
Improving Linux Startup Time Using Software Resume
(and other techniques)

Hiroki Kaminaga
Sony Corporation

kaminaga@sm.sony.co.jp

Abstract

This paper presents a new resume operation as
well as other startup time improvement tech-
niques which are aimed at achieving fast startup
time for embedded Linux systems. A new
fast boot method called snapshot boot is intro-
duced. Snapshot boot is essentially a resume-
from-disk operation, which is a system resume
from a semi-permanent snapshot image stored
on disk or flash memory, that restores the ma-
chine to a known running state. As opposed
to a standard resume operation, a snapshot im-
age is made only once, stored on disk or flash
memory, and same image is used repeatedly,
every time the system is powered on. Other
fast boot techniques that are discussed are: use
of prelinking, a scheme to reduce the startup
cost of symbol relocation overhead for links to
dynamic libraries, execute in place (XIP) to re-
duce or avoid OS and application loading de-
lays, toolchain modifications to collect global
constructors in one place to accomplish a lo-
cality benefit, and making the program .data
section demand-paged from flash to avoid fully
loading its pages on startup.

Unless otherwise stated, the startup time re-
ferred to in this paper is the time from the sys-
tem power on to the time user can manipulate
the device. This includes userland application
startup as well as kernel startup time.

1 Software suspend

Snapshot boot is based on the current software
suspend technology in the Linux kernel. Soft-
ware suspend is independent of APM or ACPI,
which makes it more applicable to embedded
systems, where APM or ACPI is not present in
many cases. Before describing snapshot boot,
the standard procedure of software suspend is
described to assist in understanding the proce-
dure of snapshot boot.

1.1 Suspend states in Linux kernel

There are three suspend states in the Linux ker-
nel [1]. They are:

• Standby state

• Suspend-to-RAM state

• Suspend-to-disk state

Unless otherwise stated, the term suspend is
referred to as Suspend-to-disk. This is also
known as hibernation.

18 • Improving Linux Startup Time Using Software Resume (and other techniques)

1.2 Suspend procedure

The suspend procedure is shown below:

1. Trigger
Suspend procedure is triggered from writ-
ing disk to /sys/power/state opera-
tion. The call stack to the entrance of the
suspend procedure is shown in Figure 1.

sys_write()
+-vfs_write()

+-sysfs_write_file()
+-flush_write_buffer()

+-subsys_attr_store()
+-state_store()

+-enter_state()
+-pm_suspend_disk()

Figure 1: Call graph to entrance of software
suspend

2. Freeze processes
This is done by calling the freeze_

processes() procedure. It freezes user
processes, and then freezes kernel tasks.

3. Free unnecessary memory
This is done by calling the free_some_

memory() procedure. It calls shrink_

all_memory() inside.

4. Suspend devices
This is done by calling the device_

suspend() procedure. It calls suspend_
device() and then the suspend()

method for all listed active devices.

5. Power down devices
This is done by calling the device_

power_down() procedure. It calls
suspend_device() to for all listed
power off devices.

6. Save processor state
This is done by calling the save_

processor_state() procedure. It will
save registers other than generic ones,
such as segment registers, co-processor
registers, and so on.

7. Save processor registers
This is done by calling the swsusp_

arch_suspend() procedure. It will save
general registers. This is written in assem-
bly language, since the stack may not be
used.

8. Allocate memory for snapshot image
This is done by calling the swsusp_

alloc() procedure. Page directories
get allocated by calling __get_free_

pages(), and pages for the image itself
gets allocated by get_zeroes_page()

for each page directory entry.

9. Copy memory contents to allocated area
This is done by calling the copy_data_

pages() procedure. It calls memcpy()

for each page to copy.

10. Restore processor state
This is done by calling the
restore_processor_state() pro-
cedure in swsusp_suspend(). This
is where the software suspend resume
procedure comes back. It restores the
previously saved processor state.

11. Power up devices
This is done by calling the device_

power_up() procedure. It resumes sys-
tem devices and all listed power off de-
vice.

12. Resume devices
This is done by calling the device_

resume() procedure. It resumes devices
in power off device list.

