
Hacking the Linux Automounter—Current Limitations
and Future Directions

Ian Maxwell Kent
Red Hat, Inc.

ikent@redhat.com

Jeff Moyer
Red Hat, Inc.

jmoyer@redhat.com

Abstract

The IT industry is experiencing a consider-
able shift from proprietary operating systems
to Linux. As a result, the features and func-
tionality that people have come to expect of
these systems now must be provided for on
Linux. An automounter provides a mechanism
for automatically mounting file systems upon
access, and umounting them when they are no
longer referenced. The Linux automounter is
not feature-complete and there are cases where
Linux autofs is just plain incompatible with im-
plementations from other proprietary vendors.
In order to solve the current automounter lim-
itations, we start by developing an understand-
ing of how things work today. We explain
the basic configuration of autofs for a client
machine using simple examples. Then walk
through the the internals for basic operations,
such as the mounting, or lookup, of a direc-
tory and the umounting, or expiry, of a direc-
tory. This includes a description of where aut-
ofs fits into the VFS layer. Next we discuss
the two main deployment difficulties. The first
is that the Linux automounter implements di-
rect mount maps in a way that is incompat-
ible with that of every other implementation.
We discuss the desired behavior and compare
it with that of the Linux automounter. We will
then discuss the current development effort to
overcome this by extending autofs and its ker-

nel interface. The second major problem sur-
rounds the use of multi-mount entries for the
/net, or -hosts mount maps. Because of
the nature of multi-mount maps, the Linux im-
plementation mounts and umounts these direc-
tory hierarchies as a single unit. This means
that clients mounting exported filesystems from
large servers can experience resource starva-
tion, causing failed mounts. The root problem
is described and we show how the kernel and
Linux automounter can be modified to address
this issue also. We conclude with a review of
the progress of the work outlined above and
give a summary of future directions.

1 Introduction

With even a modest amount of information,
network clients often need many mount entries
in their tables to make the organization’s infor-
mation available. To make matters worse, the
mount tables often change. The administrative
overhead is not workable. This leads to heavy
use of an automounter in many enterprises.

An automounter provides the ability to manage
mount tables centrally, automatically mounting
entries on demand and umounting them after
a predefined period of inactivity. In addition to
the reduction in administrative overhead, an au-
tomounter provides a dramatic reduction in the

38 • Hacking the Linux Automounter—Current Limitations and Future Directions

resources needed to have a significant number
of file systems available on demand from an ar-
bitrary number of network servers.

Many enterprises are adopting Linux as client
workstations and server platforms, which has
considerably increased the use of the Linux au-
tomounter in the past two years. As a result,
bugs are identified and deficiencies are pointed
out. Most importantly, places where the Linux
implementation differs from that of industry
standard implementations have become a sig-
nificant issue. The most commonly raised dis-
crepancies are:

• The Linux automounter implements direct
maps quite differently from the industry
standard.

• Multi-mount maps are mounted and
umounted as a single unit.

• Browsable maps are not the default.

• The Linux automounter does not support
included maps

• The Linux automounter does not support
the -null map.

• The Linux automounter does not consult
/etc/nsswitch.conf as it should for
determining the source of an automount
map.

Each of these issues causes problems in mixed
environments, where Linux automount clients
share the same maps with other vendor imple-
mentations, typically provided by a NIS server.
They also cause problems in migrations to
Linux from proprietary Unix platforms, where
maps must be changed to either do things the
Linux way, or work around the limitations of
the Linux automounter. We will discuss these
issues and others in Section 4.

2 Unix automounter

Every commercial Unix platform has an auto-
mounter implementation with a standard set of
features. The most well known implementa-
tion is the one found in Sun

TM
Solaris

TM
. It has

set the standard for what to expect in an auto-
mounter.

