
VMI: An Interface for Paravirtualization

Zach Amsden, Daniel Arai, Daniel Hecht, Anne Holler, Pratap Subrahmanyam
VMware, Inc.

{zach,arai,dhecht,anne,pratap}@vmware.com

Abstract

Paravirtualization has a lot of promise, in par-
ticular in its ability to deliver performance by
allowing the hypervisor to be aware of the id-
ioms in the operating system. Since kernel
changes are necessary, it is very easy to get
into a situation where the paravirtualized kernel
is incapable of executing on a native machine,
or on another hypervisor. It is also quite easy
to expose too many hypervisor implementation
details in the name of performance, which can
impede the general development of the kernel
with many hypervisor specific subtleties.

VMI, or the Virtual Machine Interface, is a
clearly defined extensible specification for OS
communication with the hypervisor. VMI de-
livers great performance without requiring that
kernel developers be aware of concepts that are
only relevant to the hypervisor. As a result,
it can keep pace with the fast releases of the
Linux kernel and a new kernel version can be
trivially paravirtualized. With VMI, a single
Linux kernel binary can run on a native ma-
chine and on one or more hypervisors.

In this paper, we discuss a working patch to
Linux 2.6.16 [1], the latest version of Linux as
of this writing. We present performance data on
native to show the negligible cost of VMI and
on the VMware hypervisor to show its overhead
compared with native. We also share some fu-
ture work directions.

1 Introduction

Virtual machines allow multiple copies of po-
tentially different operating systems to run con-
currently in a single hardware platform [5]. A
virtual machine monitor (VMM) is a software
layer that virtualizes hardware resources, ex-
porting a virtual hardware interface that reflects
the underlying machine architecture. A proces-
sor architecture whose instructions produce dif-
ferent results depending on the privilege level
at which they are executed is not classically
virtualizable [13]. An example of such an ar-
chitecture is the x86. Unfortunately, these ar-
chitectures require additional complexity in the
VMM to cope with these non-virtualizable in-
structions.

A flexible operating system such as Linux
has the advantage that the source code can
be modified to avoid the use of these non-
virtualizable instructions [15], thereby simpli-
fying the VMM. Recently, the Xen project [12]
has explored paravirtualization in some detail
by constructing a paravirtualizing VMM for
Linux. Once you have taken the mental leap
of accepting to change the kernel source, it be-
comes obvious that more VMM simplification
is possible by allowing the kernel to communi-
cate complex idioms to the VMM.

VMMs traditionally make copies of critical
processor data structures and then write-protect
the original data structures to maintain consis-



364 • VMI: An Interface for Paravirtualization

tency of the copy. The processor faults when
the primary is modified, at which time the
VMM gets control and appropriately updates
the copy. A paravirtualized kernel can directly
communicate to the VMM when it modifies
data structures that are of interest to the VMM.
This communication channel can be faster than
a processor fault. This leads to both elimination
of code from the VMM—i.e., simplicity—and
also performance.

While reducing complexity of the VMM is
good, we should be careful not to increase the
overall complexity of the system. It would be
unacceptable if the code changes to the ker-
nel makes it harder to maintain, or restricts it
portability, distributability or general reliabil-
ity. Performance and the simplification of the
VMM has to be balanced with these considera-
tions too. For instance, it is tempting to allow
the kernel to be aware of idioms from the hy-
pervisor for more performance. This can lead
to a situation where the paravirtualized kernel
is incapable of executing on a native machine
or on another hypervisor. Introducing hypervi-
sor specific subtleties into the kernel can also
impede general kernel development.

Hence, paravirtualization must be done care-
fully. The purpose of this paper is to propose
a disciplined approach to paravirtualization.

The rest of the paper is organized as follows. In
section 2, we describe the core guiding princi-
ples to follow while paravirtualizing the kernel.
In Section 3, we propose VMI, or the Virtual
Machine Interface, that is an implementation of
these guidelines. Section 4 describes the other
face of VMI, the part that interfaces with the
hypervisor. In Section 5, we share the key as-
pects of the Linux 2.6.16-rc6 implementation.
Section 6 describes several of the performance
experiments we have done and shares perfor-
mance data. In Section 7, we talk about our
future work. Section 8 describes work done by

our peers in this area. The paper concludes in
Section 9 by summarising our observations.

2 Challenges for Paravirtualization

There are several high level goals which must
be balanced in designing an API for paravirtu-
alization. The most general concerns are:

• Portability – it should be easy to port a
guest OS to use the API.

• Performance – the API must enable a
high performance hypervisor implementa-
tion.

• Maintainability – it should be easy to
maintain and upgrade the guest OS.

• Extensibility – it should be possible for
future expansion of the API.

• Transparency – the same kernel should
run on both native hardware and on mul-
tiple hypervisors.

2.1 Portability

There is some code cost to port a guest OS
to run in a paravirtualized environment. The
closer the API resembles a native platform that
the OS supports, the lower the cost of porting.
A low level interface that encapsulates the non-
virtualizable and performance critical parts of
the system can make the porting of a guest OS,
in many cases, to be a simple replacement of
one function with another.

Of course, once we introduce interfaces that
go beyond simple instructions, we have to go
to a higher level. For instance, the kernel
can manage its page tables cooperatively with



2006 Linux Symposium, Volume Two • 365

the VMM. In these cases, we carefully main-
tain kernel portability by relying on the kernel
source architecture itself. As an example, sup-
port for the page table interfaces in the Linux
operating system has proven to be very mini-
mal in cost because of the already portable and
modular design of the memory management
layer.

