
NFSv4 Test Project

Bryce Harrington
OSDL

bryce@osdl.org

Aurelien Charbon
Tony Reix

Vincent Roqueta
Bull SAS

tony.reix@bull.net

J. Bruce Fields
CITI

bfields@fieldses.org

Trond Myklebust
Network Appliance, Inc.

Trond.Myklebust@netapp.com

Suresh Jayaraman
Novell

sjayaraman@novell.com

Jeff Needle, Barry Marson
Red Hat

jneedle@redhat.com, bmarson@redhat.com

Abstract

This paper presents the testing effort done
around NFSv41 by the Linux NFSv4 com-
munity. As an introduction, we explain the
rationale for such a heavy testing activity,
why NFSv4 was needed, the current status of
NFSv4, and some Use Cases. Chapter 3 de-
scribes the tools used for testing integral fea-
tures of NFSv4 in the areas of functionality, in-
teroperability, robustness, performance, and se-
curity: where they come from, and which parts
of NFSv4 they are aimed to test. We also de-
scribe some tools used for analyzing problems
and loads. Chapter 4 first explains the goals
of the NFSv4 testing team and how contrib-
utors are working together. Major events for
NFSv4 since January 2004 are displayed in a

1Network File System version 4.

developmental timeline. Then, four contribu-
tors (OSDL, Bull, Novell, Red Hat) amongst
many others describe in details their NFSv4
testing activity, explaining what they have al-
ready done and what their future plans are.
OSDL and Bull are contributing to the contin-
uous testing activity of fresh kernel+CITI ver-
sions, though Novell and Red Hat test NFSv4 in
the eco-system of their distributions. As a con-
clusion, the paper shows that the testing efforts
have generated significant improvements in all
the test areas and that the core of Linux NFSv4
is stable and powerful. Also, some ideas are
presented about the future of NFSv4 protocol
and of Linux NFSv4.

268 • NFSv4 Test Project

1 Introduction

NFS Version 4 adds a number of powerful new
features to address NFS shortcomings in secu-
rity, migration, performance and other areas. In
order to make NFSv4 the new industry standard
for Linux, these features must be thoroughly
and frequently tested to ensure they are func-
tional, robust, efficient, and secure. The goals
for testing NFSv4 on Linux are to make it more
stable, more mature, more interoperable with
other NFS implementations, and to improve the
entire ecosystem of software that interacts with
NFS.

NFSv4 for Linux has been under development
at CITI and NetApp since 2001. This Linux
NFSv4 testing task force started in 2004 with
participants from OSDL, Bull, IBM, NetApp,
Novell, and Red Hat, plus many other compa-
nies and individual contributors.

Because NFSv4 is a complex and critical in-
frastructure service, the testing is both very im-
portant and very challenging. Our key strategy
in achieving our goals has been a large and col-
laborative task force that focuses on different
testing approaches, sharing results and working
directly with the developers to validate fixes.

Development of Linux NFSv4 follows the
Open Source Release Early, Release Often
model. This means that new features for the
Linux implementation of the NFSv4 protocol
become available in the mainline kernel as soon
as they’re ready. Ultimately, the new features
will enable or enhance a number of Use-Cases
including high performance computing clus-
ters, large scale render farms, massive corpo-
rate provisioning, and secure Intranet and In-
ternet file sharing.

OSDL’s role is to facilitate this testing through
establishing a testing community around Linux
NFSv4. Initially, this involved planning ac-
tivities such as collaborating with stakeholders

in creation of a Test Matrix/Wiki itemizing and
prioritizing testing needs, and in providing op-
portunities for members of the community to
meet and collaborate. Recently, OSDL’s activi-
ties focus on participating in designing and run-
ning tests for regression and installation testing,
and for checking configuration robustness.

Terminology

Before getting into details about testing it is
useful to clearly define the terminology we
have adopted in testing NFSv4.

First, one may want to check that NFSv4 fea-
tures work as they have been designed for. Usu-
ally each function is tested separately to cover
the whole function set. It is: functional testing.

Second is interoperability testing, which in-
volves comparing the Linux NFSv4 implemen-
tation against other implementations, as well
as reviewing how Linux NFSv4 interacts with
other components in the system.

Then, one may want to check that NFSv4 still
continues to work under high load, often with
random and simultaneous operations. This
aims at generating extreme cases, not reachable
with functional tests, to stress the system. It is:
robustness testing.

Since many people need to know how many
clients can be connected to a NFSv4 server,
one must measure how long NFSv4 can de-
liver some service or how many actions can be
managed in parallel and in a defined period of
time: performance testing. Performance test-
ing consists in analyzing figures (speed, time,
CPU load, Memory load, etc.) and in trying to
determine where the bottlenecks are.

Security testing may have different meanings.
In the current case the goal of testing NFSv4
security is not to test that security tools used
by NFSv4 (like Kerberos) work well. Instead,

2006 Linux Symposium, Volume Two • 269

5
/04

6
/04

7
/04

8
/04

9
/04

1
0/0
4

1
1/0
4

1
2/0
4

1
/05

2
/05

3
/05

4
/05

5
/05

6
/05

7
/05

8
/05

9
/05

1
0/0
5

1
1/0
5

1
2/0
5

1
/06

2
/06

3
/06

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400
Ma il ing L ists

#em ail s on NFS v4 mai l in g lis t

NFS ma il i ng l i st

Figure 1: nfsv4 and nfs mailing list activity.

NFSv4 security testing first checks that NFSv4
still works fine under a security environment
like Kerberos, and then it checks that NFSv4
server does not reduce the security of Linux by
opening security holes malicious or dangerous
people could use.

nfsv4 and nfs mailing lists

Problems dealing with Linux CITI NFSv4 are
discussed on the nfsv4@linux-nfs.org
mailing list, though general Linux NFS
discussions about development and in-
teroperability are discussed on the
nfs@lists.sourceforge.net mailing
list. Figure 1 shows the activity of these 2
mailing lists since may 2004: nfsv4 mailing
list (in black), which has more than two
hundred different participants, now has about
the same activity than the nfs mailing list (in
red). As expected, the most talkative people
on nfs4 mailing list are: Bruce Fields, Bryce
Harrington, Trond Myklebust, Kevin Coffman,
and then Vincent Roqueta.

