
Improving the Approach to Linux Performance Analysis
An analyst point of view

Jose Santos
IBM’s Linux Technology Center

jrs@us.ibm.com

Guanglei Li
IBM’s China Development Lab

guanglei@cn.ibm.com

Abstract

In-depth Linux kernel performance analysis
and debugging historically has been a focus
which required resident kernel hackers. This
effort not only required deep kernel knowledge
to analyze the code, but also required program-
ming skills in order to modify the code, re-build
the kernel, re-boot and extract and format the
information from the system.

A variety of powerful Linux system tools
are emerging which provide significantly more
flexibility for the analyst and the system owner.
This paper highlights an example set of per-
formance problems which are often seen on a
system, and focuses on the methodology, ap-
proach, and steps that can be used to address
each problem.

Examples of a set of pre-defined SystemTAP
“tapsets” are provided which make it easier
for the non-programmer to extract information
about kernel events from a running system, ef-
fectively tracing some of the kernel behavior.
Some examples of performance problems in-
clude I/O problems, workload scalability is-
sues, and efficient system utilization. Available
tools such as SystemTAP, kprobes, oprofile,
and trace tools are compared and contrasted to
provide the system owner with real-life exam-
ples which can be used on their systems today.

1 Introduction

As the complexity of the Linux kernel in-
creases, so does the complexity of the prob-
lems that impact performance on a produc-
tion system. In addition, the hardware sys-
tems on which Linux runs today is also increas-
ing in complexity, scale, and size. Customers
are also running more robust and challenging
workloads in production environments and are
expecting more reliability, stability, and perfor-
mance from the underlying operating system
and hardware platform. The end result of all
this complexity is that new performance bar-
riers continue to emerge which in many cases
are increasingly difficult to analyze and under-
stand.

In the past, many of these problems required the
expertise of kernel developers to create special-
ized one-off tools that were specific to the prob-
lem at hand and are of little use to other prob-
lems. While this remains one of the more pow-
erful ways to do analysis of the kernel, it is lim-
ited to people with deep understanding of the
kernel subsystems. To some extent, this pre-
vents many users who are running on hardware
systems and software environments to which
developers may not have access, from doing
their own initial performance problem determi-
nation and assessments.

296 • Improving the Approach to Linux Performance Analysis

With the continued evolution of tools like
Oprofile and the development of new tools such
as SystemTap, there are now easier and more
consistent ways for users and developers to tap
into the performance problems present in spe-
cialized environment. By making these tools
less complicated to use, it allows for more
users to provide better information to develop-
ers which in turn enhances communications in
the community and functions as a learning tool
for the aspiring kernel hacker.

2 Identifying performance prob-
lems

2.1 Types of problems

Performance related problems can be split into
two general categories:

1. CPU bound problems

2. Non-CPU bound problems

CPU bound problems are caused when Sys-
tem Under Test (SUT) CPU resources are com-
pletely utilized, which means that the system
will not be able to process more information
faster. Due to their nature, CPU bound prob-
lems are generally easier to identify since there
are various tools available to determine the uti-
lization of these resource. For these kinds of
problems, a profiler is typically the best tool for
the job.

Problems that are not CPU bound are usually
caused by a lack of some other resource on the
SUT or other problems in the code that do not
allow for the various resources of the system be
fully utilized. These are a bit trickier to figure
out because there are numerous resources that

can be utilized in any given environment and
some investigation is required in order to iden-
tify what resource is causing any given perfor-
mance problem. A typical tool used to do initial
forensics of this problem is a system trace.

2.2 Basic analysis

Before the first email is sent or a kernel re-
compiled, there is some initial data that needs
to be gathered to determine the starting point of
the analysis process. Programs such as vmstat
and the tools from the sysstat package provide
valuable data at this stage. The data gathered
by these tools can give insights into possible
causes of the problems and act as a stating point
for the analysis process.

Another important information that needs to be
gathered is accurate and verbose system con-
figuration information as some problems can be
traced back to hardware or known device driver
issues. Its also important to know the limita-
tions of the hardware before assessing that there
is a performance problem in the first place.

