
Resizing Memory With Balloons and Hotplug

Joel H. Schopp
IBM

jschopp@austin.ibm.com

Keir Fraser
University of Cambridge Computer Labratory

Keir.Fraser@cl.cam.ac.uk

Martine J. Silbermann
HP

martine.silbermann@hp.com

Abstract

In a virtualized environment it is often neces-
sary to resize the amount of memory allocated
to a particular copy of Linux. There are cur-
rently two viable approaches to adding and re-
moving memory: memory hotplug and a bal-
loon driver. We will compare and contrast
how these resizing technologies work indepen-
dently, weighing the benefits and drawbacks of
each one. We also will show how these two
resizing technologies could be used together to
provide the best of both worlds.

1 Introduction

It is often the case that Linux is not running on
real hardware. Instead Linux is running in a
virtualized enviornment such as Xen[2], Virtu-
alPC, pSeries, zVM, or VirtualIron[1]. In these
environments a premium is put on efficient uti-
lization of resources by balancing the use of
these resources during run time. Some of these
systems may partition resources, others may
fully virtualize them and assign real resources
dynamically. However, Linux still behaves as

if it were running on real, non-changing, hard-
ware by itself. This real hardware mentality
means that users of Linux have to reboot in or-
der to change while other operating systems in
the same environments do not miss a beat. In
many environments where reboot is impracti-
cal Linux will have bad performance. It will
have bad performance because it will not be
able to utilize extra memory made available af-
ter boot, and bad performance because it cannot
decrease its view of memory to closely match
decreases in the underlying memory it actually
has.

2 Motivation

The question for Linux is not if it will change to
accomodate new virtualized environments, but
how and when Linux will change. If the Linux
community wants to have Linux grow in the en-
terprise market we need to address some of our
missing features, an important one of which is
resizing memory.



306 • Resizing Memory With Balloons and Hotplug

3 Memory Hotplug Add

3.1 How Hotplug Add Works

Memory hotplug add works as if a physical
DIMM were added. The firmware, ACPI or
pHYP for example, tells the OS a new address
range of memory is available. The size of this
new range of memory must be a multiple of the
SECTION size in CONFIG_SPARSEMEM. On
powerpc the section size is 16MB, so 32MB or
64MB could be added, but 40MB could not be.
After Linux finds the new memory it sets up a
new mem_map[] and other structures. Finally
the kernel then adds the new memory into the
allocator, making it available for use.

3.2 Current Status

Memory hotplug add is in mainline as of
2.6.14. There is a dependency on CONFIG_
SPARSEMEM[3], which is also in mainline.
Hotplug add also required changes to the buddy
allocator[3]. Memory hot add works well in
NUMA and non-NUMA systems. In NUMA
systems new memory is added as if it were in
existing nodes. Code to online new nodes was
submitted on March 17th, 2005 by Yasunori
Goto. Current Distros SLES10 and RHEL5
have hotplug add enabled in powerpc kernels.

3.3 Hotplug Add Advantages & Disadvan-
tages

The biggest advantage hotplug add has is that
it is in the mainline tree. Because it is in main-
line the code remains up to date, and any ker-
nel based on mainline needs only be config-
ured on at compile time in order to use hotplug
add. Most major architectures are supported,

and much of the code is common to the ar-
chitectures making it easy to add new architec-
tures. Memory hotplug add solves the problem
of adding memory that wasn’t present at boot
to scale Linux up in response to changing re-
sources.

Hoptlug add has a dependency on CONFIG_
SPARSEMEM, which is still relatively new
and has not completely replaced CONFIG_
DISCONTIGMEM. Over time CONFIG_
SPARSEMEM is expected to fully replace
CONFIG_DISCONTIGMEM on i386, x86-64,
and ia-64 as it works well in mainline on all
supported architectures. However, as of this
writing Novell and Redhat have only enabled
CONFIG_SPARSEMEM in their powerpc ker-
nels. Another major disadvantage of memory
hotplug add is its compile time fixed granularity
which takes away some flexibility from smaller
environments. This is because the section size
is set at compile time and must be acceptable on
both large servers and small memory systems,
but is primarily targeted at larger memory sys-
tems.