2 NFSv4 Description

2.1 Why NFSv4 ?
What is new in NFSv4 ?

NFSv4 brings a number of improvements to
NFS.

NFSv2 and NFSv3 do not themselves in-
clude file locking or ACL2 management; in-
stead, those functions are performed by sepa-
rate RPC3 protocols. In addition, a mount pro-
tocol is required to obtain the root file-handle of
an exported filesystem. Thus four distinct RPC
protocols are required for full functionality.

NFSv4 integrates all of these into the same pro-
tocol, simplifying firewall management and en-
abling previously unsupportable features, such
as mandatory file locking.

For security, NFS implementations have tradi-
tionally relied on private networks and locked-
down clients. The rpcsec_gss protocol
adds support for cryptographic security using
per-user credentials, thus eliminating the need
to trust every host on the network. While
NFSv2 and NFSv3 can also take advantage of
rpcsec_gss, NFSv4 is the first to require
implementation (not use) of rpcsec_gss,
and NFSv4 integrates it into the protocol more
thoroughly.

NFSv4 also allows servers to hand out delega-
tions to clients, giving the client shared (read-
only) or exclusive (read and write) access to the
file, for improved caching.

NFSv4 provides some support for filesys-
tem replication and migration with a new
fs_locations attribute that clients can use to
find other servers exporting the same filesystem
data.

2Access Control List.
3Remote Procedure Call.

270 • NFSv4 Test Project

NFSv4 enables better support for Windows
APIs with open share locks and a fine-grained
ACL model based on Windows.

The last two NFSv4 features are more subtle,
but together add an important layer of extensi-
bility.

First, NFSv4 brings in a mechanism for in-
troducing incremental updates to the protocol,
called minor versions. Draft specifications and
prototypes for minor version 4.1 are currently
available; see chapter 5 (Future of NFSv4) on
page 284 for details.

Second, NFSv4 operations are now sent as se-
ries of smaller operations, called compound
RPCs. For example, what an NFSv3 client
would do with a single NFSv3 WRITE opera-
tion might be accomplished by an NFSv4 client
using a compound RPC consisting of the three
operations: PUTFH (to indicate which file
the following operations apply to), WRITE,
and GETATTR (to update the client’s attribute
cache). The compound RPC adds flexibility
to the protocol, especially when extending it,
since new operations can combine with exist-
ing operations in interesting ways.

Finally, while NFS has always been a freely
documented and widely implemented protocol,
previous protocol specifications have been the
work of Sun Microsystems. NFSv4 is the first
version that is actually developed within the
IETF4 and hence whose development is also
open. In practice we have seen wide and fruit-
ful participation in the process.

2.2 Status of NFSv4 on Linux

The Linux NFSv4 client and server imple-
mentation supports all of the basic features of
NFSv4. In more detail:

4Internet Engineering Task Force.

Delegations are supported, and the client will
take advantage of a file delegation where pos-
sible to perform opens and closes without
contacting the server. Work is underway to
provide even more aggressive caching on the
client, if desired, using on-disk data caching.
The server implements delegations using leases
on the exported filesystem, allowing it to coop-
erate correctly with local and Samba users.

File locking is supported, and locks can be han-
dled entirely on the client when delegations al-
low.

ACLs are supported, though client-side ACL-
manipulation tools are still under development,
and server-side support is limited by the need to
store NFSv4 ACLs as less fine-grained POSIX5

ACLs.

Kerberos-based security is fully implemented,
and support for the public-key based SPKM36

and LIPKEY7 mechanisms is under develop-
ment.

We have patches implementing preliminary
support for replication and migration; further
work needs to be done to refine them and inte-
grate them into mainline.

Ongoing development includes stabilization
and tuning. We are also interested in improv-
ing NFS (especially NFSv4) support for cluster
filesystem exports; for example, we need to en-
sure that locks acquired by an NFS server on
one node of a cluster can be enforced by an
NFS server on another node.

Server user interfaces are under revision to pro-
vide a more consistent interface for users up-
grading from NFSv2 and NFSv3.

5Portable Operating System Interface
6Simple Public-Key Mechanism.
7Low Infrastructure Public Key.

2006 Linux Symposium, Volume Two • 271

2.3 Use Cases

The new features in the NFSv4 protocol are in-
tended to improve performance and reliability
for proved usage scenarios. While we cannot
enumerate every possible use, for testing pur-
poses we’ve identified several distinct use cases
where NFSv4 would be expected to show ben-
efit over previous versions.

Scientific computing cluster. Laboratories use
NFS to communicate between the nodes in a
large computational cluster. This usage sce-
nario involves days or weeks of quiescence,
with occasional bursts of heavy read activity,
followed by intensive write operations. This
use case will benefit from robust network re-
covery and good write performance.

Render farms. This use case is in a way the
inverse of the scientific cluster. Render farms
also involve a large number of computational
nodes, but the write operations are more con-
tinuous over time, punctuated by intensive read
operations. NFSv4’s delegation and caching
improvements may be the biggest benefits in
this use case.

Provisioning. A number of large users use net-
work filesystems for deployment of software or
software updates, either to large server installa-
tions or to large workstation deployments. In
either case, issues include congestion control
(such as if many machines attempt to access
server resources simultaneously), access con-
trol, and migration and replication.

Databases. Use of Network Attached Stor-
age (NAS) and similar technologies often re-
sults in designs that place a database back-end
on an NFS share. This usage provides benefits
including backup/rollback and flexible volume
management, but can raise performance con-
cerns. New features of NFSv4 worth exploring
with this use case are delegations and caching
improvements.

