, which requires more advanced
memory management than we currently have.



2006 Linux Symposium, Volume Two • 95

3.2.1 Memory management

OpenGL applications can require lots of off-
screen video-card or agp memory for their
buffers (e.g., front, back, depth, vertex, etc.)
as well as for their textures. The initial DRI
implementation used a shared buffer allocation
scheme which pre-allocated the front, back,
and depth buffers. This allocation scheme was
possible since windows were clipped by the
X server, and it was the X server’s respon-
sibility to determine what memory resources
were given to the shared buffers, textures, and
off-screen pixmaps at server initialization time.
However, this scheme is no longer adequate and
needs to be reevaluated for several reasons ex-
plained below.

First, with GLX 1.3, a new shared resource—
the pbuffer—was added, which allows off-
screen rendering for both direct and indirect
rendered contexts. To claim support for GLX
1.3, pbuffer support is required, which means
that dynamic allocation of off-screen memory
resources is required and the simple allocation
scheme from the initial DRI implementation is
inadequate.

Second, GLXPixmaps were unaccelerated in
the initial DRI implementation, and in or-
der to implement hardware acceleration, the
buffers associated with them need to be dynam-
ically allocated/freed in off-screen memory as
pixmaps are created/destroyed. Note that direct
rendering to GLXPixmaps is not required, but
it is greatly desired for use with the Composite
and texture-from-pixmap extensions.

Finally, with the Composite extension, it is now
possible to redirect GLX windows. Those redi-
rected windows are no longer clipped by the
normal X window stacking order, so it not pos-
sible to share the pre-allocated buffers. In addi-
tion, redirecting windows greatly increases the
off-screen memory requirements if hardware-

accelerated rendering is desired (which is es-
pecially true for OpenGL applications). For
example, if a user is running his desktop at
1600∗1200 at 32BPP and he open his web
browser in a full-screen window, the addi-
tional memory required for that one window is
7.3MB. If that same user opens a full-screen
OpenGL application that also has a back and
32-bit depth buffer, then the memory require-
ment jumps to nearly 22MB! And this does not
account for any textures that the app might use.

Each of these issues can be solved with a
more advanced memory management frame-
work that can be shared by all processes that
need to access video and agp memory—e.g.,
the X server, direct rendered clients, and the
kernel’s direct rendering manager (DRM). The
new framework generalizes all allocations to
private buffers so that textures, color and an-
cillary buffers, pbuffers, pixmaps, and other
buffers (e.g., FBOs and VBOs) are treated the
same and can be allocated from the same mem-
ory pools. Additional basic requirements in-
clude being able to dynamically allocate the
buffers as required by the client and being able
to evict other clients’ buffers while still guar-
anteeing that their contents are preserved. This
work is currently under development by Tung-
sten Graphics [13].

With this new memory management frame-
work, it will become possible to imple-
ment several other GLX extensions including
texture-from-pixmap and framebuffer objects,
both of which are very useful to a GL-based
composited desktop.

3.2.2 Texture from pixmap extension

With AIGLX we now have the ability to render
directly from within the X server process; how-
ever, we still need to be able to use the window
pixel data that was redirected to a pixmap with



96 • Roadmap to a GL-based composited desktop for Linux

the Composite extension as a texture. This is
what the texture from pixmap GLX extension
provides (TFP).

The simple approach, as used by Luminoc-
ity, is to copy the data either through the
protocol via XGetImage or through a shared-
memory pixmap into the client’s address space
and then the direct-rendered composite man-
ager could use that data as the source for a
glTexImage2D or glDrawPixels call. How-
ever, this does not work in practice due to
the high overhead of copying pixel data to
and from video memory. A better approach
is to keep the pixmap data in the X server
address space where it was rendered and use
it directly as the source for a texture opera-
tion. GLX_EXT_texture_from_pixmap pro-
vides the interface to make that happen.

As noted above, the ideal solution is to have
the graphics card render the window contents
into an off-screen buffer, which would then be
used directly (i.e., with no copying or con-
version) as the input to the hardware texture
engine. To implement this solution, we will
need additional infrastructure work (e.g., mem-
ory management) as well as additional card-
specific driver work. Intermediate solutions are
also possible.

One intermediate TFP solution is to redirect
window data into host-memory pixmaps and
call the texture operations directly through the
new AIGLX abstraction layer interface to the
Mesa/DRI card-specific driver. By rendering
directly to host-memory pixmaps, we bypass
the “read from framebuffer” operation, which
is very slow—especially on agp hardware. This
intermediate TFP solution is what is currently
implemented and provides reasonable perfor-
mance for the initial window/composite man-
ager and toolkit work.