4 Memory Hotplug Remove

4.1 How Hotplug Remove Works

In memory hotplug remove all the pages in
some memory section must be freed in a timely
fashion. Simultaneously, processes are running
as usual, and need to continue running with
good performance. It is thus necessary to move
the memory in the targeted section to a new
location safely and quickly. This is known as
memory migration. By removing unallocated
pages from the allocator and migrating all al-
located pages with memory migration it is thus
possible to completely empty all data from an
entire section. Once a memory section is empty



2006 Linux Symposium, Volume Two • 307

Figure 1: Memory remove uses migration to re-
move contiguous sections

all references to it can be removed. After it
is no longer referenced by the kernel memory
manager it can be safely removed as if it were
not there to begin with.

Not all memory is directly migrateable. The
Linux kernel has a constant offset between vir-
tual addresses and physical addresses. It also
caches some of the physical addresses. If
any of this non-migrateable memory is located
in the section targeted for removal, then the
whole section cannot be removed. Some of this
memory is reclaimed by running shrink_
list(). Other memory associated with
filesystems has filesystem callbacks. But unless
the Linux community decides to have a remap-
pable kernel there will always be some amount
of memory that cannot be migrated.

4.2 Current Status

Memory Hotplug remove is not in mainline.
Patches exist, released under the GPL, but are
only occasionally rebased. To be worthwhile
the existing patches would need either a remap-
pable kernel, which remains highly doubtful, or
a fragmentation avoidance strategy to keep mi-
grateable and non-migrateable pages clumped
together nicely. Two patch sets exist to do
fragmentation avoidance, the details of which
are in a paper by Mel Gorman and Andy
Whitcroft[4].

4.3 Hotplug Remove Advantages & Disad-
vantages

In hotplug remove the sections being removed
are large and contiguous so they don’t cause
any external fragmentation. The kernel also has
an accurate view of how much memory it really
has, leaving kernel developers the ability to be
smart instead of lucky about managing memory
efficiently. Hoptlug remove is in many ways an
ideal solution.

However, hotplug remove is not without disad-
vantages. It faces much opposition to being in-
tegrated in mainline kernels because of its de-
pendency on the fragmentation avoidance. This
opposition comes from the fact that fragmen-
tation avoidance modifies key kernel compo-
nents, making them more complex. Further-
more, memory hotplug as currently designed
has limitations on not being able to remove
memory containing certain kinds of allocations.
This limitation makes it less useful for physical
removal of DIMMs or of predictive disabling
of failing memory because of the likelyhood of
that memory containing non-removable alloca-
tions. For these and other reasons too lengthy to
present, hotplug remove’s major disadvantage
is that it will be a long process of community
feedback and development before it becomes
available in mainline kernels or from distribu-
tors.

5 Balloon Drivers

5.1 How Balloon Drivers Work

Balloon drivers have been used by virtualiza-
tion as a means to manage memory in a mul-
tiple virtual machines environment. The idea



308 • Resizing Memory With Balloons and Hotplug

is very simple and offers the advantage of be-
ing minimally invasive to the guest OS. How-
ever, it does require collaboration from this
guest in order for it to be effective. In 2002
Waldspurger[5] introduced the concept of bal-
looning as it was implemented in the VMware
ESX Server. In 2003 this concept was adopted
by the Xen team[6] to support their memory
management needs. The concept used by the
two virtualization approaches is the same, but
the terminology used in the implementation de-
scriptions vary. Therefore, we will use neutral
terminology in our description.