3 Testing Tools

Stability and robustness:

First and foremost, NFSv4 acts as a filesys-
tem. So, the main priority in NFSv4 testing is
checking that the filesystem is stable and ro-
bust. Many generic, Open Source filesystem
test tools are available to perform such tests;
many of them, including several listed below,
are part of the LTP8 [10].

IOZone [9] was originally a performance
tool. Developed by IOZONE.ORG, OR-
ACLE and HEWLETT PACKARD, it mea-
sures raw throughput of file operations
such as read, write, reread or rewrite.
These throughputs are measured with var-
ious file sizes and read/write sizes. A typ-
ical IOZone test has a total of 1430 mea-
surements. IOZone allows mounting and
unmounting filesystems with various pa-
rameters between tests. It can be used to
stress mount program with various param-
eters.

Fsx [10] is an APPLE COMPUTERS in-
file stress program available in LTP. It
performs the following file operations :
mapped read, mapped write, read, write,
truncate. FSX checks if data corruption
occurred during these operations.

Fsstress is FSX’s complement, and is also
available in LTP. It was written by SILI-
CON GRAPHICS INC.. It stresses filesys-
tem tree structure by doing random oper-
ations on the tree structure: file creation,
recursive directories, symlinks manipula-
tions.

Locks tests [10] launch multiple processes on
multiple clients. This tool was designed

8Linux Test Project.

272 • NFSv4 Test Project

by BULL SAS to stress NFSv4 locks, and
contributed to LTP. Processes try to per-
form locks-related operations on the same
file or file section. Results are compared
to the expected results. It can be used to
stress both network and local filesystems.

ACL tests [10] were written by BULL SAS in
order to stress ACLs within NFSv4, and
are available in LTP. The test suite creates
numerous users and ACL rules and com-
bines them; then it checks that actual ac-
cesses match ACL rules.

Connectathon 2004 [8] was designed by SUN

MICROSYSTEMS, INC to perform interop-
erability testing of critical operations. It
performs high-level operations that often
reveals interoperability troubles.

FFSB [12] is a versatile and useful filesys-
tem test. It was created and enhanced
for NFSv4 by IBM. It can both stress the
whole filesystem, mimic various load pro-
files and collect test information.

NetEm [13] is a kernel component developed
by Steve Hemminger at OSDL (available
when configuring the kernel) that allows
to modify network behavior. It provides
the following features:

• dynamic delay between packets
(RTT).

• packet loss, duplication, corruption,
re-ordering, collisions.

• rate control, and non-FIFO queuing.

It can be easily configured to mimic the
behavior of real networks.

NewPyNFS [14] is a Python-based test-suite
developed and maintained by the CEN-
TER FOR INFORMATION TECHNOLOGY

INTEGRATION (CITI) of the University
of Michigan. Unlike the tests described

above, it is not a black box test tool: it
implements a python NFSv4 client and
server. It was specifically designed to test
NFSv4 features, including ones that are
not yet fully implemented.

Analysis tools

OProfile is a kernel module used to collect
statistics of CPU load by function.

Ethereal [11] is a well known network ana-
lyzer. It helps checking that NFSv4 server
and clients exchange valid sequences of
information over the network.

Needed tools

Since new NFSv4 features should appear soon
within Linux NFSv4, appropriate new tests will
be needed.

Migration and Replication is a relatively new
feature, and a functional/robustness test will be
necessary. This test would emulate or demon-
strate the transfer of an NFSv4 share from one
NFS server to another, and it would check that
the client is able to continue accessing the data
seamlessly, while measuring the impact on the
client during the transition.

New tests will be needed to exercise full NFSv4
ACLs, Named Attributes, and Directory Dele-
gation.

We also need tests of the security of NFSv4.
We need to measure the impact on performance
of running NFSv4 with security and evaluate
the robustness of NFSv4 when attacked.

2006 Linux Symposium, Volume Two • 273

4 NFSv4 Tests

Hereafter we present the testing effort done by
four contributors: OSDL, Bull, Novell and Red
Hat. Many other companies and people have
contributed to improve NFSv4, testing it, pro-
viding patches, warning about mistakes, or pro-
viding information about oops and bugs they
are experiencing in their labs.

NFSv4 is being tested in three different ways:
1) OSDL and Bull have developed tests and are
using them plus others (filesystem tests, LTP)
to continuously check that no regression oc-
curs; 2) many contributors or early adopters are
using NFSv4 in their own complex and specific
environment; 3) Novell and Red Hat are hard-
ening NFSv4 in the environment of their future
distributions by using regression tests. These
different approaches are complementary. Re-
gression and stress tests enable to verify that
NFSv4 core is reliable in a clean and standard
environment. And tests done in various and
unique environments enable to check that the
whole NFSv4 ecosystem is robust and to clean
NFSv4 of all little mistakes in its childhood.

The timeline on page 274 presents the evolu-
tion of NFSv4 since beginning of 2004. Ver-
tical bars on the right show how main features
of NFSv4 have evolved, from bad (red) to good
(green). Main events appear in the middle. No-
tice that regressions appear from time to time
and are quickly fixed. Also notice how long it
took to make locks reliable.

4.1 OSDL

The Open Source Development Labs (OSDL)
[15] became involved in the NFSv4 testing ef-
fort at the request of the NFSv4 community and
through OSDL’s Data Center Linux (DCL) ini-
tiative. Initial involvement included assisting in

organizing efforts, identifying test plans, estab-
lishing testing priorities, and facilitating discus-
sion between companies and community mem-
bers. Today OSDL’s role is in conducting re-
gression testing of all kernel patch releases by
the NFSv4 community, and ancillary activities
to help facilitate and promote use of NFSv4.

The test matrix [16] is a listing of test tasks
that were felt to be needed to fully test the
Linux NFSv4 system, broken down into the
following categories: Functional, Robustness,
Performance, Interoperability, and Security.
Through discussions with testers and devel-
opers, these tasks were prioritized, and an
NFSv4 Testing Road-map was generated, item-
izing the high priority testing tasks and iden-
tifying which organizations will be perform-
ing which tasks. OSDL signed up for several
Functional/Robustness testing tasks involving
regression testing and cross-compile testing.