Once this information is gathered, analysis of
vmstat output can provide usage activites from
memory, processes, CPU components that can
narrow down the scope of the analysis process.
If the system show very low activity when more
activity is expected the use of other programs
like iostat or sar can be use obtain a system ac-
tivity report. While iostat concentrates on disk
IO activity, sar can get information from var-
ious different components of the running sys-
tem, including detail interrupt information, net-
working cpu activity and more.

There are several books available on the market
that discuses some of these techniques in more
detail and are a valuable reference for analysis
work.

2006 Linux Symposium, Volume Two • 297

3 Oprofile

Oprofile is a system-wide profiler that can uti-
lize the performance counters available in a va-
riety of processors in order to create summary
reports of the activities that happes within the
system. One of Oprofiles greatest strengths is
its simplicity. A basic session consists of three
commands:

1. $opcontrol --setup --vmlinux=/boot/vmlinux

2. $opcontrol --start

3. $opreport -l -p /lib/modules/uname -r

This generates the output as shown in Figure 1.

By default Oprofile is configured to use the
CPU cycles performance counter as the trigger
for a profile event. Since the the tool relies on
performance counters as the trigger for collect-
ing data, the tool is most suited for analyzing
CPU bound problems.

While more advanced uses of Oprofile are be-
yond the scope of this paper1 the basic infor-
mation obtained though opreport can be exam-
ined to determine the cause of a performance
issue by viewing the frequency that a kernel or
user function spends on a given performance
counter event. A good guideline to follow is
that if the kernel is spending more than 5% of
its time in a single function, then this function
is a good candidate for further analysis.

Once a kernel function that causes the perfor-
mance abnormality has been identified, further
analysis needs to be done at the source code
level to figure out the root cause of the problem.
There is a tool on the Oprofile package called

1More examples of the capabilities of Oprofile can
be found at http://oprofile.sourceforge.
net/examples/

opannotate can help determine where within a
function Oprofile is receiving the greatest hits.
One drawback is that opannotate does little to
help figure out problems that are making such a
function show high utilization in Oprofile re-
ports. One example of this type of scenario
is when large amount of time is spent in spin-
lock code. This is typically not a problem with
the spinlock code itself, but rather the code that
calls a particular spinlock. The tool does how-
ever provide a good amount of information as a
starting point for the next tool described on the
paper.

4 SystemTap

Inspired by the work of Sun’s DTrace, engi-
neers from Red Hat with the help from other
companies created a new tool called System-
Tap. This tool, while still in its infancy, pro-
vides a wealth of opportunity not only to new
kernel programmers, but also for the veteran
kernel hacker. SystemTap provides a simplis-
tic language that is built to talk to a live ker-
nel. This simple language provides the user
with a way to interface with the kernel without
the complexities details that similar functional-
ity using kprobes and C code requires. This al-
lows for the creation of very detailed tools with
minimal amounts of code and helps the analyst
focus on the core problem. This is a big con-
trast to using the dynamic probe infrastructure
available in the Linux kernel today as these re-
quire the user to design a fully functional kernel
module. While this approach can provide some
benefits in speed as well as the flexibility to in-
strument the kernel, it does so at the expense
simplicity.

SystemTap relies on predefined functions
called tapsets in order to extract certain infor-
mation from the kernel. These tapsets are de-
signed to provide a set of predefined functions

298 • Improving the Approach to Linux Performance Analysis

CPU: P4 / Xeon with 2 hyper-threads, speed 3002.82 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped)
with a unit mask of 0x01 (mandatory) count 100000
samples % app name symbol name
2270717 73.6201 vmlinux-2.6.5-7.244-smp .text.lock.rwsem_spinlock
218144 7.0726 vmlinux-2.6.5-7.244-smp __down_read
201530 6.5339 vmlinux-2.6.5-7.244-smp __up_read
18968 0.6150 oprofile (no symbols)
11730 0.3803 tkrlog tkfind
10174 0.3299 libstdc++.so.5.0.6 std::string::compare(std::string const&) const