The basic function of the balloon driver is to
pass memory pages back and forth between the
hypervisor and the virtual machine page alloca-
tor. This provides a solution for load-balancing
and also addresses the issue of memory over-
subscription. When a virtual machine is created
a range of permissible amounts of memory al-
location is specified. The lower bound of that
range corresponds to the minimal amount of
memory under which the virtual machine can
reasonably operate; this is loosely defined as
being able to operate without excessive swap-
ping. The upper bound of that range corre-
sponds to the maximum amount of memory
that will ever be allocated to this VM no mat-
ter how much memory the hypervisor has avail-
able.

The balloon driver resides in the VM but is con-
trolled by the hypervisor. When the balloon in-
flates creating memory pressure in the VM the
memory management routines of the guest OS
must reclaim space to satisfy the driver alloca-
tion request. When memory is tight that might
necessitate that the guest OS decides which
pages to reclaim, possibly swapping those to
its own virtual disk. The reclaimed pages are
passed down to the hypervisor which in turn
makes the physical memory available to other
VMs. In order to guarantee separation between
VMs the page are zeroed out before being made

available to other VMs. When the balloon de-
flates the memory is made available again for
general use by this guest OS. Since the bal-
loon driver inflates by allocating memory in the
VM it is obvious that without the collabora-
tion of the guest OS this technique is not very
successful in releasing memory to the hyper-
visor. However, when the collaboration works
then ballooning can be a very effective and pre-
dictable way to positively affect performance in
an environment where workloads benefit from
additional memory[5].

Different mechanisms for requesting changes
in the size of the balloon are used in the two im-
plementations: in VMware the balloon driver
polls the server once per second for changes
in the balloon size, while Xen uses a mech-
anism relying on the XenStore/XenBus func-
tionality. XenBus provides a bus abstraction
for paravirtualized drivers to communicate be-
tween domains and XenStore is a filesystem-
like database that is accessible by all domains.
Most commonly, management tools configure
and control virtual devices by writing values
into keys in the database that trigger events in
drivers. In the case of the balloon driver the tar-
get size of the balloon is stored in a key and
the balloon driver sets a watch on it. When
the value of the key changes the driver immedi-
ately responds by trying to accomodate to the
requested size. Neither one of those mecha-
nisms has a significant impact in terms of per-
formance to the VM.

5.2 Balloon Drivers Advantages & Disad-
vantages

It is sometimes difficult to separate the advan-
tages and disadvantages of this technique, since
what could be viewed as an advantage could
also be viewd as a limitation. For example,
it is a definite advantage to be able to directly
use the native memory management routines of



2006 Linux Symposium, Volume Two • 309

Figure 2: Balloon Driver removes memory that
is already free, usually causing fragmentation

the guest OS without any changes. However,
the use of existing mememory managment rou-
tines becomes a real limitation when you are
trying to maintain low external memory frag-
mentation.

Also, the balloon driver is a very independent
entity in the VM whose size is only known by
itself and the hypervisor; there is currently no
notification to the applications that the balloon
driver is squeezing memory. Moreover mem-
ory statistics reporting tools such as top or
free will see no changes in the memory usage
since from the kernel’s perspective the memory
is used by the balloon driver.

Furthermore, even if the guest VM is trying to
collaborate the balloon driver might not be able
to reclaim the memory requested by the hyper-
visor fast enough to satisfy the system’s needs.

The most obvious disadvantages of ballooning
is that the balloon driver fragments the pseu-
dophysical memory map of the guest VM. Al-
though hotplug memory is more invasive, it
is able to alloc/dealloc contiguous regions of
memory. Thus it avoids fragmentation of the
memory map. Instead, the memory map can
be split up into sections using SPARSEMEM
and hoptlug can alloc/free whole sections at
a time, freeing memory metadata at the same
time you free the memory itself. It also poten-
tially makes it easier to implement compacting
of real physical memory, so that Xen itself does
not end up with excessive fragmented memory.