2.2 High Performance

In addition to pure CPU emulation, perfor-
mance concerns in a hypervisor arise from
the fact that many operations, such as ac-
cesses to page tables or virtual devices includ-
ing the APIC, require costly trapping memory
accesses. To alleviate these performance prob-
lems, a simple CPU-oriented interface must be
expanded to incorporate MMU and interrupt
controller interfaces.

Also, while a low level API that closely resem-
bles hardware is preferred for portability, care
must be taken to ensure that performance is not
sacrificed. A low level API does not explic-
itly provide support for higher level compound
operations. Some examples of such compound
operations are the updating of many page table
entries, flushing system TLBs, and providing
bulk operations during context switches.

Therefore, the interface must not preclude the
possibility of optimizing low level operations in
some way to achieve the same performance that
would be available had it provided higher level
abstractions. Then, deeply intrusive hooks into
the paravirtualized OS can be avoided while
preserving performance.

2.3 Maintainability

Concurrent development of the paravirtual ker-
nel and hypervisor is a common scenario. If

changes to the hypervisor are visible to the
paravirtual kernel, maintenance of the kernel
becomes difficult. Additionally, in the Linux
world, the rapid pace of development on the
kernel means new kernel versions are produced
every few months. This rapid pace is not al-
ways appropriate for end users, so it is not un-
common to have dozens of different versions
of the Linux kernel in use that must be actively
supported. To keep this many versions in sync
with potentially radical changes in the paravir-
tualized system is not a scalable solution.

To reduce the maintenance burden as much as
possible while still allowing the implementa-
tion to accommodate changes, a stable ABI
with semantic invariants is necessary. The un-
derlying implementation of the ABI, including
the details of how it communicates with the hy-
pervisor, should not be visible to the kernel. If
this encapsulation exists, then in most cases the
paravirtualized kernel need not be recompiled
to work with a newer hypervisor. This allows
performance optimizations, bug fixes, debug-
ging, or statistical instrumentation to be added
to the API implementation without any impact
on the guest kernel.

2.4 Extensibility

In order to provide a vehicle for new features,
new device support, and general evolution, the
API uses feature compartmentalization with
controlled versioning. The API is split into sec-
tions, and each section can be incrementally ex-
panded as needed.

2.5 Transparency

Any software vendor will appreciate the cost of
handling multiple kernels, so the API takes into
account the need for allowing the same paravir-
tualized kernel to run on both native hardware
[10] and on other hypervisors. See Figure 1.



366 • VMI: An Interface for Paravirtualization

VMI Layer for 
VMware hypervisor

VMI Layer for 
native

VMI Layer for 
Xen 3.0.1

Native Machine 

VMware hypervisor Xen 3.0.1

Native Machine Native Machine 

VMI Linux

VMware hypercalls Xen hypercalls

VMI VMI VMI

Figure 1: VMI guests run unmodified on differ-
ent hypervisors and raw hardware

3 The Virtual Machine Interface

The VMI is the interface that the paravirtual-
ized kernel uses to communicate with the VMI
layer. The hypervisor interface is the other face
of the VMI layer which allows the VMI layer
to communicate with the hypervisor. It is the
VMI that is of relevance to the kernel. Any im-
pact from a change to the hypervisor interface
is absorbed by the the VMI layer and kept from
affecting the paravirtualized guest kernel.

The VMI layer itself is a compact piece of code,
usually developed and distributed by the hyper-
visor vendor. It is the VMI layer that hides the
differences between hypervisor interfaces, and
allows kernels and hypervisors to develop and
evolve independently of one another.

This section will discuss various aspects of
VMI. Subsequent sections will describe the
VMI layer and also the modifications we made
to port Linux to VMI.

3.1 Linear Address Space

The VMI specifies that a portion of the par-
avirtualized kernel’s linear address space is re-
served. This space is used by the VMI layer
and the hypervisor. See Section 4.4 for more
details.

3.2 Bootstrapping

Our implementation allows a paravirtualized
kernel to begin running in a fully virtualized
manner, compatible with a standard PC boot
sequence. The kernel itself may enter par-
avirtual mode by calling VMI_Init() at any
time, and we issue this call very early in ker-
nel startup. For hypervisors which do not sup-
port full virtualization, a protected mode entry
point to the kernel is required as well, which
we do not yet provide. It should be noted that a
transparently paravirtualized kernel must sup-
port the native boot sequence, so our imple-
mentation does not attempt to change that.

3.3 Non-virtualizable Instructions

Non-virtualizable instructions produce results
dependent on their privilege level. Since the
guest kernel is not run at the most privileged
level, these instructions cannot be issued di-
rectly. Instead, the VMI provides interfaces
for each of these instructions. Usually there is
one interface per non-virtualizable instruction,
so porting a new kernel is a trivial process.

3.4 Page Table Management

Aside from non-virtualizable instructions, a
major source of virtualization overhead on x86
is the need to virtualize the paging hardware



2006 Linux Symposium, Volume Two • 367

[12]. The hypervisor provides the paravir-
tual kernel with a normal x86 physical ad-
dress space. This physical address space must
be mapped onto the machine address space
of the host machine. The x86 architecture’s
hardware-walked page tables require that for
good performance, the virtual machine must
have a set of hardware page tables. There
are two basic approaches to solving this prob-
lem. The paravirtual kernel and hypervisor
can maintain two separate sets of page tables,
or the kernel and hypervisor can cooperate in
maintaining a single set of page tables. The
former approach, called shadow paging, re-
quires the hypervisor to maintain consistency
between the paravirtual kernel’s page tables
and the hardware page tables, but hides the ac-
tual machine mappings from the kernel. The
latter approach, called direct paging, requires
that the machine-to-physical and physical-to-
machine translation be done when reading and
writing the page tables, but eliminates the over-
head of maintaining two sets of page tables.
The current version of VMI [7] supports only
the first approach to maintaining hardware page
tables, but can easily be extended to also sup-
port the second mechanism.

