
The Ongoing Evolution of Xen

Ian Pratt
XenSource

ian@xensource.com

Dan Magenheimer
HP

dan.magenheimer@hp.com

Hollis Blanchard
IBM

hollisb@us.ibm.com

Jimi Xenidis
IBM

jimix@watson.ibm.com

Jun Nakajima
Intel

jun.nakajima@intel.com

Anthony Liguori
IBM

aliguori@us.ibm.com

Abstract

Xen 3 was released in December 2005, bring-
ing new features such as support for SMP guest
operating systems, PAE and x86_64, initial
support for IA64, and support for CPU hard-
ware virtualization extensions (VT/SVM). In
this paper we provide a status update on Xen,
reflecting on the evolution of Xen so far, and
look towards the future. We will show how
Xen’s VT/SVM support has been unified and
describe plans to optimize our support for un-
modified operating systems. We discuss how a
single ‘xenified’ kernel can run on bare metal as
well as over Xen. We report on improvements
made to the Itanium support and on the status
of the ongoing PowerPC port. Finally we con-
clude with a discussion of the Xen roadmap.

1 Introduction

Xen is an open-source para-virtualizing virtual
machine monitor or hypervisor. Xen can se-
curely execute multiple virtual machines on a

single physical system with close-to-native per-
formance. Xen also enables advanced features
such as dynamic virtual memory- and CPU-
hotplug, and the live relocation of virtual ma-
chines between physical hosts. The most recent
major release of Xen, Xen 3.0.0, took place on
5 December 2005.

In this paper we discuss some of the highlights
of the work involved in the ongoing evolution
of Xen 3. In particular we cover:

• HVM: the unified abstraction layer which
allows Xen to seamlessly support both
Intel and AMD processor virtualization
technologies;

• the work to allow a single Linux kernel bi-
nary image to run both on Xen and on the
bare metal with minimal performance and
complexity costs;

• the progress made in the IA64 port of Xen,
which has been much improved over the
last year; and

256 • The Ongoing Evolution of Xen

• the ongoing port of Xen to the Pow-
erPC architecture both with and without
firmware enhancements.

Finally we look towards the future development
of key technologies for Xen.

2 Hardware Virtual Machines

Although Xen has excellent performance, the
paravirtualization techniques it applies require
the modification of the guest operating system
kernel code. While this is of course possible
for open source systems such as Linux, it is
an issue when attempting to host unmodifiable
proprietary operating systems such as MS Win-
dows.

Fortunately, recent processors from Intel and
AMD sport extensions to enable the safe and
efficient virtualization of unmodified operating
systems. In Xen 3.0.0, initial support for In-
tel’s VT-x extensions was introduced; later in
Xen 3.0.2, further support was added to enable
AMD’s SVM extensions.

Although the precise details of VT-x and SVM
differ, in many aspects they are quite simi-
lar. Noticing this, we decided that we could
best support both technologies by introducing
a layer of abstraction: the hardware virtual ma-
chine (HVM) interfaces. The design of the
HVM architecture involved people from Intel,
AMD, XenSource, and IBM, but the primary
author of the code was IBM’s Leendert van
Doorn.

At the core of HVM is an indirection table of
function pointers (struct hvm_function_

table). This provides mechanisms to create
and destroy the additional resources required
for a HVM domain (e.g. a vmcs on VT-x or a
vmcb on SVM); to load and store guest state

(user registers, control registers, msrs, etc.);
and to interrogate guest operating modes (e.g.
to determine if the guest is running in real mode
or protected mode). By using this indirection
mechansism, most of the Xen code is isolated
from the details of which underlying hardware
virtualization implementation is in use.

Underneath this interface, vendor-specific code
invokes the appropriate HVM functions to deal
with intercepts (e.g. when I/O or MMIO op-
erations occur), and can share a considerable
amount of common code (e.g. the implementa-
tion of shadow page tables, and interfacing with
I/O emulation).

In the following we look first at a detailed case
study—the implementation of HVM guests on
64-bit x86 platforms—and then look toward fu-
ture work.

2.1 x86-64

One of the notable things in x86-64 Xen 3.0
is that we now support three types of HVM
guests, including:

• x86-32 (2-level page tables),

• x86-32 PAE (3-level page tables), and

• x86-64 (4-level page tables).

