
Measuring Resource Demand on Linux
Resource allocation, Goldilocks style

Rik van Riel
Red Hat, Inc

riel@redhat.com

Abstract

Linux, and other Unix systems, have long had
pretty good measurement systems for resource
use. This resource use data, together with tools
like top and vmstat, has allowed system ad-
ministrators to effectively gauge system perfor-
mance and determine bottlenecks. However,
this needs to be done manually and is more art
than science and nobody knows exactly how
much resources a particular workload needs.

The result? Most machines have way more re-
sources than needed for the workload they run.
This is not a problem with dedicated comput-
ers, but once virtualization is introduced peo-
ple will ask the question “how many virtual ma-
chines can I run per physical system?”

From this question alone it is obvious that re-
source demand is not the same as resource use,
and resource demand should probably be mea-
sured separately by the operating system. In
this paper I will introduce ways to measure
resource demand for CPU, memory and other
common resources, examine why resource de-
mand is often different from resource, and ex-
plain how system administrators can benefit
from having resource measurements.

1 New problems

Virtualization is the buzzword of the day, but
besides its promises of reduced hardware cost,
reduced power use and world peace, it has the
potential to introduce almost as many problems
as it solves.

The most obvious one is that when two servers
get consolidated onto one, you now have the
operating systems from both servers to manage,
as well as the host operating system. Now the
sysadmin has to take care of three OSes instead
of two. Luckily system management is a fairly
well understood problem and this problem can
be reduced or solved with automated manage-
ment tools and the use of stateless Linux.

Consolidation of multiple workloads on one
system brings another problem to the fore-
ground. In order to increase the utilization of
systems and reduce the number of active phys-
ical computers as much as possible, the num-
ber of virtual machines per physical computer
needs to be maximized, which in turn means
that each virtual machine only receives the min-
imum amount of resources it needs.

Unfortunately current Unix and Linux systems
are only geared towards measuring current re-
source use. However, if a virtual machine has
512MB of memory allocated to it, there is no



288 • Measuring Resource Demand on Linux

way to tell whether it is enough for the work-
load it is running, or too much, or just right.
Without a way to know how much resources
each virtual machine really needs, dynamically
reassigning resources from one virtual machine
to another cannot be done reliably, and each vir-
tual machine will need to get excess resources
allocated to it, just in case. In short, resource
demand is not the same as resource use, and
operating systems will need to measure both.

This paper will cover resource demand mea-
surement of the following resources:

• CPU

• Memory

• Network I/O

• Disk I/O

2 CPU

A CPU shortage is easily detected from inside a
virtual machine: the processes in the system do
not get enough CPU time, the runqueue starts
growing longer, idle time is low and users start
complaining that the applications are reacting
really slowly. However, on a virtualized multi-
core or multi-processor system, this could have
multiple causes, each of which needs a different
solution.

The most obvious cause would be that the
CPUs in the system are simply too slow for this
workload. The only fix in this case would be a
hardware upgrade.

A second cause could be that while the system
has enough CPU power, the virtual machine
cannot use enough because it does not run on
enough CPUs simultaneously. For example, the

physical computer has 8 CPU cores, but the vir-
tual machine only has 2 virtual CPUs. In this
case the performance problem can be fixed by
adding more virtual CPUs to the virtual ma-
chine, allowing it to use more CPU cores si-
multaneously.

A third situation is that the system has enough
CPU power, the virtual machine has the po-
tential to use all the CPUs, but it does not get
scheduled in often enough because other virtual
machines are using the CPU time. The easy fix
in this scenario is migrating virtual machines to
other physical computers.

Because each scenario needs a different solu-
tion, and the first solution is a lot more ex-
pensive than the other two, it is important that
the operating system and the hypervisor keep
statistics that allow the system administrator to
distinguish the different cases from each other.

2.1 CPU steal time

CPU steal time is a concept from IBM’s S390
mainframes, and has been present in S390
Linux for a while. CPU steal time denotes the
time that:

• A virtual CPU had runnable tasks, but

• the virtual CPU itself was not running.

This occurs whenever the hypervisor schedules
another virtual CPU, usually from another vir-
tual machine, on the physical CPU. In short, it
measures the contention on the CPU between
multiple virtual machines. Linux running on
Xen also shows the CPU steal time, which
is the very last number in the cpuN lines in
/proc/stat (see figure 1).

These columns represent user time, nice time,
system time, idle time, iowait time, hardirq
time, softirq time and steal time respectively.



2006 Linux Symposium, Volume Two • 289

$ cat /proc/stat
cpu 82295 80106 166899 154966547 128436 7924 2729 17698
cpu0 82295 80106 166899 154966547 128436 7924 2729 17698
...