2.1 The master map

An automount configuration consists of a mas-
ter map describing the mount tables it man-
ages. It is generally located in the /etc di-
rectory and is called either auto.master or
auto_master. It consists of a line for each
automount managed mount point, formatted as
follows:

mount-point map-name [mount-options]

mount-point
mount-point is the full path of the direc-
tory of the mount point. If the directory
does not exist, it is created. The excep-
tion to this convention is that the entry may
begin with a plus (+) followed by a map-
name, which causes the specified map to
be included from its source as if it were
itself present in the master map.

map-name
map-name is the name of the map con-
taining the mount table. If it begins with
a slash (/), it is interpreted as a local file
name. Otherwise, the name service switch
configuration is used to locate the source
of the map. This can also be one of the
special maps: -hosts used to mount ex-
ports from hosts on the network, or -null
used to mark a mount-point to be ex-
cluded when parsing subsequent master
map entries.

2006 Linux Symposium, Volume Two • 39

mount-options
mount-options is an optional comma sepa-
rated list of mount options to be applied to
the entries in the map unless entries in the
map specify their own options.

Lines beginning with a # are comments and are
ignored. Long lines may be broken by quoting
the new line character with a backslash, as is
common practice in configuration files.

The special mount point /- is reserved to indi-
cate that the map is a direct mount map and is
not associated with any specific top-level direc-
tory.

2.2 Mount maps

Mount maps consist of two types—indirect and
direct—and have the following basic format:

key [mount-options] location

key
key is the name used to look up mount ta-
ble entries in the map. For indirect mount
entries, this is the name of the directory
upon which the mount will be made. For
direct mount entries, this is the full path
leading to the directory upon which the
mount will be made.

mount-options
mount-options is an optional comma-
separated list of mount options to be ap-
plied to the map entry.

location
location specifies the file system that is to
be mounted on key. It can be a single file
system or a number of file systems to se-
lect from using availability and proxim-
ity metrics. It may also consist of multi-
ple key [mount-options] location

offsets that each must start with a slash (/).
If the first offset is /, then it is optional.
These offset mount entries are referred to
as multi-mount entries in Linux autofs.

There are a number of standard macro substi-
tutions available for use in location specifica-
tions. They are commonly used in multiple ar-
chitecture environments. A description of those
normally available can be found in [2] on page
190. For those understood by Linux autofs, see
autofs(5).

As in the master map, lines beginning with a #
are comments and are ignored, and long lines
may be broken by quoting the new line charac-
ter with a backslash.

A map key of * denotes a wild-card entry. This
entry is consulted if the specified key does not
exist in the map. A typical wild-card entry
looks like this:

* server:/export/home/&

The special character & will be replaced by the
provided key. So, in the example above, a
lookup for the key foo would yield a mount of
server:/export/home/foo.

The timeout on mounts points defaults to ten
minutes and can be changed using a command
line option when the service is started.

3 Linux automounter—autofs

The Linux automounter differs in relatively few
ways from traditional Unix automounter imple-
mentations. In fact, all of the information pro-
vided in the last sections regarding configura-
tion data apply to the Linux automounter as

40 • Hacking the Linux Automounter—Current Limitations and Future Directions

well. This section begins with a description of
the Linux-specific details of the master map,
and then moves on to the architecture of the
Linux automounter.

3.1 Linux autofs master map

The Linux autofs master map syntax is a super
set of the standard automount master map syn-
tax. This is partly because Linux autofs does
not utilize the name service switch to locate the
source of maps and so must allow it to be spec-
ified.

The syntax is:

mount-point \
[maptype:]map-name \
[mount-options]

The fields above are the same as those de-
scribed in Section 2.1 (“The master map”), ex-
cept for the maptype, which can be one of
file, program, yp, nisplus, hesiod or
ldap. The daemon supports the specification
of a map format within the maptype param-
eter. It can be sun or hesiod, but the init
script doesn’t cater for it. The default format
is sun, and it is a subset of the standard sun
automount map format. Linux autofs under-
stands much of this map format, and when a full
implementation of direct mounts is added, the
only things missing will be special maps such
as the -hosts and -null.

3.2 Architecture

The automounter is implemented in two main
parts: a user-space daemon, which is responsi-
ble for parsing map options and issuing mount
and umount commands, and a filesystem, im-
plemented in the kernel. The daemon is further

broken up into the daemon proper and a set of
loadable modules. To understand how the dae-
mon operates, we will walk through the dae-
mon startup for a minimal setup.