In this section, we discuss the challenges, and
we present the approaches we took for the x86-
64 Xen.

The HVM architecture allows 64-bit VMMs
(Virtual Machine Monitor) to run 32-bit guests
securely by setting up the HVM control struc-
ture as such. Given such hardware support, we
needed to work on the two major areas:

2006 Linux Symposium, Volume Two • 257

1. shadow page tables: x86-32 Xen sup-
ported only guests with 2-level page ta-
bles, and we needed to significantly extend
the code to support various paging models
in the single code base.

2. SMP support: SMP is the default configu-
ration on many x86-64 and PAE systems.
Supporting SMP HVM guests turns out to
be far from trivial.

2.1.1 Overview of Shadow Page Tables in
Xen 3.0

A shadow page table is the active or native page
table (i.e., with entries containing machine
physical page frame numbers) for a guest, and
it is constructed by Xen to reflect the guest’s
operations on the guest page tables while en-
suring that the guest address space is isolated
securely.

A guest page table is managed and updated by
the guest as it were in the native system, and it
is inactive or virtual in terms of address trans-
lations (i.e., with entries containing guest phys-
ical page frame numbers). This is done by
intercepting mov from/to cr3 instructions by
hardware virtualization. In other words, the
value read from or written to cr3is virtual in
HVM guests. This implies that the paging lev-
els could even be different in the shadow and
guest page tables.

From the performance point of view, shadow
page table handling is critical because page
faults are very frequent in memory intensive
workloads. A rudimentary (and very slow) im-
plementation is to construct shadow page ta-
bles from scratch every time the guest updates
cr3 or flushes the TLB(s). This is not efficient
because the shadow page tables are lost when
the guest kernel schedules the next processes
to run. Frequent context switches would cause
significant performance regression.

If one can efficiently tell which guest page ta-
ble entries have been modified since the last
TLB flush operations, we can reuse the previ-
ous shadow page tables by updating the only
the page table entries that have been modified.

The key technique that we used in Xen is sum-
marized as follows:

1. When allocating a shadow page upon #PF
from the guest, write protect the corre-
sponding guest page table page. By write-
protecting the guest page tables, we can
detect attempts to modify page tables.

2. Upon #PF against a guest page table page,
we save a ‘snapshot’ of the page; give
write permission to the page; and add the
page is added to an ‘out of sync list’ along
with information relating to the access at-
tempt (e.g. which address, etc.).

3. Next we give write-permission to the page,
thus allowing the guest to directly update
the page table page.

4. When the guest executes an operation that
results in the flush TLB operation, reflect
all the entries on the “out of sync list” to
the shadow page table. By comparing the
snapshot and the current page in the guest
page table, we can update the shadow page
table efficiently by checking if the page
frame numbers in the guest page tables
(and thus the corresponding shadow en-
tries) are valid.

2.1.2 2-Level Guest Page Table and 3-Level
Shadow Page Table

The issue with running a guest with 2-level
page tables is that such page tables can specify
only page frames below 4GB. If we simply use
a 2-level page table for the shadow page table,

258 • The Ongoing Evolution of Xen

the page frames that we can use are restricted
on any machine with more than 4GB memory.

The technique we use is to run such guests in
PAE mode that utilizes 3-level (shadow) page
tables, but retaining the the illusion that they
are handling 2-level page tables. This compli-
cates the shadow page table handling code in a
number of ways:

• The size of a PTE (Page Table Entry) is
different: 4-bytes in the guest (2-level)
page tables but 8-bytes in the shadow (3-
level) page tables.

• As a consequence, whenever the guest al-
locates an L1 (lowest level) page table
page, the shadow page table code needs to
allocate two L1 pages for it.

• Furthermore, the shadow code also needs
to manage an additional page table table
(L3) which has no direct correspondence
in the guest page table.

2.1.3 PSE (Page Size Extensions) Support

The PSE flag enables large page sizes: either 4-
MByte pages or 2-MByte pages when the PAE
flag is set. For 32-bit guests, we simply disable
PSE by cpuid virtualization. For x86-64 or
x86 PAE guests PSE is often a prerequisite: the
system may not even boot if the CPU does not
have the PSE feature. To address this, we em-
ulate the behavior of PSE in the shadow page
tables. The current implementation of 2MB
page support is to fragment it into a set of 4KB
pages in the shadow page table, since there is
no generic 2MB page allocator in Xen.