Cross-compile testing is done on every ker-
nel patch released by CITI using the Patch
Lifecycle Manager (PLM). These builds target
a number of different architectures, including
i386, x86_64, ppc, ppc64, sparc, sparc64, arm,
and alpha. Compiles are performed against
several different configs, including allyescon-
fig, allmodconfig, allnoconfig, and defconfig.
Sparse has also recently been added. These
builds have been useful in identifying both is-
sues particular to certain platforms (such as
only the ppc architecture, or only 64-bit sys-
tems), as well as variation in config settings.
For example, the developer may only be check-
ing his work with a given config setting turned
on, and may have accidentally added an is-
sue that only shows up with that config setting
turned off; this cross compile system will have
a better chance of catching these classes of de-
fects.

Regression testing is done using Crucible,
a framework to automatically download
new patches from CITI and kernels from

274 • NFSv4 Test Project

 1

F

M

A

M

J

J

A

S

O

N

D

J
2004

F

M

A

M

J

J

A

S

O

N

D

J
2005

F

M

J
2006

2.6.3

2.6.7

2.6.9
rc1

2.6.12
r2

2.6.14

2.6.15
rc3

2.6.16
rc

²

KE
RB

ER
OS

 5
SU

PP
OR

T
BA

SI
C

NF
Sv

4 F
UN

CT
IO

NS

IN
TE

RO
PE

RA
BI

LIT
Y

LO
CK

 S
UP

PO
RT

vi can edit a file
nfsd as module

2.6.6

VFS: Busy inodes
after unmount

2.6.11
r5

IPv6 Client,
version 1

various issues

64K pages
corruptions

gss regressions

Bull joins
NFSv4 team

NFSv4 gets its
own mailing list

First user
testing krb5

Much more people
 testing with krb5
OSDL Test Matrix

OSDL joins
NFSv4 team

core NFSv4 is stable
Administration tools

Netem introduced
to help Wan testing

Starting locks
validation

Locking,
Interoperability
Stable release
Migration guide

NFSv4
wiki

IRC
Chanel

NFSv4 ready for
early adopters

rpcsec_gss : first patches
 IPv6 client work start

starting to work on administration
Test tool selection First user

asking for krb5

Basic NFS4 ACL definitions
POSIX server translations

Start NFSv4 security negotiation
 implementation

ACL_support attribute

svc authentication
heavy changes

server reboot
recovery

reboot recovery
 IPv6 Client

3264bits
Interoperability

NFSv4 limits

Fix file creation limit
New IPv6 patch set

Unix interoperability
 2048+ connections

 by server

 x86_64 support
Starting WAN testing

ACL limits

NFS use
FS_Cache

NFSD delegation

Introducing spkm
& IPv6 server

Figure 2: Linux/NFSv4 History.

2006 Linux Symposium, Volume Two • 275

1
/05

2
/05

3
/05

4
/05

5
/05

6
/05

7
/05

8
/05

9
/05

1
0

/0
5

1
1

/0
5

1
2

/0
5

1
/06

2
/06

0

1

2

3

4

5

6

7

8

0

4

8

12

16

20

7 7 7

2
3

7

2

0

2

4

1
0

3

7

Improvement in Defect Density

Kernel Releases

Issues per Test
Run

D
ef

ec
ts

 p
er

 te
st

 r
un

Figure 3: Defects.

kernel.org. It then patches and compiles
the kernel on a client and a server, boots them
to that kernel, and then runs a sequence of tests
(cthon04, NewPyNFS, IOZone, and LTP) on
them. The results are collected, parsed, and
analyzed for abnormalities or other unusual be-
haviors. These are reported to the developers,
and efforts are taken to identify the root causes
where they are not obvious.

1
/0

5

2
/0

5

3
/0

5

4
/0

5

5
/0

5

6
/0

5

7
/0

5

8
/0

5

9
/0

5

1
0/05

1
1/05

1
2/05

1
/0

6

2
/0

6

0

5

10

15

20

25

30

35

40

Regression Test Runs

Total Test Runs

Issues Found

Figure 4: Regression Tests.

Typically, most issues the regression testing

finds is via the NewPyNFS test, such as
changes in return codes from functions affected
by recent development changes. In some cases
these identify legitimate defects, but in other
cases they simply indicate areas where differ-
ent people have interpreted the spec in different
ways; even this is useful because it identifies
areas where further discussions about the spec
are needed, to resolve what should happen. In
this latter case it is not uncommon for the test
suite to require modification to reflect the new
consensus.

The biggest challenges in establishing the au-
tomated framework is boot control. Invariably
the client or the server will hang. It is nec-
essary to use a watchdog process to automat-
ically detect that the machine has become in-
active (such as failure to respond to pings at a
time when it should respond), and then perform
a remote power cycle on it. As well, there is al-
ways a chance that a given kernel will not boot;
to account for this situation, the boot-loader’s
default kernel is kept to a static, known-good
kernel, and the kernel-to-test is specified via
lilo -R.

The hardware included in the OSDL test frame-
work is primarily x86 based systems running
Gentoo Linux, but also includes a NetApp filer,
an amd64, a ppc64, and an itanium 2. Other
hardware may be added in the future, depend-
ing on donations to the lab. The principle chal-
lenge to integrating new hardware is automat-
ing boot control; the system must support both
some form of remote power management (in
worst case, through use of a separate interrupt-
ible power unit), and a boot-loader mechanism
to test a new kernel and fallback to a known
good one on next reboot. Serial console access
and/or logging is also important for catching
console errors.

