
Chip Multi Processing aware Linux Kernel Scheduler

Suresh Siddha
suresh.b.siddha@intel.com

Venkatesh Pallipadi
venkatesh.pallipadi@intel.com

Asit Mallick
asit.k.mallick@intel.com

Abstract

Recent advances in semiconductor manufactur-
ing and engineering technologies have led to
the inclusion of more than one CPU core in a
single physical processor package. This, popu-
larly known as Chip Multi Processing (CMP),
allows multiple instruction streams to execute
at the same time. CMP is in addition to today’s
Simultaneous Multi Threading (SMT) capabil-
ities, like Intel R© Hyper-Threading Technology
which allows a processor to present itself as two
logical processors, resulting in best use of ex-
ecution resources. With CMP, today’s Linux
Kernel will deliver instantaneous performance
improvement. In this paper, we will explore
ideas for further improving peak performance
and power savings by making the Linux Kernel
Scheduler CMP aware.

1 Introduction

To meet the growing requirements of proces-
sor performance, processor architects are look-
ing at new technologies and features focusing
on enhanced performance at a lower power dis-
sipation. One such technology is Simultane-
ous Multi-Threading (SMT). Hyper-Threading
(HT) Technology[5] introduced in 2002, is In-
tel’s implementation of SMT. HT delivers two

logical processors running on the same execu-
tion core, sharing all the resources like func-
tional execution units and cache hierarchy. This
approach interleaves the execution of two in-
struction streams, making the most effective
use of processor resources. It maximizes the
performance vs. transistor count and power
consumption.

Recent advances in semiconductor manufac-
turing and engineering technologies are lead-
ing to rapid increase in transistor count on a
die. For example, forthcoming Itanium R© fam-
ily processor code named Montecito will have
more than 1.7 billion transistors on a die! As
the next logical step to SMT, these extra transis-
tors are put to effective use by including more
than one execution core with in a single physi-
cal processor package. This is popularly known
as Chip Multi Processing (CMP). Depending
on the number of execution cores in a pack-
age, it’s either called a dual-core[4] (two exe-
cution cores) or multi-core (more than two ex-
ecution cores) capable processors. In multi-
threading and multi-tasking environment, CMP
allows for significant improvement in perfor-
mance at the system level.

In this paper, in section 2 we will look at
an overview of CMP and some implementa-
tion examples. Section 3 will talk about the
generic OS scheduler optimization opportuni-
ties that are appropriate in CMP environment.



330 • Chip Multi Processing aware Linux Kernel Scheduler

Linux Kernel Scheduler implementation details
of these optimizations will be dwelled in sec-
tion 4. We will close the paper with a brief look
at CMP trends in future generation processors.

2 Chip Multi Processing

In a Chip Multi Processing capable physical
processor package, more than one execution
core reside in a physical package. Each core
has its own resources (architectural state, reg-
isters, execution units, up-to a certain level of
cache, etc.). Shared resources between the
cores in a physical package vary depending on
the implementation. Some of the implementa-
tion examples are

a) each core could have a portion of on-die
cache (for example L1) exclusively for itself
and then have a portion of on-die cache (for
example L2 and above) that is shared between
the cores. An example of this is the upcom-
ing first mobile dual-core processor from Intel,
code named Yonah.

b) each core having its own on-die cache hier-
archy and its own communication path to the
Front Side Bus (FSB). An example of this is
the Intel R© Pentium R© D processor.

Figure 1 shows a simplified block diagram of
a physical package which is CMP capable,
where two execution cores reside in one physi-
cal package, sharing the L2 cache and front side
bus resources.

A physical package can be both CMP and SMT
capable. In that case, each core in the physical
package can in turn contain more than one log-
ical thread. For example, a dual-core with HT
will enable a single physical package to appear
as four logical processors, capable of running
four processes or threads simultaneously. Fig-
ure 2 shows an example of a CMP with two

Figure 1: CMP implementation with two
cores sharing L2 cache and Bus interface

Figure 2: CMP implementation with two
cores, each having two logical threads. Each
core has their own cache hierarchy and com-
munication path to FSB

logical threads in each core and with each core
having their own cache hierarchy and their own
communication path to the FSB. An example of
this is the Intel R© Pentium R© D Extreme Edition
processor.

3 CMP Optimization opportunities

A multi-threaded application that scales well
and is optimized on SMP systems will have an
instantaneous performance benefit from CMP
because of these extra logical processors com-
ing from cores and threads. Even if the appli-



2006 Linux Symposium, Volume Two • 331

cation is not multi-threaded, it can still take ad-
vantage of these extra logical processors in a
multi-tasking environment.