A set of primitives against the guest and
shadow page tables are defined as shadow
operations—shadow_ops. To avoid code du-
plication, we currently use a technique whereby

we compile the same basic code three times—
once each for x86, x86 PAE, and x86-64—but
with different implementations of key macros
each time. The appropriate shadow_ops is
set at runtime according to the virtual CPU
state.

2.1.4 SMP Support

SMP support requires various additional func-
tionality:

• Local APIC. To handle IPIs (interproces-
sor interrupts), SMP guests require the lo-
cal APIC. The local APIC virtualization
has been incorporated in the Xen hyper-
visor to optimize performance.

• I/O APIC. SMP guests also typically re-
quire the use of one or more I/O APIC(s).
I/O APIC virtualization has been incorpo-
rated in the Xen hypervisor for the same
reason above.

• ACPI. The ACPI MADT table is dynami-
cally set up to specify the number of vir-
tual CPUs. Once ACPI is present, guests
expect that the standard or full ACPI fea-
tures be available. During development
this caused a succession of problems, in-
cluding support for the ACPI timer, event
handling, etc.

• SMP-safe shadow page tables. At the time
of writing the shadow page table code uses
a single ‘big lock’ per-domain so as to
simplify the implementation. To improve
the scalability we need fine-grained locks.

Although HVM SMP guests are stable, we are
still working on performance optimizations and
scalability. For example, I/O device models
need to be multi-threaded to handle simultane-
ous requests from guests.

2006 Linux Symposium, Volume Two • 259

2.2 Ongoing Work

Ongoing work is looking at optimizing the per-
formance of emulated I/O devices. Unlike par-
avirtualized guest operating systems, HVM do-
mains are not aware that they are running on top
of Xen. Hence they attempt to detect H/W de-
vices and load the appropriate standard device
drivers. Xen must then emulate the behaviour
of the relevant devices, which has a consequent
performance impact.

The general model introduced before Xen 3.0.0
shipped was to use a device model assistant pro-
cess running in Domain 0 which could emulate
a set of useful devices. I/O accesses from the
unmodified guest would trap, and cause a small
I/O packet message to be sent to the emulator.
The latency involved here can be quite large
and so reduces the overall performance of the
guest operating system.

A first step to improving performance was to
move the emulation of certain simple platform
devices into Xen itself. For example, the APIC
and PIT are not particularly complicated and,
crucially, do not require any interaction with
the outside world. These devices tend to be ac-
cessed frequently within operating systems and
hence emulating these within Xen itself reduces
latency and improves performance.

A more substantial set of changes will address
both performance and isolation aspects: the
super-emulator. This approach involves asso-
ciating a paravirtualized stub-domain with ev-
ery HVM domain which runs with the same se-
curity credentials and within the same resource
container. Then when a HVM domain attempts
to perform I/O, the trap is instead reflected to
the stub-domain which performs the relevant
emulation, translating the device requests into
the equivalent operations on a paravirtual de-
vice interface.

Hence a simple IDE controller, for example,
can be emulated entirely within the super-
emulator but ultimately end up issuing block
read/write requests across a standard Xen de-
vice channel. As well as providing excellent
performance, this also means that HVM do-
mains appear the same as paravirtual domains
from the point of view of the tools, thus allow-
ing us to unify and simplify the code.

3 MiniXen: A Single Xen Kernel

The purpose of the miniXen project is to take
a guest Linux kernel which has been ported
to the Xen interfaces and combine this with
a thin version of Xen that interacts directly
with the native hardware allowing a single do-
main to run with near native performance. This
miniXen performs the bare minimum of opera-
tions needed to support a guest OS and where
possible passes events, such as interrupts and
exceptions, directly to the guest OS omitting
the normal Xen protection mechanisms.

An important first step in this was to allow the
guest kernel to run in x86 privilege ring zero
rather than ring one as a normal Xen guest does.
This is easily achieved by using the features
flags which Xen exports to all guests: a guest
checks for the relevant flag and runs in either
ring zero or one as appropriate.