Consider the following auto.master map:

/net /etc/auto.net

We will not show the contents of the program
map, auto.net, as it is shipped with aut-
ofs. Autofs startup begins with the init script.
This script parses the auto.master map and
spawns one automount daemon for each mount
point listed. The example given above will re-
sult in an automount command with the follow-
ing parameters:

/usr/sbin/automount \

/net program /etc/auto.net

As shown above, the daemon takes as its op-
tions a mount point, the type of the map to be
loaded, and the name of the map to be loaded.

Now we will look at the loadable modules.
There are three types of modules: lookup,
parse, and mount. Lookup modules are used
to look up a given key in a map. The lookup
module has code that understands how to get
information from a map source. For exam-
ple, lookup_file.so is able to read in en-
tries from a file map. Map entries are stored
as a key value pair. The key, as noted above,
corresponds to a directory. The parse module
is then responsible for parsing the value part of
the key value pair. Finally, the mount module
takes care of doing the actual mounting. This
module has to know how to pass arguments on
to the mount command. In the case of NFS, this
module is also responsible for parsing repli-
cated server entries.

Returning to the example above, the daemon
knows that it needs to load the lookup_

2006 Linux Symposium, Volume Two • 41

program module, since the program map type
was specified in the command line. It calls
the module’s lookup_init routine, passing a
map format (or none, in this case), and all ar-
guments that the daemon itself did not process.
These leftover arguments are considered to be
map arguments.

The lookup module will perform its initializa-
tion and hand a context pointer back to the
caller. Before returning, though, it loads the
parse module, calling its parse_init func-
tion. It then passes the map format down, as
well as any options it did not handle. The parse
module will load the mount_nfs module, if it
hasn’t already been loaded. This module is al-
ways loaded, since the primary file system type
mounted via autofs has historically been NFS.

3.3 Multi-mounts

Multi-mount entries allow the user to specify a
directory hierarchy that will be mounted. For
example:

mydir -rw \
/ server:/export/mydir \
/src server2:/export/home/src \
/tmp :/usr/tmp

This example demonstrates how to cobble to-
gether a single directory structure from mul-
tiple servers. One point to note here is that
the mydir directory contains both an NFS-
mounted file system, and mount points beneath
it.

Currently, when any directory in this hierarchy
is accessed, the automount daemon mounts ev-
ery entry in the directory hierarchy. The expiry
of a multi-mount entry also happens atomically.

This is the mechanism used to imple-
ment -hosts. The program map auto.

net generates multi-mount entries on the
fly, and the daemon mounts them when
/net/<servername> is accessed. The
<servername> is used as the key.

3.4 VFS interface

To understand the kernel interface used by aut-
ofs, it is necessary to know a little about the
Virtual Filesystem Switch (VFS). The VFS is a
software layer that handles all system calls re-
lated to standard Unix file systems. It does this
by defining several data structures that contain
information about the file system and objects
that provide callback functions. The VFS uses
the callback functions to carry out standard file
system operations. The primary objects are the
superblock, the inode, the dentry, and the file
object. For the interested reader, a description
of the VFS, its data structures, and the opera-
tions they define can be found in Chapter 12 of
[7].

The dentry object represents a single compo-
nent of a directory path. One of the main func-
tions of the VFS is to resolve a given file system
path to its dentry by walking each of its path
components.

The VFS kernel interface of autofs is conceptu-
ally straightforward. The automount function-
ality is provided largely in the inode operation
lookup to lookup a new dentry, the dentry op-
eration revalidate to revalidate an existing den-
try, the file operation readdir to read a dentry
directory, and with a file system specific ioctl
to check for dentrys that have not been used for
a given timeout.

The bulk of the work done in autofs is the
mounting and expiring of file systems.