CMP also brings in new optimization oppor-
tunities which will further improve the sys-
tem performance. One of the optimization op-
portunity is in the area of Operating System
(OS) scheduler. Making the OS scheduler CMP
aware will result in an improved peak perfor-
mance and power savings.

In general, OS scheduler will try to equally dis-
tribute the load among all the available proces-
sors. In a CMP environment, OS scheduler can
be further optimized by looking at micro archi-
tectural information(like L2 cache misses, Cy-
cles Per Instruction (CPI), . . . ) of the running
tasks. OS scheduler can decide which tasks can
be scheduled on same core/package and which
can’t be scheduled together based on this micro
architectural information. Based on these deci-
sions, scheduler tries to decrease the resource
contentions in a CPU core or a package and
thereby resulting in increased throughput. In
the past, some work[10, 9] has been done in this
area and because of the complexities involved
(like what micro architectural information need
to be tracked for each task and issues in incor-
porating this processor architecture specific in-
formation into generic OS scheduler) this work
is not quite ready for the inclusion in today’s
Operating Systems.

We will not address the micro architectural in-
formation based scheduler optimizations in this
paper. Instead this paper talks about the OS
CMP scheduler optimization opportunities in
the case where the system is lightly loaded (i.e.,
the number of runnable tasks in the system are
less compared to the number of available pro-
cessors in the system). These optimization op-
portunities are simple and straight forward to
leverage in today’s Operating Systems and will
help in improving peak performance or power
savings.

3.1 Opportunities for improving peak per-
formance

In a CMP implementation where there are no
shared resources between cores sharing a phys-
ical package, cores are very similar to individ-
ual CPU packages found in a multi-processor
environment. OS scheduler which is optimized
for SMT and SMP will be sufficient for deliv-
ering peak performance in this case.

However, in most of the CMP implementations,
to make best use of the resources cores in a
physical package will share some of the re-
sources (like some portion of cache hierarchy,
FSB resources, . . . ). In this case, kernel sched-
uler should schedule tasks in such a way that it
minimizes the resource contention, maximizes
the system throughput and acts fair between
equal priority tasks.

Let’s consider a system with four physical CPU
packages. Assume that each CPU package has
two cores sharing the last level cache and FSB
queue. Let’s further assume that there are four
runnable tasks, with two tasks scheduled on
package 0, one each on package 1, 2 and pack-
age 3 being idle. Tasks scheduled on package
0 will contend for last level cache shared be-
tween cores, resulting in lower throughput. If
all the tasks are FSB intensive (like for exam-
ple Streams benchmark), because of the shared
FSB resources between cores, FSB bandwidth
for each of the two tasks in package 0 will be
half of what individual tasks get on package
1 and 2. This scheduling decision isn’t quite
right both from throughput and fairness per-
spective. The best possible scheduling decision
will be to schedule the four available tasks on
the four different packages. This will result in
each task having independent, full access to last
level shared cache in the package and each will
get fair share of the FSB bandwidth.

On CMP with shared resources between cores



332 • Chip Multi Processing aware Linux Kernel Scheduler

in a physical package, for peak performance
scheduler must distribute the load equally
among all the packages. This is similar to
SMT scheduler optimizations in todays operat-
ing systems.

3.2 Opportunities for improving power
savings

Power management is a key feature in today’s
processors across all market segments. Dif-
ferent power saving mechanisms like P-states
and C-States are being employed to save more
power. The configuration and control infor-
mation of these power saving mechanisms are
exported through Advanced Configuration and
Power Interface (ACPI)[2]. Operating System
directed Configuration and Power Management
(OSPM) uses these controls to achieve desired
balance between performance and power.

ACPI defines the power state of processors and
are designated as C0, C1, C2, C3,. . . , Cn. The
C0 power state is an active power state where
the CPU executes instructions. The C1 through
Cn power states are processor sleeping (idle)
states where the processor consumes less power
and dissipates less heat.

While in the C0 state, ACPI allows the perfor-
mance of the processor to be altered through
performance state (P-state) transitions. Each
P-state will be associated with a typical power
dissipation value which depends on the operat-
ing voltage and frequency of that P-state. Using
this, a CPU can consume different amounts of
power while providing varying performance at
C0 (running) state. At a given P-state, CPU
can transit to numerically higher numbered C-
states in idle conditions. In general, numeri-
cally higher the P-states (i.e., lower the CPU
voltage) and C-states, the lesser will be power
consumed, heat dissipated.