A classical virtual machine monitor would trap
write accesses to the guest’s page tables in
order to keep the hardware page tables up
to date. This incurs significant overhead on
page table updates. VMI provides an inter-
face, VMI_SetPte(), for writing to page ta-
bles. For a hypervisor using the shadow pag-
ing technique, VMI_SetPte() both modifies
the guest’s page table, and notifies the hyper-
visor that the hardware page tables may need
to be updated. In the direct paging model,
VMI_SetPte() needs to perform a physical-
to-machine translation and update the page ta-
ble. Note that actually calling out to the hyper-
visor on every page table update would be un-
acceptably slow. See Section 4.4 for how page
table updates can be efficiently handled.

The guest is required to notify the hypervisor
of pages it will use as page tables via VMI_
RegisterPageUsage(). Similarly, VMI_
ReleasePage() is used when the guest will
no longer be using the page as a page table.
The hypervisor can use this information to help
keep its shadow page tables up to date or to pin
the type of the page to help limit the number of
page validations that are required when using
direct paging.

3.5 Device Support

The only non-CPU device that the VMI cur-
rently provides paravirtualized access to is the
x86 local APIC. The local APIC is the only de-
vice to which very fast access is an absolute re-
quirement for good system performance. We
emulate a complete x86 APIC, and merely pro-
vide fast accessors, VMI_APICRead() and
VMI_APICWrite(), for faster reading and
writing of APIC registers.

While we could have provided a more abstract
virtual interrupt controller, there is not much
performance benefit to doing so. Additionally,
in order to support running on native hardware,
a paravirtual kernel must contain code for deal-
ing with a real APIC anyway.

Other devices, such as disk controllers and
NICs are provided by complete device emula-
tion. While VMI does not preclude a hyper-
visor that provides more abstract device sup-
port such as Xen’s block device, we feel that
the driver code for such devices is mostly in-
dependent of the hypervisor interface, and does
not belong in the virtual machine interface.

3.6 SMP Support

For SMP systems, the BSP will call VMI_
SetInitialAPState for each application



368 • VMI: An Interface for Paravirtualization

processor, prior to sending the INIT IPI. The
APs can then start directly in C code. On na-
tive hardware, the boot sequence operates as is
and the VMI call is skipped.

Because we provide a full APIC implemen-
tation and the hypervisor shadows the guest’s
page tables, the only change needed to get SMP
virtual machines working was to change the
bootup code to allow the application proces-
sors to enter paravirtual mode. We have added
a mechanism for the BSP to set the entire ini-
tial state of each AP, including general purpose
registers, control registers, flags, and descriptor
tables. The APs can start directly in protected
mode, in a state ready to run x86 code.

We have plans to extend VMI as needed to sup-
port SMP direct-mode paging and provide an
event mechanism for remote CPUs.

3.7 Timer

Virtual machines will time share the physical
system with each other and with other pro-
cesses. Therefore, a VM’s virtual cpus (VCPU)
will be executing on the host’s physical cpus for
only some portion of the total cpu time.

VMI exposes a paravirtual view of time to the
kernel so that it may operate more effectively in
a virtual environment.

A VCPU is always in one of three mutually ex-
clusive states: running, halted, or ready. The
VCPU is in the ‘running’ state if it is execut-
ing. When the VCPU executes VMI_Halt(),
the VCPU enters the ’halted’ state and remains
halted until there is some work pending for the
VCPU (e.g. an alarm expires or host I/O com-
pletes on behalf of virtual I/O). At this point,
the VCPU enters the ’ready’ state (waiting for
the hypervisor to reschedule it).

VMI provides cycle counters for three time
domains: real time, available time and stolen

time. Real time progresses regardless of the
state of the VCPU. Stolen time is defined per
VCPU to progress at the rate of real time when
the VCPU is in the ready state, and does not
progress otherwise. Available time is defined
per VCPU to progress at the rate of real time
when the VCPU is in the running and halted
states, and does not progress when the VCPU
is in the ready state.

Additionally, wallclock time is provided by
VMI. Wallclock time is the number of nanosec-
onds since epoch, 1970-01-01T00:00:00Z (ISO
8601 date format).

VMI also provides a way for the VCPUs to set
periodic and one-shot alarms against real time
and stolen time cycle counters.

4 VMI Layer

This section describes an implementation of the
VMI layer for the VMware hypervisor. We also
discuss the techniques used by the VMI layer
to communicate with the hypervisor. While the
VMI layer is itself hypervisor dependent, we
expect that many of the ideas described here
will be employed by VMI layers used with
other hypervisors. In fact, we are currently de-
veloping a VMI layer for the Xen 3.0.1 hyper-
visor, and are using many of these same tech-
niques.

The VMI layer can be thought of as a thin ex-
tension of the hypervisor, running very close
to the paravirtual kernel. The VMI layer both
hides the hypervisor interface from the paravir-
tualized kernel and allows for efficient paravir-
tualization by providing a mechanism for mod-
ifying hypervisor state without incurring the
cost of calling down into the hypervisor itself.

The hypervisor interface consists of a hypercall
interface and a shared data area interface. The



2006 Linux Symposium, Volume Two • 369

hypercall interface is used to call into the hy-
pervisor to perform heavy-weight work. The
shared data area allows for efficient sharing of
state between the VMI layer and the hypervi-
sor, without incurring the cost of a hypercall.

4.1 VMI Calls

The VMI layer implements the VMI by provid-
ing the entry points that are invoked by the par-
avirtual kernel. The VMI layer code runs at the
same CPL as the paravirtualized kernel and can
therefore be invoked via a function call. VMI
calls are thus very fast.