Figure 3: From left to right: System with bal-
loon driver, hotplug add operation, The same
system after hotplug add operation

6 Steps Towards Unification

Memory hotplug and balloon drivers serve sim-
ilar goals in different ways. They are like
peanut butter and jelly. Either one can be used
on its own, but if they are used together in
proper balance the end result can be better than
either alone.

6.1 Balloon Driver Plus Add

Balloon drivers are already in use in virtualized
environments, but are unable to use more mem-
ory than the Linux kernel was booted with. At
the same time memory hotplug add is already
in mainline kernels and allows Linux to add
memory that it wasn’t booted with. Without too
much code the existing balloon driver could be
modified to grow memory past normal balloon
limits using the hotplug add mechanism. The
small amount of new code would be contained
in the balloon driver, making it easy to merge
into mainline.



310 • Resizing Memory With Balloons and Hotplug

6.2 Balloon Driver Plus Remove

The reason hotplug remove is not merged into
mainline yet is because without fragmentation
avoidance it would not have a high rate of suc-
cess removing whole sections, making it not re-
liable enough to use on its own. However, us-
ing existing memory migration and just enough
code to enable removing sections does enable
the removing of sections in good conditions.
Again, using a balloon driver as a base it is pos-
sible to add hotplug remove into the mix. The
balloon driver could, with a minimal amount of
extra code, use hotplug remove as a primary ve-
hicle and when hotplug remove is unable to free
a whole section it could fall back to its normal
methodology.

This combination would improve on the frag-
mentation of the normal balloon allocator
whenever hotplug remove was used. It also
alleviates the dependence for fragmentation
avoidance, but would still benefit from any
fragmentation avoidance that was eventually
merged.

6.3 Make Balloon Memory Migrateable

One of the obstacles to using memory remove
in combination with a balloon driver is that
memory already taken away by the balloon
driver is unable to be removed a second time by
hotplug. This is easily alleviated by two simple
steps. The first step is to mark the pages already
taken by the balloon driver as migrateable. The
second step is to add event notifiers in the bal-
loon driver that would release its claim on any
memory targeted for removal.

By doing these two steps the hotplug remove
mechanism could remove sections that had
been fragmented by the balloon driver. This
would also clean up data structures associated
with that memory.

7 Conclusion

In an ideal world memory hotplug remove
would be the primary memory management in-
terface and would work on all memory. But
even without it there is a lot that can be done
with existing and easily merged technology to
help make Linux a more flexible OS in a virtu-
alized environment.

8 Acknowledgments

Many thanks to Yasunori Goto, Dave
Hansen, Mike Kravetz, Hirokazu Taka-
hashi, IWAMOTO Toshihiro, KAMEZAWA
Hiroyuki, Matt Tolentino, Bob Picco, Andy
Whitcroft, and all the hotplug developers.

9 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM or
HP.

IBM is a trademark or registered trademark of In-
ternational Business Machines Corporation in the
United Sates and/or other countries.

HP is a trademark or registered trademark of
Hewlett Packard Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

References

[1] http://www.virtualiron.com

[2] http://www.xensource.com



2006 Linux Symposium, Volume Two • 311

[3] J. Schopp et al. Memory Hotplug Redux.
In Proceedings of the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2005.

[4] M. Gorman. The What, They Why and
the Where To of Anti Fragmentation. In
Proceeding sof the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2006.

[5] C. A. Waldspurger, Memory resource
management in VMware ESX server,
Proceedings of the 5th Symposium on
Operating Systems Design and
Implementation (OSDI 2002), ACM
Operating Systems Review, Winter 2002
Special Issue, pages 181-194, Boston,
MA, USA, Dec. 2002

[6] Paul Barham, Boris Dragovic, Keir
Fraser, Steven Han, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, Andrew
Warfield, Xen and the Art of
Virtualization, Proceedings of the 19th
ACM Symposium on Operating Systems
Principles, October 19-22, 2003



312 • Resizing Memory With Balloons and Hotplug



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