42 • Hacking the Linux Automounter—Current Limitations and Future Directions

3.4.1 Mount lookup

Mount requests are triggered when commands
or functions such as a cd, ls, or open cause the
VFS to walk a directory path within the aut-
ofs file system. This in turn calls the autofs4
function lookup if the directory doesn’t exist,
or revalidate if it does. Within these functions
there are two ways autofs can decide whether
a mount needs to be triggered. First, if the
directory doesn’t exist, then lookup creates a
negative dentry and passes it to the revalidate
function. Revalidate knows that a mount needs
to be requested when it sees a negative den-
try, so it sends a mount request packet to the
automount daemon. The daemon then issues
a mount command and returns a status when
done. For the second case, when the directory
exists, the revalidate function is called and de-
cides whether a mount request needs to be sent
by checking whether the dentry is an empty di-
rectory and not already a mount point. If this is
the case, then a mount request packet is sent to
the daemon. This process is shown in Figure 1.

automount

VFS

process
User

cd /home/raven

link_path_walk

autofs4
module

lookup,
revalidate or
readdir

request
mount

packet

Kernel space
User space

mount

Figure 1: autofs mount lookup

3.4.2 Mount expiry

Expiration of mounts is achieved by calling the
autofs expire ioctl. The autofs daemon does
this when it receives an alarm signal, which has
a frequency of one quarter of the mount time-
out. The daemon looks for mounted file sys-
tems under the path on which it is mounted and
asks the autofs kernel module whether it can
expire them. If the kernel module decides that
the daemon can expire a mounted dentry, then
it sends an expire request packet to the daemon,
which in turn issues an umount command and
returns a status when done, as shown in Fig-
ure 2.

expire
request
packet

automount

autofs4
module

automount

VFS ioctl
pass

expiry
check dentry

Kernel space
User space

umount expire ioctl

Figure 2: autofs mount expiry

4 Limitations

4.1 Master map semantics

Linux autofs starts instances of automount from
its init script by reading a master map and pars-
ing its contents. This is not really the right
place to perform this task, so it’s not surpris-
ing that there are a couple of things that the init
script doesn’t do.

2006 Linux Symposium, Volume Two • 43

First, if there are multiple instances of a key, it
is expected that the corresponding maps will be
merged. This feature is often used to add local
maps to a given key on a per client basis.

The other thing that the init script, and hence
the master map processing doesn’t not handle
is the use of the -null map. The -null map
is used to mark a master map mount-point

as excluded from subsequent parsing. It also
umounts these entries during a reload of the
master map.

4.2 Included Maps

Another feature expected of an automounter is
the ability to include a map in-line from within
another map using the syntax +mapname. This
feature is supported in both master maps and
mount maps and is only allowed in file based
maps.

Linux autofs does not yet know how to do this.
We will briefly discuss this issue in Section 6
when we talk about the new version of autofs.

4.3 Large Number of Mounts

There are 2 issues using a large number of NFS
(and autofs) mounts. The first is the number
of devices available for mounts. The second is
reserved port allocation in the RPC layer.

4.3.1 Anonymous devices

NFS and autofs use the anonymous block de-
vice major number. In a vanilla 2.4 kernel, this
provides a maximum of 255 devices and hence
a maximum of 255 mounts [1]. A commonly
used patch provides an additional 4 unused ma-
jor device numbers, which increase the num-
ber of devices available for mounts to 1280.

The kernel-assigned device numbers provide an
additional three major block device numbers
for anonymous mounts, but they are not yet
used. So the number of possible mounts could
be 2048. However, the limit on the number
of anonymous devices is typically not reached,
due to the port allocation limitation in the RPC
layer (discussion below).

The maximum number of anonymous devices
was substantially increased in the 2.6 kernel[1],
and it is questionable whether effort should be
spent resolving this same problem in the 2.4
kernel given the port allocation limitation in the
RPC layer.

4.3.2 RPC Port Allocation

Many of the RPC based services (mountd,
portmap, NFS, etc.) use a reserved port in the
range 1–1024 for their operation. This is done
to prevent non-privileged users from subverting
the services.

When a service requests an RPC connection,
binding to a reserved port is the default. The
RPC layer scans ports starting from 800 down
until it finds one that is unallocated. This
method would be fine if RPC were able to
multiplex traffic for multiple connections to a
server over one or a few sockets. However, it
cannot yet do so.