3.2.1 CMP implications on P and C-states

P-states

In a CMP configuration, typically all cores in
one physical package will share the same volt-
age plane. Because of this, a CPU package
will transition to a higher P-state, only when
all cores in the package can make this transi-
tion. P-state coordination between cores can
be either implemented by hardware or soft-
ware. With this mechanism, P-state transition
requests from cores in a package will be co-
ordinated, causing the package to transition to
target state only when the transition is guar-
anteed to not lead to incorrect or non-optimal
performance state. If one core is busy running
a task, this coordination will ensure that other
idle cores in that package can’t enter lower
power P-states, resulting in the complete pack-
age at the highest power P-state for optimal per-
formance. In general, this coordination will en-
sure that a processor package frequency will be
the numerically lowest P-state (highest voltage
and frequency) among all the logical processors
in the processor package.

C-states

In a CMP configuration with shared resources
between the cores, processor package can be
broken up into different blocks, one block for
each execution core and one common block
representing the shared resources between all
the cores (as show in Figure 1). Depending on
the implementation, each core block can inde-
pendently enter some/all of the C-state’s. The
common block will always reside in the numer-
ically lowest (highest power) C-state of all the
cores. For example, if one core is in C1 and
other core is in C0, shared block will reside
in C0.



2006 Linux Symposium, Volume Two • 333

3.2.2 Scheduling policy for power savings

Let’s consider a system having two physical
packages, with each package having two cores
sharing the last level cache and FSB resources.
If there are two runnable tasks, as observed
in the section 3.1 peak performance will be
achieved when these two tasks are scheduled
on different packages. But, because of the P-
state coordination, we are restricting idle cores
in both the packages to run at higher power P-
state. Similarly the shared block in both the
packages will reside in higher power C0 state
(because of one busy core) and depending on
the implementation, idle cores in both the pack-
ages may not be able to enter the available
lowest power C-state. This will result in non-
optimal power savings.

Instead, if the scheduler picks the same package
for both the tasks, other package with all cores
being idle, will transition slowly into the lowest
power P and C-state, resulting in more power
savings. But as the cores share last level cache,
scheduling both the tasks to the same package,
will not lead to optimal behavior from perfor-
mance perspective. Performance impact will
depend on the behavior of the tasks and shared
resources between the cores. In this particular
example, if the tasks are not memory/cache in-
tensive, performance impact will be very min-
imal. In general, more power can be saved
with relatively smaller impact on performance
by scheduling them on the same package.

On CMP with no shared resources between the
cores in a physical package, scheduler should
distribute the load among the cores in a pack-
age first, before looking for an idle package. As
a result, more power will be saved with no im-
pact on performance.

4 Linux Kernel Scheduler enhance-
ments

Process scheduler in 2.6 Linux Kernel is based
on hierarchical scheduler domains constructed
dynamically depending on the processor topol-
ogy in the system. Each domain contains a
list of CPU groups having a common property.
Load balancer runs at each domain level and
scheduling decisions happen between the CPU
groups at any given domain.

All the references to “current Linux Kernel” in
the coming sections, stands for version 2.6.12-
rc5[6]. Current Linux Kernel domain scheduler
is aware of three different domains represent-
ing SMT (called cpu_domain), SMP (called
phys_domain) and NUMA (called node_
domain). Current Linux Kernel has core de-
tection capabilities for x86, x86_64, ia64 ar-
chitectures. This will place all CPU cores in
a node into different scheduler groups in SMP
scheduler domain, even though they reside in
different physical packages. The first step nat-
urally is to add a new scheduler domain rep-
resenting CMP (called core_domain). This
will help the kernel scheduler identify the cores
sharing a given physical package. This will en-
able the implementation of scheduling policies
highlighted in section 3.

Figure 3 shows the scheduler domain hierarchy
setup with current Linux Kernel on a system
having two physical packages. Each package
has two cores and each core having two logical
threads. Figure 4 shows the scheduler domain
hierarchy setup with the new CMP scheduler
domain.

4.1 Scheduler enhancements for improv-
ing peak performance

As noted in section 3.1, when the CPU cores in
a physical package share resources, peak per-



334 • Chip Multi Processing aware Linux Kernel Scheduler

Figure 3: Scheduler domain hierarchy with
current Linux Kernel on a system hav-
ing two physical packages, each having two
cores and each core having two logical
threads.

formance will be achieved when the load is
distributed uniformly among all physical pack-
ages. Following subsections will look into the
enhancements required for implementing this
policy.