Figure 1: CPU statistics from /proc/stat on the 2.6 kernel

Astute readers will have noticed that the
number of columns in the CPU statistics in
/proc/stat have doubled since the 2.4 kernel. It
will be interesting to see how tools like top, vm-
stat and sar will cope with the new statistics,
considering both the needs of system admin-
istrators and the limitations of terminal screen
space.

2.2 Diagnosing the situation

When idle, iowait and steal time are all low,
the applications are getting most of the physical
CPU time. If the number of running threads is
the same as the number of CPUs, the only thing
that will improve performance is having faster
CPUs.

If the number of running threads or processes is
larger than the number of CPUs, allowing the
virtual machine to run on more physical CPUs
simultaneously, by adding virtual CPUs, may
be able to fix the performance problem.

If idle and iowait time are low, but cpu steal
time is high, that means your physical CPUs are
suffering from contention between multiple vir-
tual machines. Performance can be increased
by migrating some of the virtual machines to
other physical systems.

Of course, it is possible that every physical
server is loaded with one low priority virtual
machine to run calculations in the background,
for example scientific calculations or financial
risk analysis. Since these applications are sup-
posed to eat up all the CPU time that is avail-

able, migrating them around will make little
sense and CPU steal time on these low prior-
ity background virtual machines will simply be
a fact of life and not something to worry about.

3 Memory

Memory is a lot harder to reallocate from one
virtual machine to another. This is because
memory is a non-renewable resource. Every
second there is a new second of CPU time to di-
vide between virtual machines, but the amount
of memory in a system tends to stay constant.

This means that in order to give memory to one
virtual machine, it will have to be taken away
from another virtual machine. That in turn in-
volves the balloon driver and the pageout code
in the “donor” virtual machine, which can incur
a significant latency. Hence, memory allocation
between virtual machines focuses around these
areas:

• Identify which virtual machines need
more memory, and how much.

• Identify which virtual machines have too
much memory, and how much.

3.1 Refaults

A virtual (or physical) machine can benefit
from more memory when it spends a significant



290 • Measuring Resource Demand on Linux

amount of time waiting for memory to be paged
in, when that memory was recently evicted. In
order to estimate this, two factors need to be
considered.

The first is iowait time, or the time the CPUs in
the system have tasks that would be runnable if
it weren’t for the fact that they are waiting on
IO to complete.

The second factor is the number of recently
evicted pages that got faulted back in, and how
many pages got evicted after the page in ques-
tion got evicted. The second estimate is im-
portant because it shows exactly how much
more memory the virtual machine would have
needed to avoid this page fault. A histogram
with this statistic is shown in figure 2.

$ cat /proc/refaults
Refault distance Hits

0 - 32768 192
32768 - 65536 269
65536 - 98304 447
98304 - 131072 603

131072 - 163840 1087
163840 - 196608 909
196608 - 229376 558
229376 - 262144 404
262144 - 294912 287
294912 - 327680 191
327680 - 360448 79
360448 - 393216 68
393216 - 425984 41
425984 - 458752 45
458752 - 491520 31

New/Beyond 491520 2443

Figure 2: Refault statistics from /proc/refault

As an example, consider a page that gets faulted
in and was evicted fairly recently, with only
20,000 other pages having been evicted since
this page got evicted. In this case, if the vir-
tual machine had 20,000 more pages, all these
20,000 pages would still have been resident in
memory and this page fault would not have
happened.

Armed with this knowledge and a histogram
of refault distance versus the number of faults
at that distance, we can calculate roughly how
much IO the system would have avoided, if it
had certain amounts of memory more than it
has currently.

Consider a system that has 80% iowait time,
meaning it spends 80% of its time waiting
for IO to complete. If half of the IO being
done is on pages that were evicted “less than
200MB ago,” increasing the amount of memory
of that virtual machine by 200MB will reduce
the amount of IO necessary by 50%, which
could significantly increase the performance of
the workload on the system. Figure 3 shows an
example of how memory resizing avoids page
faults.

If the system has a batch type workload, this
could represent a 50% speedup in performance.
Because the VM uses a better replacement al-
gorithm than pure LRU, the results could be
better than the predicted 50% performance in-
crease.

Conversely, imagine another virtual machine
on the same system, running a totally differ-
ent workload. This workload mostly streams
over large quantities of data and rarely touches
the same page twice. Because of this, most of
its page faults will happen on pages that were
never seen before, or on pages that were evicted
very long ago. Giving this virtual machine
200MB extra memory is not going to help at
all, because it is not accessing a lot of recently
evicted data.