The VMI layer code can service many VMI
calls by reading or writing the shared area. The
VMI layer code will only call out to the hy-
pervisor via a hypercall when it is truly nec-
essary to do so, such as writing to control reg-
ister 3 in order to change the page table base or
to write to an APIC registers with side effects
which must be implemented by the hypervisor.
Additionally, many VMI routines will queue a
hypercall in order to defer work that the hyper-
visor must perform at some later time.

4.2 Separation of Privilege

The x86 architecture has 4 privilege lev-
els, ranging from CPL 0 (kernel) to CPL 3
(user). Typical x86 operating systems, includ-
ing Linux, only use CPL 0 and CPL 3. In a vir-
tualization system, the hypervisor will typically
occupy CPL 0, while demoting the guest oper-
ating system kernel to CPL 1, 2, or 3. The VMI
Linux kernel has been modified to run at CPL
0 (for native runs), 1, or 2 (on hypervisors), but
not 3.

When running on the VMware hypervisor, the
VMI kernel will execute at CPL 2. When run-
ning on the Xen 3.0.1 hypervisor using the VMI

Hypervisor

Shared area

Guest

4032 MB

4064 MB

0 MB

4096 MB

Figure 2: Linear address space

layer that is under development, the VMI ker-
nel executes at CPL 1.

4.3 Hypercall Interface

Hypercalls are calls from the VMI layer to the
hypervisor itself. They require a privilege level
transition. We use the sysenter instruction to
perform the actual hypercall, since it is the
fastest way to enter CPL 0. The sysenter in-
struction does not provide a return address, so
we distinguish hypercall sysenters from guest
system calls by setting a marker in the shared
area data structure indicating that a hypercall is
in progress.

The hypercall interface is a contract between
the VMI layer and hypervisor. The paravirtual
kernel is not concerned with this interface.

4.4 Shared Data Area Interface

As mentioned earlier, a portion of the linear ad-
dress space is reserved for use by the hypervi-
sor and the VMI layer. The VMI layer shares
a data region with the hypervisor. The region



370 • VMI: An Interface for Paravirtualization

shared by the VMware VMI layer and hyper-
visor occupies the linear address range directly
above the guest range, and may grow to be as
large as 32 megabytes. The hypervisor occu-
pies the very top of the address space. See Fig-
ure 2.

The VMware shared data area includes virtual
cpu state such as the virtualized interrupt flag,
the contents of control registers, and the virtual
APIC state. The shared data area additionally
contains a hypercall queue, used to batch hy-
percalls.

The main use of the hypercall queue is to al-
low the guest to issue batch page table updates
without requiring a hypercall for each one. x86
semantics require that a page invalidation or
TLB flush be issued after a page table update,
so it is safe for the hypervisor to defer the hy-
percall to update the shadow page tables until
one of these events occur. Note however, that
the VMI_SetPte() call always updates the
guest’s page tables, so the guest’s page tables
are always up to date, even if the hypervisor’s
are not. It is also possible to batch together hy-
percalls other than PTE updates. This facility,
for example, could be used to update several
descriptors in the GDT, change the kernel stack
pointer, and change the page table base with a
single hypercall (though still requiring multiple
VMI calls).

Like the hypercall interface, the shared data
area interface is also a contract between the
VMI layer and the hypervisor, and therefore the
paravirtualized kernel need not be aware of the
shared area details.

5 VMI Integration in Linux

5.1 The Subarch Approach

Linux proved to be rather accommodating with
the infrastructure required for building a par-
avirtualized kernel. Rather than introduce a
completely new architecture into Linux, our
goal was to share as much code as possible
with the i386 architecture of Linux. The pro-
liferation of the i386 processor families has al-
ready led to a diverse set of hardware platforms
for which the i386 architecture can be com-
piled. These sub-architectures typically pro-
vide alternative interrupt controllers, trap han-
dlers, and vendor specific platform initializa-
tions, which corresponds quite well to the needs
of a VMI kernel. In addition, hooking the VMI
into Linux at the subarch level was desired,
since it gave a fully compatible native hardware
implementation, allowing us to fall back natu-
rally using standard hardware discovery mech-
anisms in the event that a hypervisor could not
be detected.

The subarch approach required moving non-
virtualizable and privileged processor defini-
tions into separate header files in the architec-
ture specific includes, but in general this was
pure code movement for the default architec-
ture, with corresponding VMI definitions to al-
low conversion to VMI calls. The most com-
plicated part of this was providing a reason-
able interface for separating the MMU page ta-
ble accessors, as the compile time PAE/non-
PAE header structure posed some difficulty. We
were able to eliminate many of the problems
here by mirroring the generic page-table code
and using defines at the subarch layer to indi-
cate the presence of alternative page table ac-
cessor functions. We also had to reorganize
how the subarch layers can override the default
definitions a little bit to eliminate all redundant



2006 Linux Symposium, Volume Two • 371

code, and generated a lot of code cleanup in the
i386 architecture layer along the way.

5.2 VMI call injection

The vehicle which we use for publishing the
VMI layer from the hypervisor to the guest is
a ROM module which is present in main mem-
ory. VMI call sites are tagged by building an-
notations at compile time about the location of
VMI calls. The code to make a call into the
VMI layer is emitted into a special translation
section, and the corresponding native instruc-
tions are left in place in the kernel, with ap-
propriate padding to allow the VMI layer call
translation to be copied into place.

The VMI subarch initialization code probes for
the ROM module early during boot and if found
it dynamically patches the kernel to convert all
tagged VMI call sites into calls into the VMI
layer. If no VMI hypervisor is detected, the
kernel can continue to run and discard the VMI
annotation and translation sections.