4.1.1 Active load balance in presence of
CMP and SMT

With SMT and SMP domains in current Linux
Kernel, load balance at SMP domain will help
in detecting a situation where all the SMT sib-
lings in one physical package are completely
idle and more than one SMT sibling is busy
in another physical package. Load balance on
processors in idle package will detect this situ-
ation and will kick active load balance on one
of the non idle SMT siblings in the busiest
package. Active load balance then looks for
a package with all the SMT threads being idle
and pushes the task (which was just running be-
fore active load balance got kicked in) to one of
the siblings of the selected idle package, result-
ing in optimal performance.

Similarly, in the presence of new scheduler do-
main for CMP, load balance in SMP domain

Figure 4: Demonstration of active load bal-
ance with 4 tasks, on a system having two
physical packages, each having two cores
and each core having two logical threads.
Active load balance kicks in at the core do-
main for the first package, distributing the
load equally among the cores

will help detect a situation where more than one
core in a package is busy, with another package
being completely idle. Similar to the above,
active load balance will get kicked on one of
the non-idle cores in the busiest package. In
the presence of SMT and CMP, active load bal-
ance needs to pick up an idle package if one is
available; otherwise it needs to pick up an idle
core. This will result in load being uniformly
distributed among all the packages in a SMP
domain and all the cores with in a package.

In pre-2.6.12 “-mm” kernels, there is a change
in active load balance code which leverage the
domain scheduler topology more effectively.
Instead of looking for an idle package, active
load balance code is modified in such a way
that it simply moves the load to the processor
which detects the imbalance. In some of the
cases[1] this will take few extra hops in find-
ing a correct processor destination for a process
but because of simplicity reasons this was pur-
sued. This modification to active load balance
also works in the presence of both SMT and
CMP.



2006 Linux Symposium, Volume Two • 335

Figure 5: Demonstration of active load bal-
ance with 2 tasks, on a system having two
physical packages, each having two cores
and each core having two logical threads.
Active load balance kicks in at SMP domain
between the two physical packages, dis-
tributing the load equally among the phys-
ical packages

Figures 4 and 5 show how active balance plays
a role in distributing the load equally among
the physical packages and CPU cores in pres-
ence of CMP and SMT. Figure 6 shows how
the new active balance will help in distributing
the load equally among the physical packages,
even though there is no idle package available.
This will help from the fairness perspective.

4.1.2 cpu_power selection

One of the key parameters of a scheduler do-
main is the scheduler group’s cpu_power.
It represents effective CPU horsepower of the
scheduler group and it depends on the under-
neath domain characteristics. With SMP and
SMT domains in current Linux Kernel, cpu_
power of sched groups in the SMP domain is
calculated with the assumption that each ex-
tra logical processor in the physical package
will contribute 10% to the cpu_power of the
physical package.

With the new CMP domain, cpu_power for

Figure 6: Demonstration of active load bal-
ance with 6 tasks, on a system having two
physical packages, each having four cores.
Active load balance kicks in at SMP domain
between the two physical packages, dis-
tributing the load equally among the phys-
ical packages

CMP domains scheduler group will be same
as cpu_power of schedule group in current
Linux Kernel’s SMP domain (as the under-
neath SMT domain will remain same). Be-
cause of the new CMP domain underneath, new
cpu_power for SMP domains sched group
needs to be selected.

If the cores in a physical package don’t share
resources, then the cpu_power of groups in
SMP domain, will simply be the horsepower
sum of all the cores in that physical package.
On the other hand, if the cores in a physical
package share resources, then the cpu_power
of groups in SMP domain has to be smaller
than the no resource sharing case. We will dis-
cuss more about this in the power saving sec-
tions 4.2.1 and 4.2.2 and determine how much
smaller this needs to be for the peak perfor-
mance mode policy.

4.1.3 exec, fork balance

Pre-2.6.12 “-mm” kernels have exec, fork
balance[3] introduced by Nick Piggin. Setting



336 • Chip Multi Processing aware Linux Kernel Scheduler

SD_BALANCE_{EXEC,FORK} flags to domains
SMP and above, will enable exec, fork bal-
ance. Because of this, whenever a new pro-
cess gets created, it will start on the idlest pack-
age and idlest core with in that package. This
will remove the dependency on the active load
balance to select the correct physical package,
CPU core for a new task. This makes the pro-
cess of picking the right processor more opti-
mal as it happens at the time of task creation,
instead of happening after a task starts running
on a wrong CPU.

exec, fork balance will select the optimal CPU
at the beginning itself and if dynamics change
later during the process run, active load bal-
ance will kick in and distribute the load equally
among the physical packages and the CPU
cores with in them.