Without taking refault distance into account, it
would not have been possible to easily distin-
guish between the first virtual machine, which
gets a large performance boost from 200MB
extra memory, and the second virtual machine,
which would not have gotten any noticable
boost from being allocated extra memory.



2006 Linux Symposium, Volume Two • 291

MEMORY EXPANSION & EVICTED PAGES

RESIDENT PAGES 

EVICTED PAGES 

new page 

CURRENT SYSTEM
MEMORY 

1GB 

512MB 

DEMAND 

404 

191 

192 

269 

447 

603 

1087 
909 

558 

287 

REFAULT DISTANCE:

How far from resident memory an evicted page is. 

HITS:

How much a range of pages is in demand on the system.
In other words, how many faults have occurred when a page
that has been evicted is requested from resident memory. 

RESIDENT PAGES 

EVICTED PAGES 

new page 

CURRENT SYSTEM
MEMORY 

1GB 

512MB 

2GB 

3GB 

2GB 

3GB 

DEMAND 

404 

191 

192 

269 

447 

603 

1087 
909 

558 

287 

EVICTION 

EVICTION 

Figure 3: Increasing memory size avoids I/O on pages that would have otherwise been evicted and
refaulted.



292 • Measuring Resource Demand on Linux

3.2 Non-resident pages

Keeping track of recently evicted pages and re-
faults does not require utmost precision, which
leaves space for optimizations. The naive
implementation of non-resident page tracking
would keep the same metadata for a non-
resident page as for a page that is resident in
memory, e.g. a full struct page.

However, all we need when faulting a page
back in from swap or the filesystem is to:

• identify the page, with a high degree of
certainty,

• estimate roughly how many pages got
evicted from memory after the page in
question got evicted,

• using a data structure that is small, and

• allows for efficient and SMP scalable
lookup.

When evicting a page and when faulting it in
later, the kernel knows a number of details
about the page, such as the file (address_struct)
the page belongs to (page->mapping), the
offset of the page into that file (page->
index) and the inode number of the file. Not
only do these details uniquely identify the page
with pretty high certainty, they can also be eas-
ily hashed into a single value, meaning the
information needed to identify a non-resident
page only takes up 32 bits.

However, if we were to use traditional lookup
methods like a tree or linked list, the space
taken up by the lookup pointers alone would
triple or quadruple the space taken up by the
page identifier alone, and we haven’t even
stored information about when the page got
evicted from memory yet.

Another possibility would be a huge array with
a clock hand. Every time a page is evicted from
memory, record the hash value identifying the
page in the element pointed to by the clock
hand, and move the clock hand one position
forward. On pagein, scan the array until the
hash value identifying the page is encountered.
The distance the clock hand has advanced since
the page got evicted corresponds to the number
of pages that got evicted after this page. Space
efficient, but prohibitively expensive time wise
if the array contains hundreds of thousands of
elements, say one for each page in the system.

If a page is not found in the set of recently
evicted pages, we will categorize this fault as
being either a page we have never seen before,
or a page that was evicted so long ago we no
longer track it. This is represented in the last
line of /proc/refaults in figure 2.

A compromise is to use many small ar-
rays (a non-resident bucket, or struct nr_
bucket), each the size of one or two CPU
cache lines and with a clock hand. On pagein
we hash page->mapping and page->
index to determine which array to check. The
nr_bucket has only up to a few dozen entries,
which can be compared with the calculated
hash value very quickly since they all sit in the
same CPU cache line(s).

struct nr_bucket
{

atomic_t hand;
u32 page[NUM_NR];

} ____cacheline_aligned;

/* The non-resident page hash table. */
static struct nr_bucket * nonres_table;
static unsigned int nonres_shift;
static unsigned int nonres_mask;

Figure 4: An efficient data structure for track-
ing non-resident pages

The total refault distance, meaning the num-



2006 Linux Symposium, Volume Two • 293

ber of pages that got evicted since this page
got evicted, can be estimated by multiplying the
distance the clock hand has advanced since the
page got evicted (the clock hand local to the
nr_bucket) with the number nr_buckets. This
works if the hash value is good enough to dis-
tribute the evicted pages evenly between the
nr_buckets, which appears to be the case in
practice.

This method is space efficient, using one u32
per non-resident page and one clock hand per
small array of non-resident pages. If we use
a different hash of page->mapping and
page->index for selecting the nr_bucket
than the one used for identifying the page, we
effectively increase the hash size without need-
ing more storage.