An unfortunate side-effect of running the guest
kernel in ring zero is that a privilege level
change no longer occurs when making a hyper-
call or when an interrupt or exception interrupts
the guest kernel. This means that the hardware
will no longer automatically switch the guest
kernel stack for Xen’s own stack. Xen relies
on its own stack in order to store certain state
information. Therefore miniXen must check
at each entry point whether the stack pointer
points to memory owned by the guest kernel

260 • The Ongoing Evolution of Xen

or Xen and if necessary to fix up the stack by
locating the Xen stack via the TSS and moving
the current stack frame to the Xen stack before
continuing.

These checks and the movement of the stack
frame necessarily incur a performance penalty
which it is desirable to avoid. As all hypercalls
were to be either reimplemented or stripped
down in order to achieve the goal of perform-
ing the bare-minimum of work in miniXen it
was possible to also ensure that the hypercalls
did not require any state from the Xen stack.
Once this was achieved it was possible to turn
each hypercall into a simple call instruction by
rewriting the miniXen hypercall transfer page,
thus avoiding an int 0x82 hypercall and the
expensive stack fixup logic. A direct call into
the hypervisor is possible because unlike Xen,
miniXen does not need to truncate the guest
kernel’s segment descriptors in order to isolate
the kernel from the hypervisor.

Work is currently on-going to audit miniXen’s
interrupt and exception handling code to re-
move any need for state to be stored on Xen’s
stack and so allow those routines to run on the
guest kernel’s stack. Once this is complete then
miniXen should have no need for a stack of its
own and can simply piggy-back on the guest
kernels stack except for under very specialized
circumstances such as during boot.

Running the guest kernel in ring 0 allows us to
once again take advantage of the sysenter/
sysexit instructions to optimize system calls
from user space to the guest kernel compared
with the normal int 0x80 mechanism. Nor-
mally the sysenter instruction is not avail-
able to guests running under Xen because the
target code segment must be in ring 0. How-
ever with the guest kernel running in ring 0 it is
simple to arrange for the sysenter instruc-
tion to jump directly into the guest kernel. The
sysenter stack is configured such that it points
to the location of the TSS entry containing the

guest kernel’s stack allowing the kernel to im-
mediately switch to its own stack at the sysenter
entry point.

Normally Xen prevents a guest OS from cre-
ating a writable mapping of pages which are
part of a page table or descriptor table (GDT
or LDT) in order to trap any writes and audit
them for safety. For this reason guest kernels
only create read-only mappings to such pages
and a write therefore involves creating an addi-
tional writable mapping of a page in the hyper-
visor’s address space. However miniXen does
not need to audit the page or descriptor tables
and by making use of feature flags exported
from Xen to the guest kernel can cause the ker-
nel to create writable mappings of these pages.
This allows miniXen to write directly to these
pages and therefore allows page table updates
with native performance.

4 IA64

In the year since the last symposium, Xen/ia64
has made excellent progress and is slowly
catching up to Xen on x86-based plat-
forms. The Xen/ia64 community has grown
substantially, with major contributions from
organizations around the world; and the
xen-ia64-devel mailing list has grown to
over 160 subscribers.

Since Xen’s first release on x86, paravirtual-
ization has delivered near-native performance
and it is important to demonstrate that these
techniques apply to other architectures. Much
effort was put into a paravirtualized version
of Linux/ia64 and using innovative techniques
(e.g. “hyper-registers” and “hyper-privops”),
performance was driven to within 2% of na-
tive (as measured by a software develop-
ment benchmark). With guidance from the
Linux/ia64 maintainers, an elegant patch was

2006 Linux Symposium, Volume Two • 261

developed that adds a clean abstraction layer
to certain privileged instruction macros and re-
places only a handful of assembly routines in
the Linux/ia64 source. Interestingly, after this
patch is applied the resultant Linux/ia64 binary
can be run both under Xen and on bare metal—
a concept dubbed transparent paravirtualiza-
tion.

Block driver support using Xen’s fron-
tend/backend driver model was implemented
last summer and integrated into the Xen tree.
Soon thereafter Xen/ia64 was supporting
multiple Linux domains and work was recently
completed to cleanly shutdown domains and
reclaim resources. All architectural differences
were carefully designed and implemented to
fully leverage the Xen user-space tools so that
administrators use identical commands on
both Xen/x86 and Xen/ia64 for deploying and
controlling guest domains.