2006 Linux Symposium, Volume Two • 19

13. Write page, pagedir, header image to swap
Now that the devices are active, write
to swap could be performed. This is
done by calling the write_suspend_

image() procedure. It writes image data,
page directories, and then image header
into swap.

14. Power down devices
This is done by calling the device_

shutdown() procedure. It calls the shut-
down() method for each device. Then, the
system device is shutdown.

15. Halt machine
This is done by calling the machine_

power_off() procedure. It calls pm_

power_off() and the machine halts.

1.3 Resume procedure

The resume procedure is shown below:

1. Start resume
Resume starts by calling the
software_resume() procedure in
do_initcalls(), at late_initcall

timing.

2. Check kernel parameter
In software_resume(), it checks for
the kernel command line for the resume
swap device.

3. Check signature and header of snapshot
image
This is done by calling the check_sig()
and check_header() procedures. It
checks swap image signature for snapshot
image, and that the header for the kernel
used for suspend and resume is the same.

4. Allocate memory space for snapshot im-
age

5. Read page directory into allocated mem-
ory
This is done by calling the read_

pagedir() procedure. It allocates page
directory memory space by using __get_

free_pages() and reads page directory
information with bio_read_page().

6. Relocate page directory (if necessary)

7. Read swap image into allocated memory
This is done by calling the data_read()
procedure. The page directory area gets
relocated if it collides with the snapshot
image. Then the snapshot image is read
from swap with bio_read_page().

8. Prepare resume

9. Freeze process

10. Free unnecessary memory

11. Suspend devices
These steps are taken to accomplish con-
sistency between suspend and resume, and
in case resume fails. These steps are same
as Steps 2 to 4 of the suspend procedure.

12. Power down devices
This step is taken to accomplish consis-
tency between suspend and resume. This
step is same as Step 5 of the suspend pro-
cedure.

13. Save processor state
These steps are taken in case resume fails.
These steps are same as Step 6 of the sus-
pend procedure.

14. Copy snapshot image in allocated memory
to its original address

15. Restore processor registers
This is done by calling the swsusp_

arch_resume() procedure. It copies all
image pages from the allocated memory
address to its original memory address.

20 • Improving Linux Startup Time Using Software Resume (and other techniques)

It also restores general purpose registers.
Since registers are restored, the return ad-
dress used by this function would be the
same as the one in effect for the swsusp_
arch_suspend() procedure call at sus-
pend time.

16. Restore processor state

17. Power up devices
This is exactly the same as Steps 10 to 11
of the suspend procedure.

18. Free memory allocated for image
This is done by calling the free_image_
pages() procedure. It does free_

page() for all pages in image. Page di-
rectories are also freed.

19. Resume devices
This is done by calling the device_

resume() procedure. The process is the
same as Step 12 of the suspend procedure.

20. Thaw processes
This is done by calling the thaw_

processes() procedure. This wakes
up every thread by calling the wake_up_

process() procedure.

1.4 Software suspend support for ARM ar-
chitecture

Software suspend does not support the ARM
architecture in a vanilla kernel. To port soft-
ware suspend for other architectures, a porting
note [2] was followed which shows how to port
for the ARM architecture. The patch for soft-
ware suspend ARM support is posted to a pub-
lic mailing list [3].

1.5 Execution of software suspend

To evaluate software suspend for an embedded
system, an ARM-based OMAP 5912 Starter

Kit (OSK5912) reference board was used [4].
Since this board does not have a disk, NOR
flash is used to store the snapshot image.

To enable software suspend, the CONFIG_PM

and CONFIG_SOFTWARE_SUSPEND configura-
tion options must be set when building the linux
kernel. After the target is booted with the new
kernel, the following commands were issued to
enter suspend.

mkswap /dev/mtdblock3
swapon /dev/mtdblock3
mount -t sysfs none /sys
echo disk >/sys/power/state

A kernel message is printed to console, and the
system would halt. At the next system power
on, passing the argument: resume=/dev/

mtdblock3 (in the above case) will trigger
software resume.