When a source port is not provided during RPC
connection establishment, the RPC layer will
attempt to allocate a reserved port for both UDP
and TCP connections [1]. While this attempt is
not so bad for UDP, it’s terrible for TCP mount
requests because of the lengthy time lag during
which the socket is not available for re-use af-
ter being closed. Using ports outside the privi-
leged port range is possible only if the exported
file system is configured with the “nosecure”

44 • Hacking the Linux Automounter—Current Limitations and Future Directions

option [4]. A code review is needed to estab-
lish whether other services, such as mountd and
portmap, can be configured to allow insecure
ports for their connections. But of course, us-
ing insecure ports is generally not a good idea.

Autofs and mount also perform RPC probing to
discover whether the target server is available
before performing a mount. This process leads
to as many as nine ports per mount being used
during a mount, which causes rapid exhaustion
of reserved port space. The RPC port alloca-
tion algorithm allows for a maximum of 800
concurrently mounted file systems when using
UDP.

The situation is somewhat different with TCP.
For each TCP mount attempt, a client uses
multiple reserved ports, and each TCP socket
must transition through the TIME_WAIT state
to ensure the completion of the TCP three-way
handshake. This process ensures that lost dupli-
cates don’t cause errors on subsequent connec-
tions. The TIME_WAIT state is 2*MSL (max-
imum segment lifetime) [3, Ch. 2, Sec. 7],
which is 60 seconds for the Linux TCP stack.
After this timeout, these reserved ports are free
for use again.

This leads to a practical limit of around 100
TCP protocol mounts performed in rapid suc-
cession. If the mounts are performed much
more slowly, as is expected in normal opera-
tion, this number is somewhat larger. Never-
theless, it generally falls somewhat short of the
theoretical limit of 800 before port allocation
problems appear.

4.4 Handling multi-mounts

Multi-mounts were discussed in Section 3.3.
These map entries must be handled atomically,
mounted and umounted as a single unit. Prob-
lems arise when using the auto.net program

map if the servers have a large number of ex-
ports, or if there are a large number of mount
point offsets in a multi-mount entry. They must
be handled as a single unit due to possible nest-
ing dependencies within the mount hierarchy.

The anonymous device and reserved port ex-
haustion described in previous sections are the
source of the problem. We will present a par-
tial solution to this problem in Section 6, where
lazy mount/umount of multi-mount map entries
is described. Even with the improvements there
is still a limit on the total number of mounts that
can be active at any one time due to resource
exhaustion. The only real solution to this prob-
lem is multiplexing of RPC connections.

4.5 Parsing nsswitch.conf

Currently, the Linux automounter does only
limited parsing of the nsswitch.conf file. It
is only referenced when trying to locate the
master map during startup. The script just
checks what sources are present in the auto-
mount entry in nsswitch.conf, and looks for
the auto.master map in each location.

There are a couple of reasons for this. First, all
other consumers of the nsswitch.conf file
use the standard glibc interfaces for accessing
the nsswitch.conf file. This interface is not
conducive to the use that automount makes of
it.

The format is described in the nsswitch.

conf(5) man page. It includes basic usage,
such as:

subsystem: lookup_list

It also contains some more complex usages,
such as:

2006 Linux Symposium, Volume Two • 45

subsystem: lookup_type \

[reaction] lookup_type

The general form of reaction is:

’[’ (’!’? STATUS ’=’ ACTION)+ ’]’

STATUS can be success, notfound, unavail, or
tryagain. ACTION is either return or continue.
Thus, the following entry will look up a key in
NIS, and it will fail the lookup if it is not found.
However, if the lookup failed because the NIS
service was not available, it will try LDAP:

automount: nis [NOTFOUND=return] ldap

It would be nice to leverage the existing code in
glibc for parsing this file. However, if we em-
bed the automounter lookup modules in libc,
then it becomes difficult to update the lookup
modules in the future. This would also intro-
duce a dependency between the version of the
installed automounter and the version of the in-
stalled libc package. Such dependencies are
not desirable, and could lead to an increased
overhead and maintenance burden. The right
way to address this problem is to parse the
nsswitch.conf file from the autofs code it-
self.