3.2.3 Framebuffer objects

The GL_EXT_framebuffer_object (FBO)
extension [6], which was recently approved by
the OpenGL Architectural Review Board ‘su-
perbuffers’ working group, defines a way to
render to destination buffers that are not the
traditional front display buffer (e.g., depth or
stencil buffers) and, further, it allows the desti-
nation to be other off-screen areas that can be
used as a texture source. By allowing FBOs to
be used both as an OpenGL render target and
at a later time as a texture source, this exten-
sion provides the basic framework required to
implement redirected OpenGL windows.

The proposed memory management work de-
scribed above lays the groundwork for FBOs
and makes the FBO implementation signifi-
cantly easier because it generalizes the notion
of buffers—i.e., it treats window-system frame-
buffers, textures, and FBOs the same. However,
there is still significant infrastructure and card-
specific driver work needed to generalize how
the various buffers are used.

Once the memory management and FBO work
is complete, redirected GLXWindows can be
internally emulated by framebuffer complete
FBOs within the X server for indirect render-
ing similar to how the Composite and TFP ex-
tension emulates X windows with X pixmaps.
Additional work will be required for direct ren-
dering to ensure that the DRI can handle emu-
lated GLXWindows.

An additional issue is that since the Composite
extension allows for redirection to be dynamic,
AIGLX and the DRI will need to provide a
mechanism for migrating from GLXWindows
to FBOs that masquerade as GLXWindows and
vice versa. However, the first implementation
might require OpenGL apps to be restarted if
an existing GLXWindow is redirected.



2006 Linux Symposium, Volume Two • 97

3.3 Composite overlay windows

There are a few cases where window output
should not be redirected off screen; the most
obvious being the output of the compositing
manager itself. Early compositing managers
painted their output directly to the root window,
bypassing any compositing computations.

However, a GL-based compositing environ-
ment makes using the root window problem-
atic. The existing GLX implementation assigns
specific rendering abilities to each Visual: dou-
ble buffering, alpha channel, etc. Usually, the
root window is assigned a visual with mini-
mal capabilities to avoid excess resource con-
sumption. Without a way to assign appropri-
ate resources, a GL-based compositing man-
ager would have to accept whatever capabilities
were assigned by the X server vendor.

In addition, these early 2D compositing man-
agers painted their output to the root window
in ‘IncludeInferiors’ mode; this mode bypasses
the normal clipping which would otherwise ob-
scure the rendering from areas of the screen
covered by application windows. While core
X and the Render extension both provide this
IncludeInferiors mode, GLX does not, making
it impossible to avoid the normal clipping.

Both of these problems can be solved. The FB-
configs mechanism from GLX 1.3 allows ap-
plications to assign alternate capabilities to GL
contexts created for existing windows. And
GLX could easily be extended to support In-
cludeInferiors drawing modes.

However, it’s also quite easy to work around
these limitations and leave most of the system
unchanged. Create a special ‘overlay’ window
that lies above all regular application windows
and then create the compositing manager win-
dow as a child of the overlay window. This per-
mits arbitrary selection of a Visual and elimi-
nates all of the clipping issues.

The one remaining issue is dealing with mouse
input, which now wants to bypass the overlay
window and act on the real application win-
dows. This is done by using the Shape exten-
sion to set the Input shape on the overlay win-
dow to an empty region, effectively eliminat-
ing the overlay window from participating in
mouse events.

It is quite possible that this overlay window
mechanism will eventually be superseded by
the other mechanisms described above, in the
meantime, this modest addition to the compos-
ite extension will serve for now.

3.4 Input transformation

While the Composite extension provides full
control over the presentation of window con-
tent to the user, it completely ignores mouse in-
put. If the composite manager doesn’t precisely
align window contents with their ‘native’ posi-
tions on the screen, chaos will ensue as the user
can no longer use the position of the cursor to
guide his or her mouse interactions.

To provide this complementary capability, the
system must provide some mechanism for
client control over the mapping from cursor co-
ordinates to locations within the window hierar-
chy. The Compositing Manager must be given
full control over the translation of root-relative
coordinates to the position of the cursor within
the appropriate window.

While the Composite extension’s output redi-
rection mechanism is reasonably simple to un-
derstand, the same is not true for input trans-
formation. It may be that this author hasn’t
yet found straightforward semantics that would
make this all “just work,” or it may be that this
is harder to implement than the output side.



98 • Roadmap to a GL-based composited desktop for Linux

3.5 Window/composite manager

Luminocity was a toy window/composite man-
ager which allowed developers to rapidly proto-
type various effects and experiment with using
OpenGL in a composited desktop. Luminocity
could have been developed into a fully func-
tional window manager, but this would have in-
volved re-creating the years of work that went
into developing Metacity. Instead, what was
learned during the Luminocity project was ap-
plied to and re-implemented in Metacity.