5.3 Descriptor tables

In general, Linux is quite minimal in the use of
segmentation, and as such, only a small section
of code needed to be changed to avoid introduc-
ing non-reversible segments (when the memory
value is changed after the segment register has
been loaded). Most of the calls to set the GDT
and descriptors are nicely compacted into the
boot and setup code, where there is no perfor-
mance impact.

5.4 Trap handlers

Our approach to handling the low level system
call and trap code was very much premised on

the goal of a transparently virtualized kernel.
As such, we avoided changes to this code as
much as possible. We did find two changes
unavoidable—first, we must convert instruc-
tions such as CLI and STI into suitable VMI
calls. Second, there exists code in the Linux
trap handlers to deal with unusual situations,
such as taking NMIs during entry to the ker-
nel from userspace, or reentry during a region
where the kernel is using a 16-bit stack, as is
necessary for emulation of certain legacy en-
vironments. The total changes required here
to meet both of these requirements were min-
imal, and resulted in less than 60 lines of code
change.

5.5 MMU implementation

Modifying Linux to make use of VMI_
SetPte() is relatively easy. Linux already
has macros for setting a page table entries:
set_pte, set_pmd, set_pud, and set_
pgd. Each of these invocations must be over-
ridden to use VMI_SetPte() in a VMI Linux
guest.

In addition, we needed to add an explicit flush
point to allow flushing of the page table up-
dates. On native hardware, this is unneces-
sary because the processor does not cache not-
present TLB mappings, and changes to present
mappings require either an explicit page invali-
dation or TLB flush. However, leaving page up-
dates in the hypercall queue for changes from
not-present to present would cause a delay in
setting that mapping in the hypervisor, and po-
tentially a spurious page fault. Fortunately, a
hook point already existed, as the Sparc pro-
cessor has an external caching MMU with the
same requirements. We simply hook update_
mmu_cache() and use it to flush the hyper-
call queue.



372 • VMI: An Interface for Paravirtualization

5.6 Timer implementation

The time subsystem of i386 Linux has some
characteristics that can cause suboptimal per-
formance and precision when executing on
a hypervisor. The paravirtualized kernel in-
cludes a new timer device module programmed
against the VMI timer and a new timer interrupt
handler driven by the VMI timer alarms to ad-
dress these issues. The VMI timer module and
VMI timer interrupt handler are installed condi-
tionally at boot up time if the VMI timer is de-
tected. Otherwise, the traditional timer device
code and interrupt handlers are used. This pro-
vides transparency. While these modifications
are new to i386 Linux, the S390 Linux time
subsystem has used many of the techniques de-
scribed below for some time.

The VMI timer device module implements the
timer_opts call-backs using the VMI timer.
The get_offset() and monotonic_
clock() routines are implemented using the
VMI real time cycle counter.

Additionally, the timer_opts delay()
routine is paravirtualized. When running on a
hypervisor, delays are not necessary when com-
municating with virtual devices. These delays
become no-ops. However, the smpboot.c
boot sequence does require delays, so on an
SMP system, the delay is implemented using
the VMI real time cycle counter.

Linux keeps track of the passage of time by
incrementing the jiffies and xtime coun-
ters. The Linux i386 timer subsystem updates
these counters by counting the number of timer
interrupts and multiplying this count by the pe-
riod of the timer interrupt. When running un-
der a hypervisor, this algorithm leads to poor
scaling in the number of virtual machines. If
the kernel programs the timer to interrupt M
times per second and there are N virtual ma-
chines running on the hypervisor, then in or-

der to keep the jiffies and xtime counts
consistent with real time, the hypervisor would
need to deliver a total of M*N virtual timer in-
terrupts per second.

To solve this scaling issue, the paravirtual-
ized kernel includes a new timer interrupt han-
dler and drives it with the VMI timer alarm
programmed against the available time cycle
counter. This handler does not count the num-
ber of interrupts it receives in order to incre-
ment the jiffies and xtime counters. In-
stead, the handler queries the VMI timer cycle
counters to determine the current real time and
updates the jiffies and xtime counters ac-
cordingly. With this algorithm, the counters are
kept up to date whenever the virtual machine
is executing, without the need for a predefined
interrupt rate. So, VMI alarms only need to be
delivered to a virtual cpu while it is executing
on a physical cpu. Therefore, even when run-
ning N virtual machines, only M virtual timer
interrupts need to be delivered by the hypervi-
sor.

On an SMP system, i386 Linux updates the
jiffies and xtime counters from the PIT
timer interrupt handler which only executes on
the boot cpu. Process time accounting is done
per-cpu using the local APIC timers firing on
all cpus. The VMI timer interrupt uses a dif-
ferent scheme to drive time keeping. The up-
dating of jiffies and xtime is performed
by all cpus. This is desirable when running on
a hypervisor because a virtual machine’s cpus
may not be scheduled to run together. There-
fore, the boot cpu may not always be execut-
ing while the other cpus are executing. By up-
dating jiffies and xtime from all cpus,
these counters remain consistent with real time
whenever any cpu of a virtual machine is exe-
cuting, not only when the boot cpu is executing.

Virtual timer interrupts may have a higher cost
than physical timer interrupts since they may



2006 Linux Symposium, Volume Two • 373

be implemented using software timers and in-
terrupt delivery is implemented in software. In
order to mitigate this cost, the VMI timer alarm
rate may be lowered independently of the value
of HZ, which is a compile time constant. The
VMI alarm rate can be set at boot time. In a
future version of the Linux VMI timer code,
we may allow the alarm rate to change dynami-
cally. The VMI timer alarm rate is decoupled
from HZ by the algorithm used by the VMI
timer interrupt handler, as described above.