5 Direct mount support

Limited direct mount map support was intro-
duced in autofs version 4.1.

This support is implemented by creating sub-
mounts internally for intermediate path compo-
nents and reduces to indirect automount points
for the leaves of the map. If the direct mount
map refers to a mount within an existing file
system, then the upper levels of that file system

will be hidden, because an autofs file system
will be mounted over them.

For example, the direct map

/nfs/apps/geoframe \
perseus:/local/apps/geoframe

/nfs/apps/tomcat \
perseus:/local/apps/tomcat

works fine if the directory tree /nfs is devoted
to the direct mount map alone.

But the example

/usr/share/man \
atlas:/local/${OSNAME}/man

will not work, because /usr will be broken out
and over mounted.

Another limitation of this implementation is
that it can’t deal with single directory direct
mounts as there is no way to turn them into
an equivalent indirect mount. For example, the
following will not work:

/data filer:/local/data

This is clearly not a good implementation, but
because of the severe limitation on the number
of anonymous devices in the 2.4 kernel, it was
decided to make this compromise to get a lim-
ited amount of functionality. Another consid-
eration is that this scheme works with a wide
range of older kernel modules and provides ad-
equate functionality for a considerable range of
maps found in everyday operation.

The limitations outlined here have all been re-
solved with the rework of direct mounts de-
scribed in Section 6.

46 • Hacking the Linux Automounter—Current Limitations and Future Directions

6 Autofs Version 5

Work is well underway to resolve most of the
limitations described above. In order to imple-
ment the new functionality in a clean and sen-
sible way, it has been necessary to increment
the kernel protocol version to 5.00. It seemed
sensible then, to avoid confusion, to increment
the version of the user space daemon to 5.0.0 as
well. Given the decision to increment the ma-
jor version, it follows that the development pri-
ority should be to implement missing function-
ality rather than attempt to retain compatibility
with older versions of autofs. Hence, the new
functionality will work only with version 5.00
of the kernel module. Existing indirect mount
maps will continue to work as in previous ver-
sions.

6.1 Direct mount implementation

The first and most important task has been to
implement fully functional direct mounts. This
is particularly important because it paves the
way for lazy mount/umount of multi-mounts
and host map implementations.

Two methods are available to do this. The
first is to use file system stacking similar to
that found in Wrapfs from the FiST [5] sys-
tem. Although using Wrapfs from FiST was
very compelling, in the end it was decided it
would increase the complexity too much when
compared to the chosen method.

The method that has been used is to treat each
direct mount entry as a distinct mount and take
advantage of the VFS inode method follow_
link to trigger mounts. This method is safe to
use for this purpose because a directory cannot
be a symbolic link; therefore the method cannot
otherwise be in use. Since mount point directo-
ries are created in the host file system, the VFS

doesn’t call the autofs lookup, revalidate,
or readdir methods when the directory is ac-
cessed, but calls the follow_link method
(which follows the lookup during a path walk)
to trigger the mount before walking into the
next directory. This implementation is surpris-
ingly simple but effective.

The changes needed in the daemon are rela-
tively straightforward as well. A mount op-
tion direct has been added so the kernel module
knows it is a direct mount and can send mount
requests to the daemon at the right time. In
the daemon an additional entry point has been
added to each of the lookup modules to enu-
merate a map so that the mount triggers can be
set up.

The changes in the communication protocol be-
tween the kernel and the daemon also allow a
single process or thread to handle an entire di-
rect mount map.

One difference comes in the expiry of direct
mounts. Each direct mount that has had a
mount triggered over mounts the direct mount
point. Because of this it is passed over when
the kernel walks the path. Therefore the busy-
ness timeout can only be updated during an ex-
pire run. As a result, only truly busy mount
points (ie. with open files or a processes work-
ing directory) will prevent expiry. Changing
this expire semantic does not seem to be a prob-
lem and will hopefully help with graphical en-
vironments preventing mounts from expiring
due to the way they often scan file systems for
changes.