2 Snapshot boot

2.1 Preserving snapshot image

For normal use of software suspend and re-
sume, a snapshot image is created and de-
stroyed on every suspend/resume cycle. Since
the aim of using software suspend in an embed-
ded product in this paper is to improve startup
time, a snapshot image is created only once,
stored on disk or flash memory, and the same
image is used repeatedly, every time the system
is powered on. This is accomplished by not in-
validating the snapshot image at resume time.

2.2 Principle of software resume for im-
proving startup time

The time to a certain point in running system
state could be roughly expressed as follows:

2006 Linux Symposium, Volume Two • 21

startup time = ∑Storage to RAM +
∑setup I/O state+∑setup RAM state

where ∑Storage to RAM is the time taken to
load files in secondary storage to RAM, in-
cluding kernel, application, and library files,
∑setup I/O state is the time taken to setup I/O
state, ∑setup RAM state is the time taken to
calculate or process data until a certain point
in time, including dynamic symbol resolution,
global constructor execution, and application-
specific initialization and setups.

Software Resume could be thought of replacing
the last ∑setup RAM state calculation and pro-
cessing by just copying snapshot image back
to RAM. On a complex system, it is estimated
that this setup RAM state would be the domi-
nant startup time, and startup time could be re-
duced if this setup RAM state is replaced by
just copying the snapshot image to RAM.

There are drawbacks in the usage of software
resume, and one of them is remount of file sys-
tem, to keep consistency between the actual fs
tree and kernel fs tree data. The example of
this drawback is USB mass storage, to handle
startup state for both plugged and unplugged
cases.

2.3 Software resume and startup time

Since the focus of this paper is to improve
startup time, the time taken in the software sus-
pend phase, when the snapshot image is cre-
ated, is not significant. The significant part
is the time taken during the software resume
phase. There are a couple of redundancies in
software resume, which can be worked on to
improve startup time. They are:

• The trigger of software resume is in a late
phase of kernel startup.

• The snapshot image is copied twice.

• There is redundancy in device state transi-
tions during booting.

2.3.1 Software resume starting time

As mentioned in Step 1 of the resume proce-
dure in Section 1.3, the software_resume()
procedure is called from do_initcalls().
At this point, the kernel is almost ready to start,
the architecture setup is done, scheduling is ini-
tialized, trap, rcu, irqs, timer, and memory are
initialized, the init thread is forked, and ba-
sic setup, such as populating rootfs, driver ini-
tialization, and network initialization, are done.
However, if the system is going to resume from
software suspend, some of these steps could be
skipped, or handled during software resume.

2.3.2 Copying redundancy of snapshot im-
age

As mentioned in Steps 7 and 14 of the resume
procedure in Section 1.3, a snapshot image is
copied from swap to allocated memory, and
then from allocated memory area to its original
memory position. Copying the snapshot image
twice is needed to keep consistency before sus-
pend and after resume. Consistency is kept by
assuring that each device is in the same state
before suspend and after resume, and that the
PM state is the suspended state. Since the de-
vice is suspended, a snapshot image can only
be placed in memory. After the device gets re-
sumed, that snapshot image can then be copied
to swap.

2.3.3 Device state transition redundancy

As mentioned in the resume procedure steps,
each device in the system gets activated, ini-

22 • Improving Linux Startup Time Using Software Resume (and other techniques)

tialized, and ready to be used, then transitioned
to the suspend state. Device initialization and
setup is needed for getting the snapshot image
from swap, while transitioning to the suspend
state is needed for consistency between the sys-
tem suspend state and the system resume state.

2.4 Improving software resume startup

The most time-consuming part of software re-
sume is copying of the snapshot image, since
the image size in 10MB even with almost no
processes running, and more than double that
size when an application such as mplayer is
running.

In order to copy the snapshot image directly
from swap to its original memory address, the
procedure below was followed, with the in-
volvement of the boot loader.

1. Copy the snapshot image to its original
memory address, by boot loader.

2. Setup devices not handled by kernel re-
sume, by boot loader.

3. Devices set to suspend state, by boot
loader.

4. Jump to kernel-resume-point, not normal
kernel entry point.

5. Devices gets powered on and resumed by
kernel.

6. Processes gets thawed by kernel.

The kernel resume point is at Step 15 of the
resume procedure in Section 1.3, just after the
snapshot image is copied to its original address
and the kernel is about to restore registers. This
method is named snapshot boot.