Figure 1: Sample Oprofile output

that make it simple to gather information from
the kernel. In situations where the tapsets do
not provide sufficient functionality needed to
analyze a problem, extra functionality can be
added by embedding C code into the script.
While this provides experienced users with the
ability to customize their instrumentation to
their need, the C code will run as-is, and if the
user is not cautious, a system crash may occur.
For this reason, embedded C code can only be
run in ’GURU Mode’ which restricts the use
of SystemTap to users with privileged access.
Even with this restriction, the user should take
care of the fact that badly generated code may
cause his system to fail. Since SystemTap re-
lies on kprobes for inserting probe points into
the kernel, it is also important to mention that
kprobe inserted in certain areas may lead to a
system crash. While a lot of these functions
have been black-listed to prevent users from
inserting probes in dangerous locations, some
probes can, under some circumstances, cause
system stability issues. As SystemTap matures,
the tools will be more robust and take precau-
tion to not insert probe points into such places
in the kernel.

One of the biggest advantages of SystemTap is
the ability to export kernel information to the
user. One of the traditional ways to export ker-
nel information to the user is using printk and
analyzing the output. While this works well
for debugging functionality problems, printk is
a costly operation and can change the perfor-

#!/usr/local/bin/stap
global trace

probe kernel.inline("idle_balance") {
trace[backtrace()] <<< 1

}

probe begin {
print("Starting IDLE backtace")

}

probe end {
foreach(stack in trace) {

print("===================\n")
printf("Count: %d\n",

@count(trace[stack]))
print_stack (stack)

}
}

Figure 2: Backtrace accounting when entering
the idle loop

mance characteristics of the problem at hand.
Although a developer can always create a more
complex code to store and export that data to
user space, this is a level of complexity that
not only requires deep kernel knowledge, but
also takes valuable time away from the prob-
lem solving.

In the code sample shown in Figure 2, the goal
is show how to analyze one of the most com-
mon performance problems that can be seen in
the field, the inability to drive a system to full
CPU capacity. There are many causes of not
being able to drive a system to full capacity; ex-
amples includes IO limitations or semaphores
restricting the scalability of the system. This
script instruments the idle_balance() so

2006 Linux Symposium, Volume Two • 299

that every time that the system is about to go
into the idle loop, a backtrace of the sequence
of events that caused us to go idle is shown.
The backtrace is then use as a key for an array
that increments each time the same backtrace
is hit. The end result is a count of backtraces
that can show the sequence of events that led
the machine to go idle. With this sequence of
events, tuning of the system or code changes
may be utilize to fix the problem that prevents
the system for doing more work.

In the previous example, the tapsets provided
by SystemTap were sufficient to analyze the
given problem. In code sample in Figure 3,
embedded C code is use in order to create a re-
port that shows how processes access memory
across NUMA nodes. The purpose of this script
is to assist the analysis of problems cause appli-
cation accessing memory across NUMA nodes.
This is typical in HPC (High Performance
Computing) environments were lots of remote
memory can cause huge stall in the processor
reducing the performance of the application.
To obtain memory access information from the
running system, a probe is inserted into the
__handle_mm_fault() in which the ad-
dress of the page fault can be extracted. In order
to translate kernel addresses to NUMA node
information, the function addr_to_node()
was created in embedded C code to fulfill this
functionality. All the information is later in-
serted into arrays that use the pid number, write
access, and numa nodes as keys for the coun-
ters.

5 Tracing

While tools such as SystemTap provide the
means to instrument the kernel in new exciting
ways, it still relies on the expertise of knowl-
edgeable developers or analysts to come up

with proper ways to use the tool in order to re-
solve a problem. Since the tool is so focused
in its approach, it is not the best tool to use in
situations where the problem has not been nar-
rowed down to a specific component of the ker-
nel. In these situations, getting a system trace
is often one of the best tools for getting infor-
mation that other tools such as Oprofile have
failed to uncover. A system trace consist of pre-
defined probe points called trace hooks that are
inserted key places located within the kernel.
These trace hooks are designed to give the user
a detailed activity histogram of a running sys-
tem. These system activity histograms can then
be analyzed in user space using scripts that gen-
erate detail reports or using visualization tools
that allow the user to view time spent on system
activities.