OSDL future work

276 • NFSv4 Test Project

Due to the success seen through use of the re-
gression test framework, it is expected that this
will be expanded with more tests, more hard-
ware, and more ways to put tests into complex
configurations. For example, to date the auto-
mated boot mechanisms have only been used
between tests to reset the system, however it
could be invaluable to boot the server or client
during a test, and double-check how the system
as a whole responds. Indeed, there is test code
in both LTP and NewPyNFS intended to check
performance through reboots; these test cases
are not typically run, for obvious reasons, so
this framework could enable us to increase our
testing coverage to these areas.

Building on this, network stability testing can
be done by introducing perturbations in the net-
work such as network partitions, dropped or
corrupted packets, and so forth.

To help promote the advantages of adopting
NFSv4, it would be worthwhile to add some
performance comparison capabilities to the test
harness. One idea is to simply perform timed
kernel builds over NFSv3 and NFSv4 mounts,
and compare performance. Another idea is
to create a 3D graphics render-farm using a
server and multiple clients using POV-Ray and
the POV-Any software, and to time the per-
formance of distributed renders. Ideally, these
should illustrate how NFSv4’s delegations and
other performance features impact real world
workloads.

4.2 Bull

Bull’s contribution to the Linux NFSv4 project
started in January of 2004.

When problems are found, either we directly
expose them to the NFSv4 developers or we
talk on the nfs4 mailing list or we open a new
bugzilla ticket, depending on the complexity of
each problem.

Each time a task is finalized (like: regression
tests on last kernel-CITI version, performance
measures, . . .) we publish a News on our web-
site [21].

We are using a limited number of machines:
four ia32 machines with two processors used
both for Linux testing and for Solaris interop-
erability, and two PowerPC machines used both
for Linux testing and for AIX interoperability.
One ia32 machine is a x86_64 machine and is
used for 64bits testing, complementing testing
with AIX 64bits. All machines are connected
with GigaBits boards and switches, for perfor-
mance measurement purposes. Machines are
installed with different Linux distributions (Fe-
doraCore from Red Hat, SLES from Novell,
and Debian).

4.2.1 Regression tests

Each release of the kernel and of the CITI
patchset is exercised with tests in order to de-
tect regressions in stability, robustness and per-
formance areas. In most cases, bugs are the
result of new patches. The goal is to ensure
that these bugs will be corrected in the next
CITI_NFS_ALL patch.

The following tests are run, using different
tools:

• Connectathon 04 testing suite: do basic
conformance testing.

• Two hours FSSTRESS and FSX tests:
check robustness.

• IOZone: compare performance with pre-
vious versions.

• LTP Locks and ACL tests.

2006 Linux Symposium, Volume Two • 277

Once a problem is discovered, a new bug re-
port is created in the Linux NFSv4 Bugzilla
[18]. Then, Linux NFSv4 developers at CITI
are warned directly or via the nfs4 mailing
list. They are provided with a stack trace if
a kernel Oops occurred or a network trace in
other cases.

Tests are run with two different underlying lo-
cal filesystems: ext3 and ReiserFS.

Regression tests are also used to detect interop-
erability issues. The tests are performed on dif-
ferent Linux platforms (ia32, x86_64 and ppc)
and with non-Linux client or server.

4.2.2 Stress and robustness

As a Network File System, NFSv4 provides
two types of functions and mechanisms:

Filesystem functions. Since NFSv4 mimics
the behavior of a local filesystem to appli-
cations, it provides common filesystem re-
lated functions, such as read, write, open,
mkdir . . . but also more advanced func-
tions such as fcntl, flock, acl . . .

NFSv4 specific functions. NFSv4 tries to
appear as a local filesystem, but it is
not. It provides several functions and
mechanisms over the network, and more
specifically over Internet. These functions
include: gss support, delegation, auto-
mounter, security negotiation, migration,
replication . . .

In order to ensure the stability and robustness
of NFSv4, all its functions have to be stressed.

Core filesystem functions

The first step when testing NFSv4 deals with
checking its stability on the main architec-
ture: ia32. Several tests are performed on core
NFSv4 functions. These functions are common
to all filesystems. They provide basic inter-
faces for in-file manipulation functions (open,
read, write, . . .) and filesystem tree manipula-
tion functions (mkdir, ls, ln).

The first goal of testing is to ensure that no cor-
ruption of data occurs when manipulating files.
The FSX stress tool is quickly run, and it must
be successful. It is used to prove that Linux
NFSv4 does not corrupt data.

The second goal of testing is to ensure that file
manipulations are correctly handled, especially
when using very long path or very deep sub-tree
structures and sub-directories with multiple
processes. When we started to use FSSTRESS

it helped to reveal numerous problems in many
areas (symlink overflow, deadlock or memory
leak) that are reliable now in the current ver-
sions of Linux NFSv4.

One year after we started using FSSTRESS (in
April 2005) Linux NFSv4 was able to sustain
the concurrent load of 10 processes during 24
hours, without any problem. Three months
later, NFSv4 reached 72 hours of stress under
FSSTRESS, without any bugs. From this date,
NFSv4 filesystem tree manipulation is consid-
ered to be stable.

Locks

When we started to stress lock features in early
2005, there was only one tool available to test
locks: Connectathon. We have used Connec-
tathon during some months to stabilize NFSv4
locks implementation. It helped to find many
bugs on several architectures.

278 • NFSv4 Test Project

However, Connectathon was not designed to
perform heavy stress operations. So, a new test
tool was required, that we designed and imag-
inatively named: LockTester. This lock test
launches an arbitrary number of processes on
one or more clients to heavily stress the NFSv4
server and client. Processes try to perform var-
ious lock-related functions on the file at the
same time. This tool has helped to find several
complex bugs, and it is recommended to use
it when running regression tests. It has been
successfully integrated into the LTP suite, in
network/nfsv4/locks branch (however,
it can be used with any filesystem).

By the end of 2005, one NFSv4 server was
able to manage more than 500 local concurrent
processes, and more than 2000 concurrent pro-
cesses launched from four machines (x86, ppc).

High Load

In order to over-stress NFSv4, we have used up
to 2048 IOZone processes running on two ma-
chines and concurrently loading NFSv4 on a re-
cent kernel: no problem was revealed.