Another issue is that because direct mounts are
made on directories within the underlying file
system, changes to direct maps cannot be seen
until the map is re-read (by sending the daemon
a HUP signal).

It is interesting to note that existing industry
implementations implement direct mounts in a

2006 Linux Symposium, Volume Two • 47

similar way.

6.2 Lazy mount/umount

Lazy mount/umount of multi-mount map en-
tries has been a difficult problem to solve for
some time now. But with the direct mount
changes above, we can see how it can be done.

The basic problem to be solved is that of nested
mounts. Let’s revisit the example of Section 3.3
on multi-mounts with a couple of small modifi-
cations to demonstrate the problem:

mydir -rw \
/ server:/export/mydir \
/src server2:/export/src \
/src/f77 server2:/export/src/f77 \
/src/c server2:/export/src/c \
/tmp :/usr/tmp

When mydir is accessed, the file system cor-
responding to the offset / is mounted. But now
the file system is not necessarily an autofs file
system, so we can never get a callback from the
kernel. So autofs never knows another mount is
needed. Therefore, we must treat the entry as a
single unit and mount everything. Clearly this
necessity applies equally when there is nesting
at lower levels in the offsets, such as the offsets
in the src directory.

We can deal with this issue by partitioning
the offsets and installing direct mount triggers
within each of the file systems. In our exam-
ple, when mydir is accessed we mount the en-
try corresponding to / and install direct mount
triggers for each offset within the list bounded
by nesting points. In this case, we install direct
mounts for /src and /tmp. Similarly, when
one of these mounts is triggered we mount it
and install the corresponding triggers. In the
example we mount the entry for /src and then

install triggers for /scr/f77 and /src/c and
so on.

Expiring these is a little trickier, because for
multi-mounts like these we need to expire the
direct mounts themselves as well as the file sys-
tems that may be mounted on them. To solve
this problem, we need a way for the kernel to
distinguish multi-mounts from standard direct
mounts. The obvious way to do this is to add
an additional mount option, “offset” to distin-
guish them from other direct mounts.

The interesting thing about this scenario is that
when a file system is mounted on a trigger that
is perhaps itself nested, it will always be seen
as busy by the expire system because there is
a file handle open for communication with the
mount. On the other hand, a direct mount trig-
ger without such a mount doesn’t hold open a
pipe but creates it at mount time. So multi-
mounts can expire independently in a natural
way without further complication.

6.3 Host maps

Since the lazy mount/umount has been imple-
mented many of the the resource issues with
host maps should be resolved. A separate mod-
ule is devoted to handling host maps. The im-
plementation amounts to little more than enu-
merating the local hosts table, then enumer-
ating their exports and using this information
for lookups when they are accessed. The cur-
rent simple implementation will no doubt need
much refinement, such as filtering out non-NFS
servers from the local hosts list to reduce clut-
ter.

6.4 Nsswitch integration

A parser for handling /etc/nsswitch.conf

map source lookups has been added. Integrat-
ing the parser amounted to adding a layer to

48 • Hacking the Linux Automounter—Current Limitations and Future Directions

perform lookups between the daemon and the
lookup modules. The daemon now calls the
common lookup module instead of calling the
lookup modules directly and iterates through
the list of sources found during the parse
of /etc/nsswitch.conf. There where, of
course, a number of side affects that had to be
overcome but generally it appears to work quite
well.

6.5 Master map parsing

Another important issue is the parsing of mas-
ter maps in the init script. The init script is
clearly not the right place for parsing the master
map. As is the case in other industry automount
implementations, parsing should be done in a
utility designed specifically for that purpose or
in the automounter proper.

Another requirement is to use the name ser-
vice switch to read maps and lookup entries in
map sources. The code developed above also
works well for this which resolves another of
our long-standing limitations.

The other feature that is expected of an auto-
mounter is that when there are multiple entries
for a key in the master map, these entries should
be merged as described in Section 2.1. This
has been achieved by leveraging the functional-
ity implemented for handling nsswitch seman-
tics. It follows fairly naturally from the need to
handle multiple map sources required by nsss-
witch. Implementing this feature has also pro-
vided a way to implement -null map support
in a fairly straightforward way. However, there
are difficulties identifying a map that needs to
be refreshed when there has been a change.
But otherwise this should end up working fairly
well.