Preliminary support for Intel Virtualization
Technology for Itanium processors (VT-i) was
completed last fall and has become quite ro-
bust. It is now possible to run unmodified (fully
virtualized) domains in parallel with paravir-
tualized domains. Here also, existing device
models and administrative control panel inter-
faces were leveraged from the VT-x implemen-
tation for Xen/x86 to minimize maintenance
and maximize compatibility.

In many ways, Xen is an operating system and,
as an open-source operating system, there is no
need to re-create the wheel. Xen/x86 leveraged
a fair amount of code from an earlier version
of Linux and periodically integrates code from
newer versions. Xen/ia64 goes one step further
and utilizes over 100 code modules and header
files from Linux/ia64 directly. About half of
these files are completely unchanged and the
remainder require only minor changes, which,
for maintenance purposes, are clearly marked
with ifdefs. Since Linux/ia64 is relatively
immature and subject to frequent bug fixes and

tunings, Xen/ia64 can rapidly incorporate these
changes.

The value of this direct leverage was demon-
strated last fall when SMP host support was
added to Xen/ia64. Addition of SMP support
to an operating system is often a long painful
process, requiring extensive debugging to, for
example, isolate and repair overlooked locks.
For Xen/ia64, SMP support was added by one
developer in a few weeks because so much
working SMP code was already present or eas-
ily leveraged from Linux/ia64. Indeed, SMP
guest support was also recently added in-tree
and testing for both SMP host and SMP guest
support is showing surprising stability.

While Xen/ia64 has made great progress, much
more work lies ahead. Driver domain sup-
port, recently added back into Xen/x86, is es-
pecially important on the large machines com-
monly found in most vendors’ Itanium prod-
uct lines. Migration support may prove simi-
larly important. Some functionality has been
serialized behind a community decision to fun-
damentally redesign the Xen/ia64 physical-to-
machine mapping mechanisms, which also was
a prerequisite for maximal leverage and enable-
ment of the Xen networking split driver code.
With the completion of this redesign in late
Spring, networking performs well and it is be-
lieved that driver domains, as well as domain
save/restore and migration will all be easier to
implement and will come up quickly.

5 PowerPC

Xen is being ported to the PowerPC architec-
ture, specifically the PowerPC 970. The 970
processor contains processor-level extensions
to the PowerPC architecture designed to sup-
port paravirtualized operating systems. These

262 • The Ongoing Evolution of Xen

hardware modifications, made for the hypervi-
sor running on IBM’s pSeries servers, allow for
minimal kernel changes and very little perfor-
mance degradation for the guest operating sys-
tems. The challenge in a Xen port to PowerPC
is fitting the Xen model, developed on desktop-
class x86 systems, into this PowerPC architec-
ture.

One of the challenges for Xen on PowerPC
isn’t related to Xen itself, but rather the avail-
ability of hardware platforms capable of run-
ning Xen. Although IBM’s PowerPC-based
servers have the processor hypervisor exten-
sions we are exploiting in Xen, they also con-
tain firmware that doesn’t allow user-supplied
code to exploit those extensions. Current Pow-
erPC Xen development efforts have been on the
Maple 970 evaluation board and the IBM Full
System Simulator. The existing firmware on
Apple’s Power Macintosh G5 systems, which
are based on the PowerPC 970, disables the hy-
pervisor extensions completely.

As a secondary task, work is underway to run
Xen on PowerPC 970 with hypervisor mode
disabled, specifically Apple G5 systems. Al-
though possible, this model requires signifi-
cant modifications to the guest operating sys-
tem (pushing it to user privilege mode) and will
also incur substantial performance impact. This
port will be a stepping stone for supporting all
“legacy” PowerPC architectures such as Apple
G4 and G3 systems, and embedded processors.

5.1 Current Status

On PowerPC, the Xen hypervisor boots from
firmware and then boots a Linux kernel in
Dom0. The Dom0 kernel has direct access
to the hardware of the system, and so device
drivers initialize the hardware as in a normal
Linux boot. Once Dom0 has booted, a small
set of user-land tools are used to load and start

Linux kernels in unprivileged domains. At the
time of publication, the DomUs have no sup-
port for virtual IO drivers, so interaction with
the domain isn’t currently possible. However,
one can see from their boot output that they
make it to user-space.

