
Startup Time in the 21st Century: Filesystem Hacks and
Assorted Tweaks

Benjamin C.R. LaHaise
Intel Corporation

bcrl@linux.intel.com

Abstract

While processors have relentlessly increased
in performance over the past few years, the
amount of time it takes a modern Linux dis-
tribution to go from the bootloader to a work-
ing shell remains relatively large and painful.
Several key points in the boot process offer the
chance to make more efficient use of otherwise
idle time in the system to perform tasks that are
required by later stages of initialization. The
missed opportunities range from the precious
seconds lost while Grub idly awaits user input
to the seek-bound thrashing of init scripts and
filesystem checks.

To improve this situation, a block device cache
called BootCache is filled via sequential reads
earlier in the boot process. This helps remove
the IO bottleneck from the boot process, en-
abling further performance tuning through tra-
ditional profiling techniques. This paper exam-
ines the impact of BootCache on startup time
and regular workloads, as well as the new bot-
tlenecks that are revealed by the modified sys-
tem.

1 Background

The inspiration for this work was a talk pre-
sented at OLS in 2005 during which Bert Hu-

bert presented actual measurements of the la-
tencies associated with disk IO during appli-
cation startup. These measurements showed a
substantial amount of time being wasted while
the system waited on IOs that caused the disk
to seek. These delays are of particular interest
to many of us who spend time waiting for lap-
tops to boot. Laptops tend to have horrendously
slow drives, often spinning at 4200 rpm com-
pared to the more typical 7200 rpm of current
desktop drives. This raises the question: how
much benefit does removing the seek bottle-
neck provide when IO is started early enough?
What are the issues of concern in implement-
ing a cache to make sequential streaming reads
possible? Can such a cache be useful for work-
loads outside of booting?

2 Is it worthwhile?

The first step in looking at any potential op-
timization to solve a problem is to see if the
effort spent will actually accomplish anything.
Thankfully, the Linux kernel has a standard
measurement of system idle time which is use-
ful in estimating how much time is spent wait-
ing on IO. Barring a few moments when the
startup scripts wait several seconds for user in-
put, the startup scripts should not be spending
much time sitting idle.



72 • Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks

Uptime Idle time
System 1

to init 13.2s 6.4s
to rc.local 38.0s 24.9s

System 2
to init 8.3s 4.0s

to rc.local 46.3s 36.3s

Table 1: Idle time during boot

Simply getting to the login prompt involves the
system sitting idle for approximately 25s on
each boot for a fairly minimal set of daemons
being started on a pruned FC4 install. A more
complex system (FC5 default install) spends
over 36s in idle time. This is ripe for improve-
ment.

3 A first cut

There has been some experimentation with us-
ing the readahead() syscall to prefetch data
into the cache, but this suffers from a number of
problems. The most notable drawback is that
it does not eliminate the time wasted by disk
seeks.

This leads into the main requirement of Boot-
Cache, which is that all IO should be sequen-
tial. Sequential streaming is a task that disks
are much better tuned for, with many disks able
to read at rates of more than 60 MB/s. With
that in mind, a rough prototype of BootCache
was written.

For the purposes of the prototype, the Boot-
Cache modules take the approach of dumping
the contents of the kernel’s page cache and
buffer cache into a simple log file which can
be replayed on boot. The order in which data is
recorded is determined via a log of cache refer-
ences collected by the system during boot. The

prototype is rather grotesque in that it hooks di-
rectly into the page cache and buffer cache di-
rectly. All of this functionality is included in
the mkbootcache module, which performs
these tasks as part of its initialization function.

The mkbootcache module operates by per-
forming multiple passes over the access log.
Each pass attempts to write out the data of ei-
ther a buffer cache page or a page cache page.
If the page is dropped from the cache or not
valid, the entry is dropped. This is necessary
because the log of what pages are contained in
the BootCache must be present at the beginning
of the cache.

One important element of mkbootcache is
that it must ensure that the cached copy of any
blocks stored on disk remains up to date with
the original. This is accomplished by snoop-
ing all writes to the root filesystem’s block de-
vice. When a write overlaps a block in the
cache, mkbootcache steps in and writes out
a copy to the cache before allowing the request
to proceed. This step is extremely tricky to
get right, as the order of block writes is espe-
cially important to journaling filesystems. With
mkbootcache in place and keeping the data
coherent, the cache’s log file is now ready to be
used on boot.

On boot, a module called trystuffcache
is loaded immediately after the root filesystem
is mounted. This module attempts to replay
the log file and stuff data back into the page
cache and buffer cache. For the paranoid during
testing, it would only compare the log against
the actual data on disk, which made debugging
substantially easier.



2006 Linux Symposium, Volume Two • 73

Without With
BootCache BootCache

to BootCache n/a 8.0s
to rc.sysinit 12.3s 15.7s

to login 44.9s 30.8s

Table 2: Fedora Core 5 boot times

4 How does BootCache improve
things?

For a laptop installed with Fedora Core 5, boot
time to the login prompt takes 44.9s with an un-
modified kernel. With a BootCache in place,
boot time is reduced to 30.8s. This 14s im-
provement (a 32% reduction in boot time) in-
cludes the time it takes to load the BootCache
log from disk. Even though the log comes in
at a whopping 205MB (mostly due to FC5’s
readahead-preloading many desktop applica-
tions).

There is an even more impressive improve-
ment in the case of preloading the cache for
a git diff operation. Without the cache
being stuffed, git diff takes 1m 06s after
a fresh boot, yet with BootCache stuffing the
cache, it only takes 0.2s. Even including the run
time of trystuffcache, BootCache comes
out ahead.

5 Improvements

In writing the prototype BootCache and mak-
ing it work using the cache-stuffing technique,
there were quite a number of small hurdles to
overcome. Cache coherency was most tricky
and results in increased overhead for requests
passing through to the underlying block de-
vice. Those requests affecting the BootCache
area (especially inodes and superblocks) must

be written out twice. Depending on the jour-
naling mode of the filesystem, the cache and
the original blocks can end up out of sync.

To simplify and make the system more robust,
it is probably better to eliminate the duplica-
tion of blocks and instead focus on block-based
readahead. This would have to go hand-in-
hand with reordering the layout of files on disk
to place those accessed during boot in a com-
pact sequential area on the disk. Then, by per-
forming readahead on this area of the disk, the
benefits from cache-stuffing can be achieved
while the complexity and coherency issues of
the cache-stuffing process are eliminated.

6 Further Information

Before starting this work, it was unclear how
much of an improvement to boot time the Boot-
Cache functionality would actually provide.
Thankfully, a 32% reduction in boot time is
of definite utility. As BootCache is a work
in progress, there will be updates. These up-
dates will be made available at http://www.
kvack.org/~bcrl/bootcache/.



74 • Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