2.4.1 Tasks done by the boot loader

Additional tasks done by the boot loader for
snapshot boot are to copy the snapshot im-
age from swap to its original memory ad-
dress, set up devices not handled by the ker-
nel resume procedure, and jump to the kernel-
resume-point. For the referenced target, copy-
ing the snapshot image to memory was done
by simple word-to-word copying. However, if
the target supports burst transfer, that should be
used to shrink the time taken for copying the
image. Kernel areas that needed to be modified
for the referenced target were: enhancing the
clock speed, timer setup, and enabling MMU.
The kernel-resume-point address was obtained
from System.map.

2.5 Implementation of snapshot boot

A new command for snapshot boot was imple-
mented in u-boot [5]. The syntax of the com-
mand is shown in Figure 2.

The procedure done by this new command is
described in Section 2.4.1.

A new resume entry point function is added on
top of the software suspend ARM support. It
sets a flag to indicate snapshot boot has been
done, and then jumps to Step 15 of the resume
procedure in Section 1.3, which is in the middle
of the swsusp_arch_resume() procedure.

2.6 Evaluation of snapshot boot

Startup time is measured using printk time
functionality, by setting CONFIG_PRINTK_

TIME. This configuration emits time at every
printk output. Two system situations are
evaluated, one is until execution of init shell
script, with almost no work load, and other

2006 Linux Symposium, Volume Two • 23

PROMPT> bootss <snapshot image address> <kernel resume point>

Figure 2: Command for Snapshot Boot in Boot Loader

is while playing an MPEG video file with the
mplayer application. Reading time data would
cause additional startup time, but is neglected
for this evaluation. No optimization regarding
application startup is applied to mplayer.

Normal startup is cold startup of system, and
time is measured from when the timer is ini-
tialized at beginning of kernel startup, to just
before the init shell script gets executed. For
mplayer, time is measured until the Tux pic-
ture, set by kernel, is replaced in LCD panel
by MPEG data. Software resume is measured
from when the time is initialized at beginning
of kernel startup, to the time all processes are
thawed. Snapshot boot is measured from timer
initialization before copying snapshot image to
memory at boot loader, to the time all processes
are thawed. For software resume and snapshot
boot, image is created after system enters shell
and flash as swap is setup and enabled to store
image for comparison against normal startup of
init. So there is a difference for init shell startup
measurement, normal startup is timed till be-
fore it gets executed, while software resume
and snapshot boot image is created at shell run-
ning state. The size of created snapshot image
for software resume and snapshot boot were
1424 and 2410 pages for shell and mplayer re-
spectively. Result of the average startup time
of 10 trials for each system status is shown in
Table 1, and result of each trials are shown in
Table 2 and Table 3 respectively.

In both software resume and snapshot boot
method, most of the time is taken in copying
of snapshot image. For snapshot boot, 80 to 90
percent of the time is occupied by image copy-
ing. As mentioned in Section 2.4.1, image is
copied on a word basis; however, if the hard-
ware supports burst transfer mode, the snapshot

Application Normal Software Snapshot
startup resume boot

shell 2.872 6.370 3.580
mplayer 11.1 10.427 5.357

Table 1: Average Time of Each Method [sec]

Trial Software Snapshot
count resume boot

1 6.831 2.478
2 6.166 4.028
3 6.166 3.132
4 7.538 4.674
5 6.166 3.132
6 6.166 3.133
7 6.166 4.766
8 6.166 4.029
9 6.166 3.949
10 6.166 2.478

Table 2: Shell Resume [sec]

boot startup time would shrink dramatically.