One of the advantages of using this method of
system analysis is that the work of determining
where probe points should be inserted in the
kernel has already done by the developers of
the tool. This is very appealing tool for devel-
opers doing analysis in customer environments
where the developer has restricted access to the
production environment. With a trace tool, the
developer simply needs to provide the customer
with the right set of instructions for client to run
the tool. The the data extracted from the system
is then passed on to the developer for further
analysis.

There are several tools currently in develop-
ment that provide trace functionality to the
Linux kernel. There are offerings like LT-
Tng (Linux Trace Toolkit Next Generation) and
LKST (Linux Kernel State Tracer) which re-
quire kernel patching but offer superior perfor-
mance and as well as tools like LKET(Linux
Kernel Event Trace) which are being imple-
mented on top SystemTap for user convenience
but at expense of some performance.

300 • Improving the Approach to Linux Performance Analysis

#!/usr/local/bin/stap -g
global execnames, page_faults, node_faults

function addr_to_node:long(addr:long)
%{

int nid;
int pfn = __pa(THIS->addr) >> PAGE_SHIFT;
for_each_online_node(nid)

if (node_start_pfn(nid) <= pfn &&
pfn < (node_start_pfn(nid) +
NODE_DATA(nid)->node_spanned_pages))

{
THIS->__retvalue = nid;
break;

}

%}

probe kernel.function("__handle_mm_fault") {
execnames[pid()] = execname()
page_faults [pid(), $write_access ? 1 : 0] ++
node_faults [pid(), addr_to_node($address)] ++

}

function print_pf () {
print (" Execname\t PID\tRead Faults\tWrite Faults\n")
print ("====================\t========\t===========\t============\n")
foreach (pid in execnames) {

printf ("%20s\t%8d\t%11d\t%12d\t", execnames[pid], pid,
page_faults[pid,0], page_faults[pid,1])

foreach ([pid2,node+] in node_faults) {
if (pid2 == pid)

printf ("Node[%d]=%d\t", node,
node_faults[pid2, node])

}
print ("\n")

}
}

probe begin {
print ("Starting pagefault counters \n")

}

probe end {
print ("Printing counters: \n")
print_pf ()
print ("Done\n")

}

Figure 3: Numa page fault accounting

2006 Linux Symposium, Volume Two • 301

5.1 LTTng—Linux Trace Toolkit Next
Generation

LTTng is a replacement of the original LTT
(Linux Trace Toolkit). It is an enhanced version
of the existing LTT instrumentation and uses
RelayFS to export the data to user space. It is
designed to be fully reentrant, scalable, exten-
sible, modular, precise, (declared to be around
100ns time accurate) and has low overhead, low
system disturbance, and architecture indepen-
dence.

LTTV (Linux Trace Toolkit Viewer) is a visu-
alization tool that complements LTTng by per-
forming analysis of the trace data generated by
LTTng and showing the results in text or in a
graphical display interface. It has a modular ar-
chitecture based on plug-ins which means that
you can use various text and graphical plugs to
handle different trace data. Multiple plug-ins
can interact with each other to further enhance
the analysis capabilities.

LTTng also has a code generator named gen-
event which will parse user customized event
descriptions and generate the necessary codes
to record events in the kernel. With the added
plug-in mechanism of LTTV, it makes it easier
to trace and analyze a new event inside the ker-
nel.

One of LTTng biggest weakness is that it re-
quires kernel patches. This limits its use to en-
vironments were kernel recompiles and lost of
downtime are allowed.

5.2 LKST—Linux Kernel State Tracer

LKST is another kind of kernel trace tool de-
veloped by Hitachi and Fujitsu. Like System-
Tap, it enables developers to investigate prob-
lems in the Linux Kernel without stopping the
machine. It will record kernel events such as

process context switching, exception, memory
allocation as trace data, and provides a log an-
alyzer tool to do some post-processing work.
Users can use LKST to analyze the errors hap-
pened inside a running kernel, and it could also
be used to do the performance analyzing work.
And what’s more, it is possible to change dy-
namically which events will be recorded, so
that developers can obtain information about
the events which they concern only. It is also
possible to change the handler associated with
each event.