4.2.3 ACLs

NFSv4 defines a flavor of Access Control Lists
(ACLs) resembling Windows NT ACLs, de-
scribed in an IETF Internet-Draft [5]. A num-
ber of operating systems use a different fla-
vor of ACL based on a POSIX draft. NFSv4
clients and servers on such operating systems
may wish to map between NFSv4 ACLs and
their native ACLs. Interoperability tests aim at
verifying this mapping.

An ACL test suite built with python scripts
and C programs has been added to the Linux
Test Project tree. It is now available in the
network/nfsv4 branch.

It aims at to test the following points:

• ACL conformance: verify that actual ac-
cess conforms to the access control list of
the file. It includes conformance testing of
ACLs on files and directories, but also on
default directory ACLs.

• ACL robustness: multiple clients stress
one server with random ACL requests on
one single file, or on multiple files.

• ACL limits: determine the maximum
length of an ACL. ACL limits tests have
been run with Linux, Solaris 10 and AIX
5.3 on server and client sides: no interop-
erability issues have been found.

The tests are delivered with tools that help man-
aging the thousands users needed by the tests.

Tests have been run with different underlying
filesystems: ext3, xfs and ReiserFS.

Main problems found:

The tests have shown that the main current limi-
tation is that the server does not allow the client
to retrieve an ACL greater than one memory
page, due to the underlying RPC. So, when
the name of users and groups appearing in the
ACLs are 6 characters long, the limit size is
about 35 ACL entries.

ACL Interoperability tests:

There are now three ACL models to deal with:
NFSv4, Windows, and "POSIX ACLs"/mode
bits. And one must decide what to do with them
all in the face of existing users, tools, and sys-
tem interfaces that assume one or the other. For

2006 Linux Symposium, Volume Two • 279

example: since individual clients and applica-
tions with different ACL models may not deal
well with the full generality of NFSv4 ACLs,
problems may also arise from clients reading
and modifying ACLs written by clients with
different expectations.

So it is useful to run these ACL tests as long
as the ACLs’ implementation in NFSv4 code is
under development.

Remaining tests:

Interoperability tests with Windows filesystems
need to be performed. Also, we have to develop
new tests that enable the testing of all the fea-
tures of NFSv4 ACLs, regardless of the under-
lying filesystem.

4.2.4 Performance

Most NFSv4 performance measures have been
done with IOZone, which is designed to mea-
sure a global throughput on a filesystem.

These IOZone tests, combined with vmstat,
have been useful to detect performance prob-
lems as well as functional ones, such as wrong
use of Kerberos 5.

NFSv4 compared to NFSv3 & Samba

NFSv4 (TCP) has been compared to other well
known network filesystems: NFSv3 (UDP) and
Samba.

Read performance

Figure 5 shows Read performance of NFSv3,
NFSv4 and Samba 3.

For large files (greater than 4 MegaBytes) and
both in asynchronous and synchronous (no
cache is used) modes, NFSv4 (red and purple
lines) and NFSv3 (green and sky blue lines)
have similar performance.

For small files (smaller than 4 MegaBytes) and
both in asynchronous and synchronous modes,
NFSv4 outperforms NFSv3.

For small files, NFSv4 performance is between
2 and 15 times better than Samba (cobalt blue
line). For large files, NFSv4 is over 15 times
better than Samba.

Write performance

Figure 6 shows Write performance of NFSv3,
NFSv4 and Samba 3.

In asynchronous mode with small files,
NFSv4 (red line) is about 6 times faster than
NFSv3 (green line) and 3 times faster than
Samba (cobalt blue line). The cache used by
NFSv4 is very efficient for small files.

For large files, NFSv4 (purple line) and NFSv3
(sky blue line) have similar performance.

In synchronous mode with small files, the per-
formance of NFSv4 and NFSv3 is between one
third and one half of the performance of Samba.
For large files, NFS is about 20% faster than
Samba. NFSv4 and NFSv3 show the same per-
formance.

Conclusions

While NFSv4 is still being developed, its per-
formance is similar to NFSv3 performance and
it outperforms Samba. For small files, NFSv4
performance clearly outperforms NFSv3.

280 • NFSv4 Test Project

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 64 256 1024 4096 16384 65536 262144 1.04858e+06

Kb
yt

es
/s

ec

File size in KBytes

Iozone performance

read nfs4_async
read nfs3_async

read samba_3
read nfs4_sync
read nfs3_sync

Figure 5: READ: NFSv4 vs NFSv3 (synchronous and asynchronous modes) & Samba3.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 64 256 1024 4096 16384 65536 262144 1.04858e+06

Kb
yt

es
/s

ec

File size in KBytes

IOZone performance

write nfs4_async
write nfs3_async

write samba_3
write nfs4_sync
write nfs3_sync

Figure 6: WRITE: NFSv4 vs NFSv3 (synchronous and asynchronous modes) & Samba3.

2006 Linux Symposium, Volume Two • 281

Configuration of Tests

• Network: GigaBit Ethernet

• Machines (client and server): dual ia32
machines

• Kernel: 2.6.15

• Test performed: IOZone standard tests
(-ace -r 32 -U)

4.2.5 Interoperability testing

Hardware interoperability

Since Linux NFSv4 will be used on different ar-
chitectures, it is worth checking early if all fea-
tures of Linux NFSv4 run perfectly on them.
We focus on issues generated by 32/64 bits
alignment and little/big endian problems. Tests
are done on Intel x86, Intel/AMD x86_64, and
IBM ppc64 architectures, used either as NSFv4
server or NFSv4 client. A couple of bugs re-
lated to these two kinds of problems have al-
ready been found and fixed.

These tests deal only with basic features of
Linux NFSv4.

Table 1 shows the status of the interoperabil-
ity tests when run with 2.6.12 kernel. Sev-
eral problems appeared when running Connec-
tathon 04, showing that Linux NFSv4 was not
ready for use on 64bits platforms with kernel
2.6.12.