4.2 Scheduler enhancements for improv-
ing power savings

As observed in section 3.2, when the system
is lightly loaded, optimal power savings can be
achieved when all the cores in a physical pack-
age are completely loaded before distributing
the load to another idle package.

When the cores in a physical package share re-
sources, this scheduling policy will slightly im-
pact the peak performance. Performance im-
pact will depend on the application behavior,
shared resources between cores and the number
of cores in a physical package. When the cores
don’t share resources, this scheduling policy
will result in an improved power savings with
no impact on peak performance.

For the CMP implementations which don’t
share resources between cores, we can make
this power savings policy as default. For the
other CMP implementations, we can allow the

administrator to choose a scheduling policy of-
fering either peak performance (covered in sec-
tion 4.1) or improved power savings. Depend-
ing on the requirements one can select either of
these policies.

Following subsections highlight the changes re-
quired in kernel scheduler for implementing
improved power savings policy on CMP.

4.2.1 cpu_power selection

The first step in implementing this power sav-
ings policy is to allow the system under light
load conditions to go into the state with one
physical package having more than one core
busy and with another physical package be-
ing completely idle. Using scheduler group’s
cpu_power in SMP domain and with modifi-
cations to load balance, we can achieve this.

In the presence of CMP domain, we will set
cpu_power of scheduling group in SMP do-
main to the sum of all the cores horsepower
in that physical package. And if the load bal-
ance is modified such that the maximum load
in a physical package can grow up to the cpu_
power of that scheduling group, then the sys-
tem can enter a state, where one physical pack-
age has all its cores busy and another physical
package in the system being completely idle.

We will leave the cpu_power for the CMP
domain as before (same as the one used for
SMP domain in the current Linux Kernel) and
this will result in active load balance when
it sees a situation where more than one SMT
thread in a core is busy, with another core be-
ing completely idle. As the performance con-
tribution by SMT is not as large as CMP, this
behavior will be retained in power saving mode
as well.



2006 Linux Symposium, Volume Two • 337

4.2.2 Active load balance

Next step in implementing this power savings
policy is to detect the situation where there are
multiple packages being busy, each having lot
of idle cores and move the complete load into
minimal number of packages for optimal power
savings (this minimal number depends on the
number of tasks running and number of cores
in each physical package).

Let’s take an example where there are two
packages in the system, each having two cores.
There can be a situation where there are two
runnable tasks in the system and each end up
running on a core in two different packages,
with one core in each package being idle. This
situation needs to be detected and the complete
load needs to be moved into one physical pack-
age, for more power savings.

For detecting this situation, scheduler will cal-
culate watt wastage for each scheduling group
in SMP domain. Watt wastage represents num-
ber of idle cores in a non-idle physical pack-
age. This is an indirect indication of wasted
power by idle cores in each physical package
so that non-idle cores in that package run un-
affected. Watt wastage will be zero when all
the cores in a package are completely idle or
completely busy. Scheduler can try to mini-
mize watt wastage at SMP domain, by moving
the running tasks between the groups. During
the load balance at SMP domain level, if the
normal load balance doesn’t detect any imbal-
ance, idle core (in a package which is not wast-
ing much power compared to others in SMP
domain) can run this power saving scheduling
policy and see if it can pull a task (using active
load balance) from a package which is wasting
lot of power.

In the last example, idle core in package 0
can detect this situation and can pickup the
load from busiest core in package 1. To pre-

Figure 7: Demonstration of active load bal-
ance for improved power savings with 4
tasks, on a system having two physical pack-
ages, each having four cores. Active load bal-
ance kicks in between the two physical pack-
ages, resulting in movement of the complete
load to one physical package, resulting in im-
proved power savings

vent the idle core in package 1 doing the same
thing to the busiest core in package 0 (caus-
ing unnecessary ping-pong) load balance algo-
rithm needs to follow the ordering. Figure 7
shows a demonstration of this active load bal-
ance, which will result in improved power sav-
ings.