3 Issues met in snapshot boot

3.1 Assumption in snapshot boot

To minimize the effort of the boot loader and
to reuse kernel procedures for device manipu-
lation, it is assumed that the device power up
and resume procedures in the kernel will handle
the devices. However, some devices are initial-
ized and setup at kernel startup only. Some do
not have device manipulation at resume. Those
devices work with in software resume, since

24 • Improving Linux Startup Time Using Software Resume (and other techniques)

Trial Software Snapshot
count resume boot

1 9.793 5.305
2 10.593 5.305
3 9.731 5.305
4 10.593 5.305
5 10.593 6.080
6 10.593 4.460
7 10.593 5.251
8 10.592 5.305
9 10.593 5.953
10 10.593 5.305

Table 3: Mplayer Resume [sec]

kernel startup sequence initializes such devices,
before triggering software resume. However,
these devices have to be set up somewhere in
snapshot boot. Currently, they are handled in
the boot loader during the snapshot boot se-
quence, however, this apparently doubles the
effort, and some infrastructure is needed.

The same issues were faced with MMIO. The
MMIO registers were initialized and set up dur-
ing kernel startup, and it worked on software re-
sume, but since snapshot boot doesn’t perform
the kernel startup sequence, it must be handled
somewhere else. The appropriate place to han-
dle these in snapshot boot would be at kernel
resume time, where MMIO register related de-
vices do their resume operations.

3.2 Current workaround

Calling the initialization and setup procedures
of such devices after snapshot boot has jumped
into kernel was considered, but it did not work
out, since information in the data related to
those devices report that initialization and se-
tups are done, and simply return back. Cur-
rently, those initialization and setups are han-
dled on the boot loader side, just before jump-

ing into the kernel resume point. These are im-
plemented one by one, during the implementa-
tion and testing cycle of snapshot boot on the
target, and appended in the snapshot boot oper-
ation of the boot loader. The UART, IRQ con-
figuration, GPIO, DMA, DSP, I2C, TPS65010
chip, UWIRE CS0, UWIRE CS1, OCPI, NOR
flash and key pad are handled in this way. Some
multiplex setup and pulldown control is also
set. Devices processed at kernel resume were
the SMC91 network chip, Compact Flash, se-
rial 8250, I2C, TPS65010 chip, and LCD con-
trol, in which the resume method existed and
taken care of, are serial 8250 and LCD control.

Some interrupt registers and mask registers also
had similar problems at snapshot boot, and a
similar workaround was used.

3.3 Proper model and infrastructure

To keep the snapshot boot generalized and not
system-specific, the boot loader should do min-
imal work for snapshot boot, and most snap-
shot boot process should be handled by the ker-
nel. To accomplish this, more devices should
be extended to implement the resume method,
not handling only resume from RAM, but also
resume from disk, taking into account that the
device was powered off. Other than that, if the
kernel has separate calls for hardware initializa-
tion and setup from its related data initialization
and setup, that could be used for snapshot boot
support. Ideally, the boot loader operation for
snapshot boot would be just copying the snap-
shot image and jumping to the kernel-resume-
point.

Regarding the infrastructure issue, the data
structure of snapshot image varies at differ-
ent kernel version. For example, page directo-
ries are implemented as array in version 2.6.11,
whereas in a recent kernel, it is implemented
as a list structure. At implementing snapshot

2006 Linux Symposium, Volume Two • 25

boot in boot loader side, this would have great
impact. Some kind of applicable interface is
needed for consistency.

4 Other techniques for startup im-
provement

There are various other existing techniques for
improving startup time. Although some of
these focus on kernel startup, most are focused
on application startup. This is because appli-
cation startup takes longer than kernel startup
in many cases. One example of an improve-
ment focusing on kernel startup time is ker-
nel execute-in-place (XIP). Some examples of
improvement focusing application startup time
are prelinking, allocate-on-write of .data sec-
tion, and gathering global constructors in one
place for locality benefit.

Some of these existing techniques may have a
benefit when used along with snapshot boot,
whereas others may not. Of the listed existing
techniques, ones that may have benefit when
used along with snapshot boot are XIP and
allocate-on-write of .data section. Ones that
probably do not have a benefit when used along
with snapshot boot are prelinking and gather-
ing global constructors in one place for locality
benefit.