The PowerPC development tree is currently be-
ing merged with the main Xen development
tree. PowerPC Xen is not yet integrated with
Xen’s management tools, and the unprivileged
domains, lacking device drivers, do not yet per-
form meaningful work. Once they do, it will
also become important to integrate with Xen’s
testing infrastructure and also to package builds
in a more user-friendly manner.

5.2 Design Decisions

The PowerPC architecture differs from the x86
in a number of significant ways. In the follow-
ing we comment on some of the key design de-
cisions we made during the port.

Hypervisor in Machine Mode PowerPC,
like most RISC-like processors, is able to ad-
dress all memory while translation is off (i.e.,
MMU disabled). This allows the hypervisor
to execute completely in machine (or “real”)
mode which removes any impact to the MMU
when transitioning from domain to hypervisor
and back. Bypassing the MMU allows us to
avoid TLB flushes, a significant factor in per-
formance. This decision does have two nega-
tive impacts though: it complicates access to
MMIO registers and inhibits the use of domain
virtual addresses.

The processor must access MMIO registers
without using the data cache. This is usually
implemented via attributes in MMU translation
entries, but since we run without translation this

2006 Linux Symposium, Volume Two • 263

method is unavailable to the hypervisor. Fortu-
nately, there is an architected mode that allows
the processor to perform the cache-inhibited
load/store operations while translation is off.
The problem of accessing memory through a
domain virtual address requires a more com-
plex software solution.

Many Xen hypercalls pass the virtual addresses
of data structures into the hypervisor. Xen
could attempt to translate the virtual addresses
to machine addresses without the aid of the
MMU, but the MMU translation mechanism
of PowerPC is complex enough to make soft-
ware MMU translation infeasible. An addi-
tional complication is that these data structures
could span a page boundary (and some span
many pages), and although those pages are vir-
tually contiguous, they will likely be discon-
tiguous in the machine address space.

After much agony, the solution developed to
overcome this problem is essentially to create a
physically addressed scatter/gather list to map
the data structures being passed to the hypervi-
sor. Since user-space is unaware of the phys-
ical addresses, the kernel must intercept hy-
percalls originating from user-space and create
these scatter/gather structures with physical ad-
dresses. The kernel then passes the physical
address of the scatter/gather structure to Xen
(which is able to trivially convert physical ad-
dresses to machine addresses). The end result
is Xen’s copy_from_guest() is passed the
address of this special data structure, and copy
data from frames scattered throughout the ma-
chine address space.

Hypercalls PowerPC Linux currently runs
on the hypervisor that currently ships with IBM
high end products. Like Xen, the POWER Hy-
pervisor virtualizes the processor, memory, in-
terrupts and presents a Virtual IO interface. In
order to capitalize on the existing Linux im-
plementation, Xen on PowerPC has adopted

the same memory management interfaces as
the POWER Hypervisor. However, the sup-
port for interrupts and Virtual IO come from
the Xen model. The strategy has resulted in
a small patch (< 200 LOC) for existing Linux
code, and an additional Xen “platform” for
arch/powerpc, with the rest of the Xen-
specific code in the common drivers/ direc-
tory. Since PowerPC Linux supports multiple
platforms in the same binary, the same kernel
can run on Xen, hardware, or other hypervisors,
with no recompile needed.

Interrupt Model On most PowerPC proces-
sors, interrupts are handled by delivering ex-
ceptions to fixed vectors in real-mode, and
are differentiated into two classes, synchronous
and asynchronous.

Synchronous interrupts are “instruction-
caused,” which include page faults, system
calls, and instruction traps. Under Xen, the
processor is run in a mode so that all syn-
chronous interrupts are delivered directly to the
domain. The hypervisor extensions provide a
special form of system call that is delivered to
the hypervisor, which is used for hypercalls.

Asynchronous interrupts are caused by timers
and devices. Timer interrupts are also delivered
directly to the domain. The hypervisor exten-
sions provide us with an additional timer that is
delivered to the hypervisor in order to preempt
the active domain.

Device interrupts, called “external exceptions,”
are delivered directly to the hypervisor, which
then creates an event for the appropriate do-
main. In PowerPC operating systems, the exter-
nal exception handler probes an interrupt con-
troller to identify the source of the interrupt. In
order to deliver the interrupt to the domain, we
supplied an interrupt controller driver for Linux
that consults Xen’s event channel mechanism to
determine the pending interrupt.