As the number of cores residing in a physical
package increase, shared resources between the
cores will become the bottleneck. As the con-
tention for the resources increase, power sav-
ing scheduling policy will result in an increased
impact on peak performance. As shown in Fig-
ure 7, moving the complete load to one phys-
ical package will indeed consume less power
compared to keeping both the packages busy.
But if the cores residing in a package share
last level cache, the impact of sharing the last
level cache by 4 tasks may outweigh the power
saving. To limit such performance impact, we
can let the administrator choose the allowed
watt wastage for each package. Allowed watt
wastage is an indirect indication of the schedul-
ing group’s horsepower. cpu_power of the



338 • Chip Multi Processing aware Linux Kernel Scheduler

scheduling group in SMP domain can be mod-
ified proportionately based on the allowed watt
wastage. Load balance modifications in sec-
tion 4.2.1 will limit the maximum load that
a package can pickup (under light load con-
ditions) and hence the impact to peak perfor-
mance. More power will be saved with smaller
allowed watt wastage. In the case shown in Fig-
ure 7, the administrator can say, for example,
that under light load conditions one physical
package should not be overloaded with more
than 2 tasks.

Setting the scheduler group’s cpu_power of
SMP domain to the sum of all the cores horse-
power (i.e., allowed watt wastage is zero) will
result in a package picking up the max load
depending on the number of cores. This will
result in maximum power saving. Setting the
cpu_power to a value less than the combined
horsepower of two cores (i.e., allowed watt
wastage is one less than the number of cores
in a physical package) will distribute the load
equally among the physical packages. This
will result in peak performance. Any value for
cpu_power in between will limit the impact
to peak performance and hence the power sav-
ings.

Administrator can select the peak performance
or the power savings policy by setting appro-
priate value to the scheduler group’s cpu_
power in SMP domain.

4.2.3 exec, fork balance

SD_BALANCE_{EXEC,FORK} flags needs to be
reset for domains SMP and above, causing the
new process to be started in the same physi-
cal package. Normal load balance will kick
in when the load of a package is more than
the package’s horsepower (cpu_power) and
there is an imbalance with respect to another
physical package.

5 Summary & Future work

CMP related scheduler enhancements dis-
cussed in this paper fits naturally to the 2.6
Linux Kernel Domain Scheduler environment.
Depending on the requirements, administra-
tor can select the peak performance or power
saving scheduler policy. We have prototyped
peak performance policy discussed in this pa-
per. We are currently experimenting with the
power saving policy, so that it behaves as ex-
pected under the presence of CMP, SMT and
under the light, heavy load conditions. Once
we complete the performance tuning and anal-
ysis with real world workloads, these patches
will hit the Linux Kernel Mailing List.

For the future generation CMP imple-
mentations, researchers and scientists are
experimenting[8] with “many tens of cores,
potentially even hundreds of cores per package
and these cores supporting tens, hundreds,
maybe even thousands of simultaneous execu-
tion threads.” Probably we can extend Moore’s
law[7] to CMP and can dare say that number
of cores per die will double approximately
every two years. This sounds plausible for
the coming decade at least. With more CPU
cores per physical package, kernel scheduler
optimizations addressed in this paper will
become critical. In future, more experiments
and work need to be focused on bringing micro
architectural information based scheduling to
the mainline.

Acknowledgments

Many thanks to the colleagues at Intel Open
Source Technology Center for their continuous
support.

Thanks to Nick Piggin and Ingo Molnar for al-
ways providing quick comments on our sched-
uler patches.



2006 Linux Symposium, Volume Two • 339

References

[1] Active load balance modification in
pre-2.6.12 “-mm” kernels. http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0503.1/0057.html.

[2] Advanced configuration and power interface
spec 3.0. http://www.acpi.info/
DOWNLOADS/ACPIspec30.pdf.

[3] Balance on exec and fork in pre-2.6.12 “-mm”
kernels. http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0502.3/0037.html.

[4] Intel dual-core processors.
http://www.intel.com/
technology/computing/dual-core.

[5] Intel hyper-threading technology.
http://www.intel.com/
technology/hyperthread.

[6] Linux kernel.
http://www.kernel.org.

[7] Moore’s law. http://www.intel.com/
research/silicon/mooreslaw.htm.

[8] Processor and platform evolution for the next
decade. http://www.intel.com/
technology/techresearch/idf/
platform-2015-keynote.htm.

[9] Daniel Nussbaum Alexandra Fedorova,
Christopher Small and Margo Seltzer. Chip
Multithreading Systems Need a New
Operating System Scheduler. SIGOPS, ACM,
2004.

[10] Jun Nakajima and Venkatesh Pallipadi.
Enhancements for Hyper-Threading
Technology in the operating System: Seeking
the Optimal Scheduling. WIESS, USENIX,
December 2002.



340 • Chip Multi Processing aware Linux Kernel Scheduler



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