The paravirtualized timer interrupt handler
calls update_process_times() on every
tick of available time rather than real time. This
way, time that is stolen is not accounted against
a process’ utime, stime, and time slice. In-
stead, stolen time is accounted to the steal
cpustat.

We implement sched_clock() using the
available time counter. Then, a process’
sleep_avg is computed using available time
so that it does not include the effects of time
that was stolen by the hypervisor.

The VMI timer code also provides an im-
plementation of NO_IDLE_HZ. When NO_
IDLE_HZ is enabled, a cpu will disable its pe-
riodic alarm before halting. Rather than using
the periodic alarm to unblock from the halt, the
cpu will set up a one-shot alarm for the next ex-
piring soft timer. This lowers the physical cpu
resources used by an idle virtual cpu, leading to
better scaling in the number of virtual machines
that can be run on the hypervisor.

5.7 Code cost

As we chose a subarch approach, with the goal
of sharing as much code as possible, the cost in
terms of code in Linux is quite small. With one
exception, our patches do not change any archi-
tecture dependent code at all. The only place

where this is done is in our timer patches, and
the no idle Hz changes we have made can ac-
tually benefit all architectures, with or without
virtualization.

The numbers presented here do not include
blank lines or comments in the count. New
lines are lines of code that were added for VMI
support, changed lines indicate lines which
were modified, and moved lines indicates a
count of pure code movement. The most sig-
nificant number is in the new subarch headers,
where a parallel implementation of all of the
CPU primitives was required. The VMI defini-
tions are much less compact, expanding to mul-
tiple lines. But in total, only 2% of the lines in
the i386 architecture layer had to be moved.

The VMware VMI layer code count is included
as well, although it is not part of the Linux ker-
nel changes, it gives some estimate as to the
amount of work required to implement a VMI
layer.

Component New Changed Moved
Trap handlers 25 29
Subarch headers 1382 243
Subarch code 271
Arch i386 code 20 6 13
Timer code 534 9 18
VMI layer code 1425
Total 3657 44 274

Table 1: VMI code sizes

As you can see, the footprint of VMI on
the kernel is tiny, and need not intrude into
architecture-neutral code at all. In fact, be-
cause of the clean encapsulation of the sub-
arch approach, even the i386 architecture code
is barely affected.

6 VMI Performance Data

In this section, we present data showing that
the overhead of the VMI layer on native Linux



374 • VMI: An Interface for Paravirtualization

performance is low. We also present data
comparing VMI Linux guest performance on
VMware’s hypervisor (under development) to
native performance, showing that the overhead
is reasonable for a variety of workloads. De-
scriptions of the workloads and how they were
run are given in Figure 3.

Table 2 contains data, previously posted to
LKML [6], comparing the performance of the
Linux 2.6.16-rc6 kernel running with the VMI
layer to that running without the VMI layer on
the following systems:

• P4: 2.4 GHz; Memory: 1024 MB; Disk:
10K SCSI; Server + Client NICs: Intel
e1000 server adapter

• Opteron: CPU: 2.2 GHz; Memory:
1024 MB; Disk: 10K SCSI; Server
+ Client NICs: Broadcom NetXtreme
BCM5704

using a UP version of the kernel for all work-
loads except the SMP workloads. We ran
dbench, netperf receive and send, and UP and
SMP kernel compile as general workloads that
emphasize, respectively, cpu and memory oper-
ations for (mostly cached) file I/O, gigabit net-
working I/O, and process switching and MMU
operations. On these workloads, the presence
of the VMI layer had no measurable impact on
performance.

To focus on the performance impact of the VMI
layer on kernel code, we also ran various ker-
nel microbenchmarks (both from lmbench and
home-grown). There were some measurable
impacts on these codes, but they were small. In
Table 2, boldface is used to highlight ratios that
are significantly different, when considering
the 95% confidence interval around the means
and the ranges of the small magnitude scores of
which they are comprised. On the P4, only four

of these codes (forkproc, shproc, mmap, page-
fault from lmbench) had overheads outside the
95% confidence interval and they were quite
low (2%, 1%, 2%, 1%, respectively). On the
Opteron, three lmbench codes (forkproc, ex-
ecproc, shproc) had overheads outside the 95%
confidence interval and they were also low (4%,
3%, 2%, respectively). The Opteron runs of
our in-house kernel microbenchmarks segv and
divzero showed overheads of 8% and 9%, re-
spectively, an anomaly we are investigating, but
have no answer for at this time.

Table 3 compares the performance of VMI
guests running on VMware’s hypervisor with
non-VMI native runs on 2.6.15 linux on the fol-
lowing platform:

• P4: 2.4 GHz 2way + hyperthreading;
Memory: 2048MB; Disk: 10K SCSI;
Server + Client NICs: Intel e1000 server
adapter

using a UP version of the kernel for all work-
loads except the SMP workloads.

For the reasons already described with re-
spect to the VMI native measurements, we ran
dbench, netperf receive and send, and UP and
SMP kernel compile. We ran all with 1024MB
guest memory to match the way they were run
natively. For these VMI guest measurements,
we also added UP and SMP SPECjbb2005, a
middle-tier java system benchmark that hap-
pens to accentuate the handling of guest time.
We ran this benchmark with 1640MB mem-
ory, both natively and in the guest, to avoid the
benchmark becoming memory-constrained.

Table 3 reflects current ‘top of trunk’ perfor-
mance.1 As you can see, most of these work-
loads have reasonably low overhead compared

1This performance data is collected from VMware
hypervisor technology that is in active development
stages, and hence is independent of product plans.