Additionally, the information on whether a
page that is faulted in was recently evicted is
needed for advanced page replacement algo-
rithms, like 2Q, CAR/CART or CLOCK-Pro.
Some of these algorithms need a flag in addi-
tion to the page identifier; this flag should fit in
one or two bits of the u32, reducing the page
identifier to 31 or 30 bits.

3.3 Page references

Being able to identify which virtual machines
can and can not benefit from being allocated ex-
tra memory allows the system to allocate mem-
ory to the right virtual machines. What remains
unanswered is the question which virtual ma-
chines will not suffer a performance decrease
when their amount of virtual memory is re-
duced. After all, if we want to give extra mem-
ory to one virtual machine, that memory will
have to be taken away from another virtual ma-
chine.

The answer lies in page references. The page-
out code inside each virtual machine scans over

its memory and evicts the pages that have not
been accessed recently and/or frequently.

If a large fraction of the pages being scanned
by the memory management pageout code were
recently referenced, the virtual machine is us-
ing most of its memory and we should not take
away memory from this system.

On the other hand, if a virtual machine only ac-
cessed a small fraction of its pages, it is not us-
ing most of its memory. If this virtual machine
is spending a lot of time waiting for recently
evicted memory to be paged back in, it could
benefit from getting extra memory. However,
if the time spent waiting for recently evicted
memory is negligable, and it is not using most
of the memory it has, then this virtual machine
is a good candidate to take memory away from.
After all, it does not really need it...

Even an IO bound workload, e.g. a data mining
job that rarely accesses the same page twice,
can still fulfill these criteria and have memory
taken away from it. This is fine, because this
workload does not benefit from the memory,
and the resulting reduction in IO done by the
other virtual machine means more disk band-
width is left over for this workload.

Virtualization is often used because of the per-
formance isolation qualities it provides, so sys-
tems should not reduce the amount of mem-
ory allocated to a virtual machine by too much.
Quality of service benefits from having decent
minimum and maximum memory allocations
for each virtual machine, and varying the cur-
rent amount within that range as needed by the
workload.

4 Disk and Network I/O

Network bandwidth allocation can be done in a
very similar way to how CPU is allocated, with



294 • Measuring Resource Demand on Linux

the difference that the hypervisor has no easy
way to control incoming network traffic. Some
tricks can be played with TCP, but not all traf-
fic can be controlled. This means that fair shar-
ing of network bandwidth can not be fully im-
plemented by the virtualization software, and
more attention will have to be paid to making
sure that the workloads on the system do not
suffer from network contention, upgrading the
network bandwidth before it becomes a bottle-
neck.

Disk I/O is a little different from CPU an mem-
ory, because multiple I/O requests can be out-
standing simultaneously. With network or other
cluster accessible storage, it is even possible for
the storage subsystem to be busy serving re-
quests initiated by other systems. This makes
I/O bottleneck monitoring at the virtual ma-
chine level or even at the physical server level
hard or incomplete, and monitoring should
probably be done on the storage subsystem it-
self.

5 Conclusions

Consolidation is one of the big drivers of vir-
tualization. In order to maximize cost saving,
users will want to consolidate their workloads
on as few physical systems as needed for their
workloads. With live migration, users may
even be able to power off server capacity that
is not currently loaded.

However, in order to maximize consolidation
of multiple workloads, it is necessary to mea-
sure not just the amount of resources used by
each virtual machine, but also to estimate the
amount of resources that each virtual machine
really needs.

Changing system structure means that system
administrators with a good gut feeling on how

to tune physical servers may find that their in-
stincts do not always work on virtual machines.
Furthermore, automated system administration
tools have no instincts, so direct measurement
of resource demand will be a necessity.

Scheduling renewable resources like CPU time,
network bandwidth or disk I/O requests is
mostly straightforward. On the other hand,
reassigning non-renewable resources like disk
space or memory takes considerably more ef-
fort. This may justify fancy algorithms to allo-
cate the right amount of memory to each virtual
machine, and limit the times memory has to be
reassigned from one virtual machine to another.

6 References

Song Jiang, Feng Chen, and Xiaodong Zhang
CLOCK-Pro: an effective improvement of the
CLOCK replacement Proceedings of 2005
USENIX Annual Technical Conference
(USENIX’05), Anaheim, CA, April 10-15,
2005.

Sorav Bansal and Dharmenda S. Modha CAR:
Clock with Adaptive Replacement in
Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages
187–200, March 2004.

Johnson, T., Shasha, D.: 2Q: A Low Overhead
High Performance Buffer Management
Replacement Algorithm, Proceedings of the
20th IEEE VLDB Conf., Santiago, Chile,
1994, pp. 439 - 450

Linux advanced page replacement
development page: http://linux-mm.
org/AdvancedPageReplacement



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