Like LTTng, LKST requires patches to the Ker-
nel. Unlike SystemTap, LKST will add static
hook check points into various locations of
Linux Kernel, and the registered event handler
will be executed if the user chooses to probe
that event.

5.3 LKET—Linux Kernel Event Trace

LKET is an extension to the tapsets library
available on SystemTap. It was born out of the
necessity to gather trace information from en-
vironments were recompiling kernels is not al-
lowed. Its goal is to utilize the dynamic prob-
ing capabilities provided through SystemTap to
create a set of standard hooks that probe pre-
defined places in the kernel. This allows both
experienced kernel programmers, analysts and
customers to gather important information that
can be used as a starting point to analyze a per-
formance problem in their system.

The LKET tapset is designed to only gather the
trace hook events selected by the user. This al-
low the tool to be customize depending on the
nature of the problem being analyzed. Once
the data has been collected, it is then post-
processed according to the need of the user.
This provides a significant advantage over just
running a simple SystemTap scripts since the
data there is some what static. On the other

302 • Improving the Approach to Linux Performance Analysis

Hook Family Hooks Description
addevent.syscall addevent.syscall.entry Entry and exit of

addevent.syscall.return System Call events
addevent.process addevent.process.fork Process Creation

addevent.process.execve events
addevent.ioscheduler addevent.ioscheduler.elv_next_request IO Scheduler

addevent.ioscheduler.elv_completed_request activity events
addevent.ioscheduler.elv_add_request

addevent.tskdispatch addevent.tskdispatch.ctxswitch Task scheduling
addevent.tskdispatch.cpuidle events

addevent.scsi addevent.scsi.ioentry SCSI layer activity
addevent.scsi.iodispatching events
addevent.scsi.iodone
addevent.scsi.iocompleted

Table 1: Supported LKET trace hooks

hand, trace data can be process in various dif-
ferent ways to generate from simple to complex
reports. Detailed information is necessary in
order to create complex reports. That is why
each event hook contains common data such as
time stamp, processes ID information and CPU
information as well as some data that is specific
to the trace hook.

The trace hook event utilizes the aliasing func-
tionality of SystemTap. This allows for group-
ing of event base component of the kernel being
probed. Different aliases(addevent.eventName)
are defined to trace different kinds of events. As
of this writing, Table 1 show the current event
hooks provided by LKET. More event hooks
are scheduled to be implemented as develop-
ment continues.

Simplicity of use is one of the design goals
of LKET and SystemTap plays a big role
in achieving this goal. In order to enable
all the trace hooks available in LKET, a
simple SystemTap script containing “probe
addevent.* { }” is all that is needed. If a
more selected set of trace hooks is desired, one
can add individual trace hooks or trace hook
families to as described in Table 1.

To show an example of using LKET to trace
system calls of “updatedb” and do simple post-
processing we first SystemTap’s LKET tapset
to generate the trace data:

$ stap -e "probe addevent.syscall {}" \

-c "updatedb" -D ASCII_TRACE \

-I LKET_TAPSETS > probe.out

The generated trace data looks like:

1|1143485073|422541|8378|8368|8378|0|sys_mmap
2|1143485073|422550|8378|8368|8378|0|sys_mmap
1|1143485073|422556|8378|8368|8378|0|sys_close
2|1143485073|422562|8378|8368|8378|0|sys_close
1|1143485073|422602|8378|8368|8378|0|sys_read
2|1143485073|422611|8378|8368|8378|0|sys_read

To make this example simpler, we let LKET log
trace data in ASCII format instead of the de-
fault binary format. The ASCII trace format
uses “|” as the delimiter and its described in
Figure 5.3. The HookID’s for the system call
trace hooks are “1” for syscall entry and “2” for
syscall return. The syscall hooks have a single
“Hook data” field which in this case is the name
of the syscall.