264 • The Ongoing Evolution of Xen

Memory Management The PowerPC hyper-
visor extensions define a Real Mode Area
(RMA), which isolates memory accessed in
real mode (without the MMU). This allows for
the interrupts that are delivered directly to the
domain to be delivered in real mode—the same
way they would work without a hypervisor. A
side effect of this is that domain “physical”
address space must be zero based. However,
since the physical address space is now differ-
ent from the machine address space, supporting
DMA becomes problematic. Rather than ex-
pose the machine address space to the domain
and write a DMA allocator in Linux to exploit
it, on 970-based systems we use the I/O Mem-
ory Management Unit (IOMMU) that Linux al-
ready exploits.

Atomic Operations The primary target of
Xen are the 32- and 64-bit variants of the
x86 architectures. That architecture contains a
plethora of atomic memory operations that are
normally not present in RISC processors. In
particular, PowerPC will only perform atomic
operations on 4-byte words (64-bit processors
can also perform 8-byte operations), and they
must be naturally aligned. This presents a
portability issue that must be resolved to sup-
port non-x86 architectures.

5.3 Conclusion

Xen has created an exceptional virtualization
model for an architecture that many consider
overly complex and has trailed the industry
in virtualization support. Xen’s virtualization
model developed in the absense of a hardware
framework, so the overall challenge of the Pow-
erPC port has been to adapt the Xen model to
exploit the capabilities of our hardware.

6 Xen Roadmap

Xen continues to develop apace. In this final
section we discuss four interesting ongoing or
future pieces of work.

6.1 NUMA Optimization

NUMA machines, once rarities except on big-
iron systems, are becoming more and more the
norm with the introduction of multi-core and
many-core processors. Hence understanding
memory locality and node topology has be-
come even more important.

For Xen, this involves work in at least three
areas. Firstly, we need to build a NUMA-
aware physical memory allocator for Xen itself.
This will enable the allocation of memory from
the correct zone or zones and avoid the per-
formance overheads associated with non-local
memory accesses.

Secondly, we need to make Xen’s CPU sched-
uler NUMA-aware: in particular it is important
to schedule a guest on nodes with local access
to the domain’s memory as far as is possible.
This is complicated on Xen since each guest
may have a large number of virtual CPUs (vC-
PUs) and an opposing tension will be to dis-
perse these to maximize benefit from the un-
derlying hardware.

Finally, the NUMA information really should
be propagated all the way to the guest operat-
ing system itself, so that a NUMA-aware guest
OS can make sensible memory allocation and
scheduling decisions for itself. All of this be-
comes even more challenging as vCPUs may
migrate between physical CPUs from time to
time.

2006 Linux Symposium, Volume Two • 265

6.2 Supporting IOMMUs

An IOMMU provides an address translation
mechanism for I/O memory requests. Popular
on big iron machines, they are becoming more
and more prevalent on regular x86 boxes—
indeed, a primitive IOMMU in the form of the
AGP GART has been found on x86 boxes for
a number of years. IOMMUs can help avoid
problems with legacy devices (e.g., 32-bit-only
PCI devices) and can enhance security and re-
liability by preventing buggy device drivers or
devices from performing out-of-bounds mem-
ory accesses.

This latter ability is incredibly promising. One
reason for the catastrophic effect of driver fail-
ure on system stability is the total lack of isola-
tion that pervades device interactions on com-
modity systems. By wisely using IOMMU-
technology in Xen, we hope we shall be able
to build fundamentally more robust systems.

Ideally this will not require too much work
since Xen’s grant-table interfaces were explic-
itly designed with IOMMUs in mind. In
essence, each device driver (virtual or other-
wise) can register a page of memory as inbound
or outbound for I/O—after Xen has checked the
permissions and ownership, an IOMMU entry
can be installed allowing the access. After the
I/O has completed, the entry can be removed.

6.3 Interfacing with ‘Smart’ Devices

A number of newer hardware devices incor-
porate additional logic to allow direct access
from user-mode processes. Most such devices
are targeted toward low-latency zero-copy net-
working, although storage and graphic devices
are moving in the same direction. One inter-
esting piece of future work in Xen will involve

leveraging such hardware to enable direct ac-
cess from guests (initially kernel-mode but ul-
timately perhaps even from guest user-mode).