4.1 XIP and snapshot boot

A description of XIP is documented at [6] and
kernel XIP at [7]. The basic idea is to exe-
cute programs directly from Flash or ROM, and
save RAM usage (the data section still needed
to be placed into RAM) as well as short-cut pro-
gram loading time and improve startup time.
Currently, no tests have been done using both
XIP and snapshot boot. The assumption is that

XIP could reduce the snapshot image size, and
might contribute to faster startup for a snapshot
boot.

4.2 Prelinking and snapshot boot

A description of prelinking is documented at
[8]. The basic idea is to perform the task of dy-
namic linking, such as symbol resolution, in ad-
vance, and save the information, so that some of
the tasks of dynamic linking could be skipped.
When used along with snapshot boot, prelink-
ing may or may not have benefit in startup, de-
pending on the timing when the snapshot im-
age is created. In case the program is already
loaded before creating the snapshot image, pre-
linking for that application would not gain any
benefit. However, for programs that are not yet
loaded, it would gain a benefit, since dynamic
linking has not yet been performed.

4.3 Allocate-on-write of .data section
and snapshot boot

A description of allocate-on-write of the
.data section is documented at [9]. The ba-
sic idea is to modify the dynamic linker, and
change the .data section mapping attribute
by dropping the PROT_WRITE bit in mmap()
and call mprotect() immediately after, and
then set the PROT_WRITE bit. Currently, no
tests have been done using both allocate-on-
write of the .data section and snapshot boot.
The assumption is that, like the XIP technique,
it could reduce snapshot image size, and thus
might contribute to faster startup of snapshot
boot.

4.4 Gathering of global constructors and
snapshot boot

The basic idea here is to allocate global con-
structors and destructors in one place, so that

26 • Improving Linux Startup Time Using Software Resume (and other techniques)

a data locality benefit can shorten startup time.
It is done by first collecting global constructors
and destructors in one original section, and later
merging them to the .data section of the pro-
gram. Currently, no tests have been done using
both the gathering of the global constructors
technique and snapshot boot. The assumption
is that, there would be less, or no benefit toward
improving the snapshot boot startup time.

4.5 Deduction

Whether using another startup improvement
technique with snapshot boot would gain a
benefit or not would depend on the feature.
When the technique has only an instant effect at
startup, such as prelink, it would be likely that
little or no startup improvement would be ob-
tained when used together with snapshot boot.
On the other hand, if the technique has a side
effect, such as reduced load on RAM, it is likely
that the system would gain a startup improve-
ment by using both techniques.

5 Future work

As mentioned in Section 3, an urgent issue
regarding snapshot boot is generalization and
need of infrastructure for device manipulation.
This must be discussed at the community level
to draw agreement and diffusion. Further test-
ing and evaluation of snapshot boot is needed,
such as effect when used with other existing
techniques for improving startup.

6 Conclusion

Snapshot boot is a technique for improving
startup time, based on software suspend. The

existing techniques for improving startup time,
such as XIP, prelink, and others show effect at
real startup time, by short-cutting some pro-
cess, such as load instruction code to RAM,
symbol resolution, etc., at various points, from
the kernel startup to the application startup.
Snapshot boot could be viewed as “short-
cutting all startup,” by using run-time system
snapshot image.

References

[1] System Power Management States
Documentation/power/states.txt

[2] SwSuspendPortingNotes http://tree.
celinuxforum.org/CelfPubWiki/

SwSuspendPortingNotes

[3] swsusp for OSK http:

//lists.osdl.org/pipermail/

linux-pm/2005-July/001077.html

[4] OMAP 5912 Starter Kit
http://tree.celinuxforum.org/

CelfPubWiki/OSK

[5] Das U-Boot - Universal Bootloader
http://sourceforge.net/

projects/u-boot/

[6] Execute in Place(XIP)
http://www.montavista.co.jp/

products/tech/saving_ram.html

[7] Kernel XIP
http://tree.celinuxforum.org/

CelfPubWiki/KernelXIP

[8] Prelink http://people.redhat.
com/jakub/prelink.pdf

[9] Making Mobile Phone with CE Linux
http://tree.celinuxforum.org/

CelfPubWiki/ITJ2005Detail1_2d2

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