The approach taken was to create a new
OpenGL scene-graph based compositing li-
brary, called libcm, that encapsulated the
methods used by the rest of the window man-
ager to draw the desktop. Metacity could then
hook various state transition animations into
the scene-graph as needed.

By making the full OpenGL interface available,
arbitrarily complex animations can be created
that are only limited by what we can dream
and what the hardware is capable of. Some
common effects that have already been devel-
oped include various minimization, maximiza-
tion, menu fade in/out, drop shadows, window
transparency, and workspace switching. Many
others can be developed as the need arises.

It should be noted that while most of the tech-
nologies described above are critical to the GL-
based composited desktop, they have been de-
veloped to be completely general-purpose and
can be used independently by all developers.
For example, compiz [10] is another win-
dow/composite manager which takes a differ-
ent approach, but works using the standard
Xorg X server with the open source technolo-
gies currently under development [4].

4 Building X on OpenGL

Another X.org project, Xgl, is focused on re-
placing the rendering infrastructure within the
X server with calls to OpenGL. By eliminating
custom 2D rendering code, the goal is to gain
access to the often highly optimized OpenGL
implementation for the video card, reducing the
amount of code necessary to support each card
while improving performance at the same time.

While a GL-based X server doesn’t seem very
closely related to the work presented here, Xgl
uses its access to the OpenGL API to provide
accelerated indirect GLX functionality, includ-
ing an implementation of the TFP extension.
The result is an X server which also supports
OpenGL-based compositing managers.

The key difference is that while the work pre-
sented here is an incremental addition to the
existing X server architecture, Xgl represents
a complete re-implementation of the X server
input and drawing infrastructure. As all cur-
rent OpenGL implementations run within the
confines of a 2D window system, for Xgl to
run, another window system must be running
‘underneath’ it. The eventual goal of the Xgl
project is to replace the underlying window
system with lightweight hardware management
mechanisms.

5 Conclusion

We have surveyed many new technologies that
will allow the Linux and other communities to
implement a GL-based composited desktop. As
of this writing, the initial implementations of
AIGLX and TFP are scheduled to be included
with X11R7.1 and a technology preview, which
redirects windows to host-memory pixmaps is
available at:



2006 Linux Symposium, Volume Two • 99

http://fedoraproject.org/wiki/

RenderingProject/aiglx

Work on input transformation, advanced mem-
ory management, redirecting extensions (e.g.,
Xv, GL, DRI), frame buffer objects, FBcon-
figs, and full GLX 1.3 support are all cur-
rently in progress with the expectation that
they will start appearing in the upstream de-
velopment source code over the next several
months. As each new technology appears, the
window/composite manager, toolkits, and other
desktop features will be updated to take advan-
tages of the new features. The future of a GL-
based composited desktop for Linux is looking
very bright.

References

[1] Apple Computer. Quartz extreme.
http:
//www.apple.com/macosx/
features/quartzextreme/.

[2] Red Hat. Luminocity. http:
//live.gnome.org/Luminocity.

[3] Kristian Høgsberg. Aiglx update.
http://lists.freedesktop.
org/archives/xorg/
2006-February/013326.html.

[4] Kristian Høgsberg. Compiz on aiglx.
http://lists.freedesktop.
org/archives/xorg/
2006-March/013577.html.

[5] Precision Insight. Direct rendering
infrastructure. http:
//dri.freedesktop.org/wiki/.

[6] Jeff Juliano and Jeremy Sandmel.
Framebuffer object extension to opengl.
http:
//oss.sgi.com/projects/

ogl-sample/registry/EXT/
framebuffer_object.%txt.

[7] Sun Microsystems. Project looking glass.
http://www.sun.com/
software/looking_glass/.

[8] Keith Packard. Composite extension.
http://cvs.freedesktop.org/
xlibs/CompositeExt/
protocol?view=markup.

[9] Brian Paul. Mesa 3d graphics library.
http://www.mesa3d.org/.

[10] David Reveman. Compiz. http:
//en.opensuse.org/Compiz.

[11] Ian D. Romanick. Bringing x.org’s glx
support into the modern age.
http://www.cs.pdx.edu/~idr/
publications/ddc-2005.pdf.

[12] SGI. Opengl sample implementation.
http://oss.sgi.com/
projects/ogl-sample/.

[13] Keith Whitwell and Thomas Hellstrom.
New dri memory manager and i915
driver update. http:
//www.tungstengraphics.com/
xdevconf2006.pdf.



100 • Roadmap to a GL-based composited desktop for Linux



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