6.6 Included map support

Included map support has also been imple-
mented. The design fits into the map reading
and lookup modules by just watching for a “+”
as the first character of a map key and calling
the higher common lookup function to do the
work, then continuing after it returns. This has
been done for both the master map and mount
maps but plus map inclusion is allowed only in
file maps as is the case with other industry stan-
dard automounters.

6.6.1 LDAP support

The LDAP lookup module has been a concern
for a long time and it has finally got some of
the attention it so badly needed. The areas
that have been improved are the ability to spec-
ify the schema used for storage of automount
maps, integration of master map parsing into
the daemon, encrypted TLS connections and
the ability authenticate to the LDAP server.

One long standing problem is the need to sup-
port two distinct LDAP schema used to store
automount maps as well as some variations
within these schema. The schema to be used
can now be set in the autofs configuration for
the five class and attribute names used to query
an LDAP server. This will reduce the over head
of using an LDAP server for autofs quite a bit
and allow the use of other schema if it is re-
quired, as long as it is consistent with the way
the base schema are used.

There have been a number of requests to add
the ability to use encrypted connections and to
be able to use authentication when connecting
to an LDAP server. First, encrypted and op-
tionally certified connections can now be made
using the START_TLS mechanism. The config-
uration for the location of certificates must be

2006 Linux Symposium, Volume Two • 49

done using the method required by the client
LDAP library and settings in an autofs authen-
tication configuration must be used to enable
it. Authentication uses the SASL library and
the authentication method to use along with
the login name and secret are also held in the
same file as the TLS options above. So far
the only method tested has been DIGEST-MD5
but other common methods available in SASL
should work or be relatively straightforward to
add.

7 Concluding remarks

The astute reader will have noticed that the
above implementation of direct mounts and
lazy mount/umount of multi-mount maps will
use a lot of anonymous devices. This use has
become possible since the limit on the number
of these devices was greatly increased in the
early stable release cycle of the 2.6 kernel. It
could be possible for this to function with a 2.4
kernel, but no work has been done to estimate
the effort to back port the anonymous device
changes. So initially at least, direct mounts will
only be available for 2.6 kernels.

This paper has described a good number of
achievements and identified the challenges in
rounding out the Linux automount implemen-
tation. We don’t mean to say that these chal-
lenges are the only ones we face—just the most
difficult to address, as well as those that are fun-
damental to having a functional automounter
on Linux.

The current status of the changes outlined
above for autofs version 5 is that the di-
rect mounts, nsswitch handling, lazy mount/
umount, integration of master parsing, nsswitch
integration and the LDAP improvements have
all been done but have seen limited testing. The
plus map inclusion has also been done but has

some challenging problems with respect to map
refresh.

References

[1] Linux Kernel source, Versions 2.4 and
2.6, http://www.kernel.org/.

[2] Hal Stern, Mike Eisler and Richardo
Labiaga, Managing NFS and NIS, 2nd
Edition, O’Reilly, June 2001.

[3] W. Richard Stevens, Bill Fenner, and
Andrew M. Rudoff, UNIX Network
Programming, The Sockets Networking
API, Volume 1, Third Edition,
Addison-Wesley Professional Computing
Press, 2004.

[4] Travis Bar, Nicolai Langfeldt, Seth Vidal
and Tom McNeal, Linux NFS-HOWTO,
http://nfs.sourceforge.net/
nfs-howto/, 2002-08-25.

[5] FiST: Stackable File System Language
and Templates, Eraz Zadok et al.,
http://www.filesystems.org/.

[6] Sun
TM

Microsystems NFS
Administration Guide, Chapter 5,
http://docs.sun.com/, 1995.

[7] Robert Love, Linux Kernel Development,
Second Edition, Novell Press, 2005.

50 • Hacking the Linux Automounter—Current Limitations and Future Directions

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