2006 Linux Symposium, Volume Two • 375

• Dbench [14] – Version 2.0 run as time ./dbench -c client_plain.txt 1; Repeat until
95% confidence interval width 5% around mean, report mean.

• Netperf [8] – MessageSize:8192, SocketSize:65536; netperf -H client-ip -l 60 -t
TCP_STREAM; Best of 5 runs.

• Kernel compile – Build of 2.6.11 kernel w/gcc 4.0.2 via time make -j 16 bzImage; Best of 3
runs.

• Lmbench [11] – Version 3.0-a4; obtained from sourceforge; Average of best 18 of 30 runs.

• Kernel microbenchmarks – getppid: loop of 10 calls to getppid, repeated 1,000,000 times; segv:
signal of SIGSEGV, repeated 3,000,000 times; forkwaitn: fork/wait for child to exit, repeated 40,000
times; divzero: divide by 0 fault 3,000,000 times; Average of best 3 of 5 runs.

• SPECjbb2005 [3] – Available from SPEC; Repeat until 95% confidence interval width 5% around
mean; report mean.

Figure 3: Benchmark Descriptions

with native. We are pursuing a number of opti-
mization opportunities to further improve per-
formance beyond that reported here. For ex-
ample, kernel compile speeds up significantly
from a prefaulting strategy in development.

Several of the workloads would benefit from re-
ducing the hypervisor’s timer interrupt rate to
below its current minimum rate of 1000/sec.
Netperf/receive native uses e1000/NAPI, which
greatly reduces native CPU utilization, while
the workload running in a guest with its virtual
nic does not and hence exhausts available cpu;
this is another area to be explored.

7 Future Directions

While we prototyped VMI using the VMware
products, we are very interested in supporting
other hypervisors, particularly the Xen hyper-
visor. As mentioned earlier, we are working on
a VMI layer for Xen 3.0.1.

We fully expect that VMI will evolve a bit as
support for new hypervisors is integrated. For

instance, the current VMI does not provide the
interfaces necessary for supporting direct pag-
ing mode for guest operating systems. While
Linux already provides an interface for writ-
ing to page table entries (the macro set_pte
and friends), it does not have an interface for
reading page table entries. We could introduce
such an interface, and machine-to-physical and
physical-to-machine mappings could be wholly
hidden within the VMI layer, allowing for very
clean support for direct paging mode. We have
chosen not to implement these at this time be-
cause it would require larger changes to Linux.

As 64 bit hardware has become more widely
deployed, adding support for 64 bit Linux
guests to the VMI is certainly of interest to us.

VMI was designed to be OS agnostic. As
such, when time permits, we will explore port-
ing more open OS’es to VMI. We have ported
our own OS, Frobos, to run inside a paravirtual
monitor using VMI as well.



376 • VMI: An Interface for Paravirtualization

Throughput [higher=better] P4 Opteron
Dbench/1client 1.00 1.00
Netperf/Recv 1.00 1.00
Netperf/Send 1.00 1.00
Latency [lower=better] P4 Opteron
UP Kernel Compile 1.00 1.00
SMP Kernel Compile 1.00 1.00
Lmbench null call 1.00 1.00
Lmbench null i/o 1.00 0.92
Lmbench stat 0.99 0.94
Lmbench open clos 1.01 0.98
Lmbench slct TCP 1.00 0.94
Lmbench sig inst 0.99 1.09
Lmbench sig hndl 0.99 1.05
Lmbench fork proc 1.02 1.04
Lmbench exec proc 1.02 1.03
Lmbench sh proc 1.01 1.02
Lmbench 2p/0K 1.00 1.14
Lmbench 2p/16K 1.01 0.93
Lmbench 2p/64K 1.02 1.00
Lmbench 8p/16K 1.02 0.97
Lmbench 8p/64K 1.01 1.00
Lmbench 16p/16K 0.96 0.97
Lmbench 16p/64K 1.00 1.00
Lmbench mmap 1.02 1.00
Lmbench prot fault 1.06 1.07
Lmbench page fault 1.01 1.00
Getppid 1.00 1.00
Segv 0.99 1.08
Forkwait 1.02 1.05
Divzero 0.99 1.09

Table 2: VMI-Native to Native Score Ratio

Dbench/1client 0.95
Netperf/Recv 0.79
Netperf/Send 0.94
UP SPECjbb2005 0.91
SMP SPECjbb2005 0.88
UP Kernel Compile 0.87
SMP Kernel Compile 0.78

Table 3: P4 VMI-Guest vs. Native Perfor-
mance

8 Related Work

We believed in the performance benefits of par-
avirtualization, but were convinced that a sin-
gle binary that ran on a hypervisor and on na-
tive hardware was the only practical alterna-
tive. Work done by Magenheimer [10] on trans-
parently paravirtualizing the Itanium (and in
fact coining the term itself) gave us the most
encouragement that this was a viable design
choice.

LeVasseur et al., in their work on pre-
virtualization [9], have developed an automated
way to generate a paravirtualized kernel, also
with an emphasis on working across multiple
hypervisors.

It is encouraging to see the shared belief that
paravirtualization needs to be done in a disci-
plined way, mindful of the kernel’s maintain-
ability, reliability and upgradability.

The Xen project has recently adopted the prin-
ciple of transparent paravirtualization (referred
to as microxen), further validating its practical-
ity. However, it is VMI that has shown the
way to accomplish transparent paravirtualiza-
tion with negligible overhead, and perturbation
to the kernel.