Now, starting with 2.6.15 kernel, all these is-
sues have been fixed; and these interoperability
tests are now included in our regression testing
process.

Client
Server ia32 x86_64 ppc64
ia32 OK (1) OK

x86_64 OK OK (2)
ppc64 (3) (4) (3)

(1) On x86_64 platforms, lot of socket resets.
(2) Input/output error: cannot close a big file.
(3) On ppc64 client, locking does not deliver the ex-
pected behavior.
(4) Socket: error -11 when doing write/read opera-
tions on 30 MB files.

Table 1: Interoperability testing result matrix
on 2.6.12.

Software interoperability

Tests are run to detect problems between Linux
implementation of NFSv4 and other Unix im-
plementations. Since kernel 2.6.12, no prob-
lem has appeared about basic features of Linux
NFSv4 (Client or Server) when interoperating
with NFSv4 on Solaris 10 and AIX 5.3.

Future testing

Tests involving security have not been per-
formed yet with different architectures and with
other non-Linux Operating Systems. First tests
to be run should use: Kerberos (krb, krb5i,
krb5p) and SPKM.

4.2.6 WAN testing

NFSv4 has been designed to work over LAN9

as well as over Internet. So we have run tests
to stress Linux NFSv4 over WAN10. We used
the same stress tools we used for LAN testing:

9Local Area Network.
10Wide Area Network.

282 • NFSv4 Test Project

Fsx, and Fsstress. But the testing process over
WAN differs in the hardware environment.

Tests have been run between the CITI in
Michigan and the labs of BULL SAS in Greno-
ble, France. Though these tests appeared to
be very useful because several problem were
found, setting up and configuring machines for
tests was painful: patching and updating the
kernel is not easy through Internet.

To help us, the NETEM tool has been deployed
to emulate the behavior of Internet: high RTT11

delay, high RTT variations and packets loss.
This test environment has successfully helped
us to find WAN-only bugs, like timeouts. Then,
the new kernel containing appropriate fixes has
been tested over the real Internet connection,
between USA and France, and proved reliable.

Many problems have been fixed and WAN test-
ing covers most core NFSv4 functions.

4.2.7 Future plans

Once NFSv4 is widely used, people will proba-
bly ask for proof that a NFSv4 server connected
to the WAN cannot be used as a mean for pene-
trating a private network. After a first attempt in
end of 2005 to analyze the Linux NFSv4 code
by means of tools like Duma or Checker, we
plan to start a more ambitious study: attack
a Linux NFSv4 server with a modified Linux
NFSv4 client in order to search for weaknesses
in the Linux NFSv4 code, like overflows com-
monly used by attackers.

In the second half of 2006, we plan to con-
tinue NFSv4 regression testing, in order to con-
tinue finding problems in new kernel+NFSv4
versions as early as possible.

Running tests helps to improve the quality of
the newest versions of NFSv4. It is also very

11Round Trip Time.

important to deliver new test suites which will
be used by Linux distributions for checking
that NFSv4 behaves perfectly well in the eco-
system of their distribution. So we plan to con-
tinue writing tests for new features (like repli-
cation and migration, NFSv4 ACLs, named at-
tributes) and to deliver them to the LTP project,
as we did for ACLs and Locks tests in 2005.

4.3 Novell

NFSv4 support is available in SLES 10 by de-
fault. Novell started contributing to the testing
efforts by taking part in OSDL Testing confer-
ence calls and providing inputs. Later we de-
rived the test plan from OSDL test matrix and
started testing.

All SLES 10 beta builds are being validated.
The validation sequence is:

• Pynfs/NewPyNFS for protocol confor-
mance,

• Connectathon 04 for basic conformance
testing,

• Custom usability script which tests areas
which are not covered by Connectathon,

• Support for security modes (sys, krb5,
krb5i),

• Lock tests.

The major focus is on functionality, robust-
ness, interoperability and performance. Proto-
col conformance, POSIX conformance, instal-
lability, integration testing, use case scenarios,
and kerberos security modes were tested as part
of functionality testing. Stress testing, com-
parison against NFSv3, various security modes,
and various load scenarios were done as part
of performance testing. Robustness Testing in-
corporates fsstress, ffsb, resource limit testing

2006 Linux Symposium, Volume Two • 283

and crash recovery. The interoperability testing
includes NetApp and Solaris platforms and all
SLES 10 supported architectures.

Tools used

The tools used during various levels of test-
ing are: PyNFS, OpenPOSIX, LTP, Connec-
tathon, IOZone, fsstress, ffsb, Bull LockTester,
and custom usability scripts.

Future plans

Our future focus will be tests like NFSv4 ex-
porting cluster filesystem, NFSv4 testing un-
der XEN kernel, scalability, and other pending
items in performance and robustness testing.

4.4 Red Hat

Red Hat NFS developers contribute to two code
streams, Red Hat Enterprise Linux and the
community Fedora Core project. Red Hat En-
terprise Linux has supported portions of NFSv4
for the last couple of years. Fedora Core closely
tracks upstream development. By carefully
monitoring bug reports against Fedora Core, we
are able to gauge the maturity and readiness of
the upstream bits for our enterprise customers.

Red Hat has an automated test harness which
incorporates many of the tests mentioned ear-
lier, among others:

• LTP

• fsx

• fsstress

• Locks tests

• ACL tests

• Connectathon suite

We run these tests against our nightly base-
levels and compare the results against known
good builds for regressions or problems. In
addition, we have a performance group who
run many different benchmarks with a variety
of application mixes and closely monitor any
unexpected performance changes (we scan for
deltas of more than 3% to 5%).

We work closely with many key partners, who
run their own test suites. In some cases, these
test suites are proprietary, so when problem ar-
eas are encountered, we work together to come
up with reproducible test cases which we can
add to our test harness. We also work closely
with targeted customers during beta to test spe-
cific new functionality in an effort to lever-
age unique customer expertise or environments.
We monitor those results to see where we need
to enhance our internal testing and code re-
views.