After the data has been gathered, analysis of
the data can be delegated to scripts like the one

2006 Linux Symposium, Volume Two • 303

HookID tv.sec tv.u_sec pid ppid tid cpuid Hook data ...

Figure 4: ASCII trace format

#!/bin/awk -f
BEGIN {

FS="|";
}

{
if($1 == 1) {

start[$8,$6] = $2*1000 +$3/1000
} else {

stop[$8,$6] = $2*1000 +$3/1000
elapsed[$8]=stop[$8,$6]-start[$8,$6]
if(elapsed[$8] > max[$8])

max[$8]=elapsed[$8]
cnt[$8]++
total[$8] += elapsed[$8]

}
}

END {
printf "%-22s%-12s%-12s%-6s%-12s\n",

"name","max","average","count","total"
for(x in cnt) {

printf "%-22s%-12s%-12s%-6s%-12s\n", x,
max[x],total[x]/cnt[x],cnt[x],total[x]

}
}

Figure 5: AWK script for post-processing Sys-
tem Call

in Figure 5.3 to generate a report of the top 10
most costly system call during the execution of
updatedb.

$ awk -f post-processing.awk probe.out | sort

-nr -k 5 | head -n 10

The output looks like:

sys_getdents64 1.92896 0.021046 29728 625.651
sys_fstat64 5.03613 0.007144 43785 312.803
compat_sys 2.17603 0.020722 14600 302.534

_fcntl64
sys_close 3.37598 0.008320 29213 243.061
sys_fchdir 1.75 0.007192 29184 209.896
sys_fcntl 2.16382 0.007017 14600 102.444
sys_write 0.24512 0.032507 556 18.074
sys_rename 1.80811 1.80811 1 1.80811
sys_brk 0.26709 0.024827 65 1.61377
sys32_execve 0.43408 0.357544 2 0.71509

From left to right, the data are syscall name,
max time, average time, number of times being
called„ and total time of each system call. This
just illustrates one of the ways to analyze the
trace output data. Further analysis of the data
can be done by customizing the scripts to gen-
erate more complex results without the need to
gather the data again.

5.3.1 LKET Limitations

One of the current limitations of LKET is that
the overhead of kprobes added to the overhead
of the hook it self can cause some workload
to slow down significantly. New improvements
to the Kprobe subsystem plus enhancements to
SystemTap such as static probes and the binary
tracing mechanism will solve most of the per-
formance issues though.

Another short coming of the LKET tool is that
since the project has been in active develop-
ment for a short period of time, there lack of
availability of good post-processing tools. The
development team is working to create a post-
processing infrastructure for LKET so that the
tool can be more useful for first time users.

304 • Improving the Approach to Linux Performance Analysis

6 Conclusion

Gone are the days were developers needed to
resort to hack in order to analyze kernel perfor-
mance. Tools like Oprofile and SystemTap are
opening the doors to people new to Linux ker-
nel analysis. While Oprofile has shown its pow-
erful usefulness for the past couple of years,
SystemTap shows its flexibility by providing an
infrastructure were new tools can be developed.

7 Legal Statement

This work represents the views of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States.

Linux is a registered trademark of Linus Torvalds in
the United States, other counties, or both.

Other company, product, and service names may be
trademarks or services marks of others.

Reference in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provided “AS IS” with no express
or implied warranties. Use the information in this
document at your own risk.

References

[1] Frank Ch. Eigler, Systemtap tutorial,
March 27, 2006,
http://sourceware.org/
systemtap/tutorial/

[2] Steve Best, Linux Debugging and
Performance Tuning, Prentice Hall,
October 14, 2005

[3] Phillip G. Ezolt, Optimizing Linux
Performance, Prentice Hall, 2005

[4] SystemTap Mailing List Archives,
http://sources.redhat.com/
ml/systemtap/

[5] SystemTap Web Site, http:
//sourceware.org/systemtap

[6] Oprofile Website, http:
//oprofile.sourceforge.net

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