9 Conclusions

There are several important conclusions from
this exercise:

• The performance promise of paravirtual-
ization can be realized without forcing
large amounts of code into the kernel. In
particular, it is possible to separate the hy-
pervisor interface from the kernel itself,



2006 Linux Symposium, Volume Two • 377

which removes the need to port and main-
tain this code as part of the kernel. It is no
longer necessary to produce incompatible
kernels with each change of the hypervisor
interface. Nor is it necessary to compro-
mise the structure and the look-and-feel
of the Linux kernel by introducing hyper-
visor metaphors such as machine-frame
numbers into the kernel.

• VMI delivers the performance required
and still keeps a clean separation between
the kernel and the hypervisor. The sepa-
ration of the hypervisor interface from the
kernel is the key which allows a VMI ker-
nel to run on multiple hypervisors, and
even multiple incompatible versions of hy-
pervisors from the same vendor.

• It is not possible to match the perfor-
mance of the native kernel at the mi-
crobenchmark level without inlining the
native functions that would otherwise be-
come function calls.

• In the context of Linux, the best way to
minimize the code impact is by imple-
menting the virtualized architecture at the
subarch level.

• By providing alternative VMI code mod-
ules, debugging and statistics gathering
options can also be made available at boot
time, without changing any kernel code
or adding any runtime cost to virtual ma-
chines for the default case.

In addition, hardware assistance for virtualiza-
tion [4, 2] is being deployed in newer proces-
sors. Despite this, we see paravirtualization as
having a lasting impact on kernel design in the
virtualization arena for the following reasons.

• The latency of the hypercall is expected to
be lower than or equal to the cost of the

control transfer from the guest state to the
hypervisor state.

• The ability to batch multiple state changes
that would otherwise require separate con-
trol transfers to the hypervisor can best be
done with cooperation from the guest ker-
nel.

• The ability to avoid many conditional traps
to the hypervisor by executing code in the
VMI layer can actually enhance the per-
formance of hardware virtualization.

• In order for the timer subsystem of the
guest kernel to be precise and performant,
paravirtualization style modifications are
necessary.

• Paravirtualization, being a software tech-
nique, is inherently more nimble. It can
outpace hardware solutions, and be the
trendsetter when it comes to proving the
viability of a design.

With these beliefs, we have proposed a lower
impact approach to paravirtualization. It is de-
signed to be maintainable and flexible in the
long term. It is a very pragmatic interface, with
attention put into high performance. Our ex-
periments indicate that there is negligible time
lost in the interface layer itself. VMI is also
both hypervisor independent and OS indepen-
dent. This allows it to cope as hypervisor ver-
sions change or processor generations evolve,
all with unnoticeable overheads and zero im-
pact to the end user.

Building the VMI layer has increased our con-
fidence that the principles we sought after from
a paravirtualization interface are achievable.
VMI, even as it stands today is quite suitable to
play the role of the paravirtualization interface
for Linux.



378 • VMI: An Interface for Paravirtualization

10 Acknowledgements

We would like to thank Ole Agesen, Mendel
Rosenblum, Eli Collins, Rohit Jain, Jack Lo,
Steve Herrod, and in addition, anonymous re-
viewers for their comments and helpful sugges-
tions.

References

[1] Zachary Amsden. Vmi i386 linux
virtualization interface proposal. http:
//lkml.org/lkml/2006/3/13/140,
Mar 2006.

[2] Intel Corporation. Intel Virtualization
Technology Specification for the IA-32
Intel Architecture, April 2005.

[3] Standard Performance Evaluation
Corporation. Specjbb2005 java server
benchmark.
http://www.spec.org/jbb2005,
June 2005.

[4] Advanced Micro Devices. AMD64
Virtualization Codenamed ’Pacifica’
Technology: Secure Virtual Machine
Architecture Reference Manual, May
2005.

[5] Robert P. Goldberg. Survey of virtual
machine research. IEEE Computer 7(6),
June 1974.

[6] Anne Holler. Vmi i386 linux
virtualization interface proposal:
Performance data. http:
//lkml.org/lkml/2006/3/20/489,
Mar 2006.

[7] VMware Inc. Vmware hypercall
interface, version 2.0.
http://www.vmware.com/

standards/hypercalls.html, Mar
2006.

[8] Rick Jones. Netperf: a benchmark for
networking. http://www.netperf.
org/netperf/NetperfPage.html,
July 2002.

[9] J. LeVasseur, V. Uhlig, M. Chapman,
P. Chubb, B. Leslie, and G. Heiser.
Pre-virtualization: Slashing the cost of
virtualization. Technical report, Fakultät
für Informatik, Universität
Karlsruhe(TH), Nov. 2005. 2005–30.

[10] D. J. Magenheimer and T. W. Christian.
vblades: Optimized paravirtualization for
the itanium processor family.
Proceedings of the 3rd Virtual Machine
Research and Technology Symposium,
May 2004.

[11] Larry McVoy and Carl Staelin. Lmbench
suite of microbenchmarks for unix/posix.
http://sourceforge.net/

projects/lmbench, August 2004.

[12] Barnham P., Dragovic B., Fraser K.,
Hand S., Harris T., A. Ho, Neugerberger
R., Pratt I., and A. Warfield. Xen and the
art of virtualization. SOSP ’03:
Proceedings of the nineteenth ACM
symposium on Operating system
principles, pages 164–177, 2003.

[13] G.J. Popek and R.P. Goldberg. Formal
requirements for virtualizable third
generation architectures.
Communications of the ACM, 1974.

[14] Andrew Tridgell. Dbench: an
open-source netbench.
http://freshmeat.net/projects/

dbench/, December 2002.

[15] A. Whitaker, M. Shaw, and S.D. Gribble.
Scale and performance in the denali
isolation kernel. SIGOPS Oper. Syst. Rev.
36, SI, pages 195–209, 2002.



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