Red Hat products are also fully deployed in
production throughout the company, and de-
velopment builds are deployed in test labs and
other controlled environments. There are few
quality metrics more powerful than having to
face your angry co-workers on your way to the
coffee pot!

Red Hat NFS developer Steve Dickson is a
Connectathon regular along with other Red Hat
employees. This is a very valuable opportunity
to ensure maximum interoperability of both our
stable RHEL builds as well as our latest devel-
opment trees.

284 • NFSv4 Test Project

5 Conclusions

Status of NFSv4 protocol
Future of NFSv4

There is a variety of extensions to the NFSv4
protocol under development, and Linux is serv-
ing as an important testbed for all of them.

Directory delegations allow enhanced (read-
only) caching of directory data.

pNFS allows NFSv4 clients to perform file IO
using alternate methods, including parallel IO
to multiple file servers and direct access to
block storage.

The Sessions extension fixes some of the trans-
port problems that have long plagued NFS, fi-
nally allowing a reliable replay cache that can
ensure only-once semantics.

Status of Linux NFSv4

This paper has shown that the efforts to date
have improved NFSv4 reliability and perfor-
mance since 2004 up to now.

The early regression testing has helped devel-
opers to quickly isolate and fix defects. Tests
done by OSDL and Bull have put NFSv4 into
high pressure situations, in LAN and WAN
modes. The NFSv4 test community’s efforts
have been successful in identifying many mi-
nor, medium and bad problems, on 32 and 64
bits architectures. Though the main testing ac-
tivity is done on ia32, tests are also done on
x86_64, PowerPC and ia64 processors. And
everyone knows that shaking code on different
architectures really helps in finding hidden mis-
takes and bugs!

Also, the availability of new test suites (ACLs
and Locks tests) through the LTP helps Linux

distributions to check that NFSv4 integrates
perfectly in their specific ecosystem.

The comparison of NFSv4 with NFSv3 has
shown the benefits delivered by NFSv4: high
reliability and very good performance on TCP.
Also, interoperability tests have shown that
Linux NFSv4 nicely interoperates with other
Unix NFSv4 implementations. People attracted
by Samba will enjoy a new NFS version that
delivers both Unix-Windows interoperability
and very good performance when reading files,
both in synchronous and asynchronous modes.

When we compare the status of Linux NFSv4
today against where it was when we started in
late 2004, we can see that the testing efforts
have generated significant improvements in all
test areas and that the core of Linux NFSv4 is
stable and powerful. Indeed, the NFSv4 infras-
tructure has attained quality standards which
surpass NFSv3 in many cases and offer secu-
rity levels that today’s users are desperate for.

Now that Novell and Red Hat have started test-
ing NFSv4 in depth on their distributions, this
is a clear signal for companies and individuals
that NFSv4 is ready to use on Linux. First for
experimentations, and soon in the field, where
Linux NFSv4 must prove that it scales nicely
with hundreds or thousands of clients.

Future of NFSv4 testing

There is still much functionality in develop-
ment for NFSv4, thus the Linux NFSv4 test
project will continue. New tests will be writ-
ten for testing the future Linux NFSv4 features:
Named Attributes, NFSv4 ACLs, Replication,
Migration. Also, the testing coverage must be
measured to know the percentage of NFSv4
code that is exercised when running tests over
NFSv4.

2006 Linux Symposium, Volume Two • 285

References

[1] IETF: RFC 3530: NFSv4 Protocol:
http://www.ietf.org/rfc/
rfc3530.txt

[2] IETF: NFSv4:
http://www.ietf.org/html.
charters/nfsv4-charter.html

[3] Paper: The NFS Version 4 Protocol:
http://www.nluug.nl/events/
sane2000/papers/pawlowski.
pdf

[4] Paper: Linux NFSv4: Implementation
and Administration:
http:
//lwn.net/2001/features/
OLS/pdf/pdf/nfsv4_ols.pdf

[5] NFSv4 ACLs :
http://www.ietf.org/
internet-drafts/
draft-ietf-nfsv4-acls-00.
txt

[6] CITI: NFSv4 Open Source Reference
Implementation:
http://www.citi.umich.edu/
projects/nfsv4/

[7] CITI: NFSv4 for Linux 2.6 kernels:
http://www.citi.umich.edu/
projects/nfsv4/linux/

[8] Connectathon:
http:
//www.connectathon.org/

[9] IOzone filesystem Benchmark:
http://www.iozone.org/

[10] LTP (FSX, ACL & Lock tests):
http://ltp.sourceforge.net/

[11] Ethereal (Network Protocol Analyzer):
http://www.ethereal.com/

[12] FFSB: Flexible File System Benchmark:
http://sourceforge.net/
projects/ffsb/

[13] NetEm: Network Emulator:
http://linux-net.osdl.org/
index.php/Netem

[14] NewPyNFS (NFSv4 Functionality Test):
http://www.citi.umich.edu/
projects/nfsv4/pynfs/

[15] OSDL: NFSv4 Testing for Linux:
http://developer.osdl.org/
dev/nfsv4/site/index.php

[16] OSDL NFSv4 Test Matrix v1.13:
http://developer.osdl.org/
dev/nfsv4/site/testmatrix/
testmatrix-1.13.pdf

[17] OSDL NFSv4 Wiki:
http://wiki.linux-nfs.org/
index.php/Main_Page

[18] NFSv4 Bugzilla:
http:
//bugzilla.linux-nfs.org/

[19] Linux NFSv4 Client and Server Mailing
Lists:
http:
//linux-nfs.org/cgi-bin/
mailman/listinfo/nfsv4

[20] Linux NFS mailing list:
http://lists.sourceforge.
net/lists/listinfo/nfs

[21] Bull: NFSv4 project:
http:
//nfsv4.bullopensource.org/

[22] Novell: SUSE Linux:
www.novell.com/linux/suse/

[23] Red Hat:
http://www.redhat.com/

286 • NFSv4 Test Project

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