As with the above-mentioned work on IOM-
MUs, this will build on the current grant-table
architecture. However additional thought is re-
quired to correctly support temporal aspects
such as the controlled scheduling of user re-
quests. Initial work here is focusing on Infini-
band controllers where we hope to be able to
provide extreme low-latency while maintaining
safety.

6.4 Virtual Framebuffer

Past versions of Xen have focused mostly on
server oriented environments. In these environ-
ments, a virtual serial console that is accessible
remotely through a TCP socket or SSH is usu-
ally enough for most use cases. As Xen ex-
pands its user base and begins to be used in
other types of environments, a more advanced
guest interface is required. The Xen 3.0.x se-
ries will introduce the first of a series of fea-
tures designed to target these new environments
starting with a paravirtual framebuffer.

A paravirtual framebuffer provides a virtual
graphics adapter that can be used to run graph-
ical distribution installers, console mode with
virtual terminal switching and scrollback, and
windowing environments such as the X Win-
dow System. The current implementation al-
lows these applications to run with no modifi-
cations and no special userspace drivers. Fu-
ture versions will additionally provide special
interfaces to userspace so that custom drivers
can be written for additional performance (for
instance, a custom X.org driver).

Traditional virtualization systems such as
QEmu, Bochs, or VMware provide graphics
support by emulating an actual VGA device.

266 • The Ongoing Evolution of Xen

This requires a rather large amount of emula-
tion code since VGA devices tend to be rather
complex. VGA emulation is difficult to op-
timize as it often requires MMIO emulation
for many performance critical operations such
as blitting. Many full virtualization systems
use hybrid drivers featuring additional hard-
ware features that provide virtualization spe-
cific optimized graphics modes to avoid MMIO
emulation.

In contrast, a fully paravirtual graphics driver
offers all of the performance advantages of a
hybrid driver with only a small fraction of the
amount of code. Emulation for the Cirrus Logic
chipset provided by QEmu requires over 6,000
lines of code (not including the VGA Bios
code). The current Xen paravirtual framebuffer
is implemented in less than 500 lines of code
and supports arbitrary graphic resolutions. The
QEmu graphics driver is limited to resolutions
up to 1024x768.

The paravirtual framebuffer is currently imple-
mented for Linux guests although the expecta-
tion is that it will be relatively easy to port to
other guest OSes. The driver reserves a por-
tion of the guests memory for use as a frame-
buffer. The location of this memory is commu-
nicated to the framebuffer client. The frame-
buffer client is an application, usually running
in the administrative domain, that is responsible
for either rendering the guest framebuffer to the
host graphics system or over the network using
a protocol such as VNC. The client can directly
map the paravirtual framebuffer’s memory us-
ing the Xen memory sharing APIs.

An initial optimization we have implemented
uses the guest’s MMU to reduce the amount of
client updates. Normally, applications within a
guest expect to be able to write directly to the
framebuffer memory without needing to pro-
vide any sort of flushing or update information.
This presents a problem for the client since it
has no way of knowing which portions of the

framebuffer is updated during a given time pe-
riod. We are able to mitigate this by using a
timer to periodically invalidate all guest map-
pings of the framebuffer’s memory. We can
then keep track of which pages were mapped in
during this interval. Based on the dirtied page
information, we can calculate the framebuffer
region that was dirtied.

In practice, this optimization provides updates
at a scanline granularity. In the future, we
plan on enhancing the guest’s userspace ren-
dering applications to provide greater granular-
ity in updates. This is particularly important
for bandwidth sensitive clients (such as a VNC
client).

We also plan on exploring other graphics re-
lated features such as 2D acceleration (region
copy, cursor offloading, etc) and 3D support.
There are also some interesting security related
features to explore although that work is just
beginning to take shape. Future versions of Xen
may also provide support for other desktop-
related virtual hardware such as remote sound.

7 Conclusion

Xen continues to evolve. Although it already
provides high performance paravirtualization,
we are working on optimizing full virtualiza-
tion to better serve those who cannot modify
the source code of their operating system. To
simplify system administration, we are work-
ing on supporting a single linux kernel binary
which can run either directly on the hardware
or on top of Xen. To allow a broader applica-
bility, we are enhancing or developing support
for non x86 architectures. And we are look-
ing beyond these to develop new features and
hence to ensure that Xen remains the world’s
best open source hypervisor.

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

