
Shared-Subtree Concept, Implementation, and
Applications in Linux

Al Viro
Red Hat, Inc.

viro@ftp.linux.org.uk

Ram Pai
IBM Corporation

linuxram@us.ibm.com

Abstract

Concepts like per-process namespaces and bind
mounts have enriched the Linux R© VFS for a
couple of years now. Various solutions have
attempted to use these features for customized
mount setups in a virtualized environment and
for setting up mirrored mount trees to support
versioned filesystems.

But more than often, the isolated nature of per-
process namespaces and the static nature of
bind mount have restricted their use. Conse-
quently a new VFS enhancement called shared
subtree was introduced in the Linux 2.6.15
kernel. This enhancement makes per-process
namespaces and bind mounts dynamic in na-
ture and provides a crucial building block for
various solutions.

In this paper we describe shared subtree seman-
tics and their application in real life. We also
discuss the design and implementation details
of the feature.

1 Introduction

The Linux VFS provides a rich set of features
to tailor access to files and filesystems.

The mount feature provides a convenient way
to access the contents of a filesystem. Us-
ing the mount abstraction, you can also mount
other filesystems over a directory of an exist-
ing filesystem, thus creating a filesystem mount
tree.

Linux further allows the same filesystem to
be mounted at different locations within the
filesystem mount tree, thus providing multiple
paths to access the same filesystem.

Adding to this set of features, you can pick a
directory tree in the filesystem mount tree and
mount it at some other location using the re-
cursive bind feature. The filesystem mount tree
can further be moved across locations through
the move mount feature.

And finally, Linux allows a new process to fork
an entirely new filesystem mount tree to which
the process is associated using the filesystem
namespace feature. This feature is referred to
as per-process namespace.

However, features like bind and filesystem
namespace have not seen many applications
in real life. For example, the filesystem-
namespace feature isolates a process; i.e. a
process that associates with a namespace does
not see new mounts in another namespace, nor
does it propagate its own mounts to a different
namespace.



202 • Shared-Subtree Concept, Implementation, and Applications in Linux

Different projects like FUSE, SELinux’s La-
belled System Security Profile (LSPP) sys-
tem, and Multiple Versioned File System
MVFS

TM
have considered using the filesystem-

namespace and recursive-bind features. But
the static nature of these features has often re-
stricted their use. The following four scenarios
illustrate the problem.

FUSE (Filesystem in User SpacE) provides the
ability for a user to prototype an experimen-
tal filesystem in user space, while allowing just
that user to mount and access the filesystem.
One way to solve this problem is to fork off a
new namespace and allow the user to mount the
experimental filesystem in it. This solves the
problem; however, it also excludes the names-
pace from seeing any new mounts in the par-
ent namespace. Ideally the user would want
her own mounts to remain private to her names-
pace but be able to see the mounts in the parent
namespace.

On LSPP systems, users need to be able to log
in at various levels, and be able to use differ-
ent contents in various directories depending on
which level the user is logged in to the system.
The solution to this is typically to use polyin-
stantiation. For example, each directory is ac-
tually several directories, and which one the
user sees is determined by the privilege level of
the user. For Linux this is implemented using
filesystem-namespaces, the unshare() sys-
tem call and Pluggable Authentication Mod-
ule (PAM). But using filesystem-namespace re-
stricts the user using a different namespace
from seeing a newly inserted CD in the CD
drive.

MVFS by IBM R© provides multiple views of
the same filesystem mount-tree. Depending on
which view is used to access the files in the
MVFS filesystem a different version of the file
is visible. One way to implement this feature
is to use filesystem-namespace. But this re-
stricts a process from accessing two different

filesystem-namespaces. Also the namespaces
cannot be kept in sync across mount and un-
mount events. The other option is to mirror
the filesystem mount-tree to different locations
within the same filesystem mount-tree using the
rbind feature. But this solution suffers from the
problem that different versions of the mount-
tree cannot be synchronized atomically when a
new filesystem is mounted on one of the mir-
rors.

Virtualization products support multiple con-
tainers each with their own set of resources,
and provide a individual view of the system.
Processes are associated with a given container,
and hence have to be visible only to processes
within that container through the procfs in-
terface. This demands maintaining multiple
versions of procfs, each one correspond-
ing to a container. One solution to this is to
maintain multiple mirrors of the filesystem tree
within the same filesystem, jailing processes in
a given container under its corresponding mir-
ror. The procfs filesystem associated with
each mirror displays its virtualized world to that
container. Again we face the same problem:
how does a process in a container access the
CD mounted outside its jail?

Shared subtree provides the mechanism that
solves the above mentioned limitation. In Sec-
tion 2, we describe the basic building blocks
of shared-subtree. In Section 3, we explain the
shared-subtree operational semantics. In Sec-
tion 4, we discuss the implementation details in
Linux. In Section 5 we review the applications.

2 Shared subtree semantics

As mentioned above, namespace provides
isolation—processes in a namespace are pro-
tected from namespace-modifying operations
done by processes outside. In other words, the



2006 Linux Symposium, Volume Two • 203

namespace boundary is a trust boundary. That
is very useful in many situations—for instance,
for bindings there is no analog of symlink vul-
nerabilities, simply because nobody outside our
namespace is able to modify the bindings we
see.

However, the same property sometimes be-
comes a hindrance because there is no way to
arrange for modifications of parts of namespace
short of sharing the namespace completely.

This situation is not entirely new; indeed, we
have a similar though more simple problem
with other kinds of possibly shared resource:
the memory space. Processes are protected
from each other and that is certainly a desirable
thing. They also can share their entire memory
space. However, it is often useful to have a part
of memory space shared. That would appear to
be a convenient model for our problem; how-
ever, it is not an exact fit.

It turns out to be more useful to speak not of
sharing parts of the namespaces, but of propa-
gating modifications among such parts. One of
the chief reasons for that approach is that trust
is not necessarily symmetric—allowing modi-
fications done by process A to affect parts of
the namespace of process B should not imply
allowing the opposite.

In other words, the relationship “modifications
to tree X cause corresponding modifications to
tree Y” can not be reduced to “X and Y refer
to the same shared entity” and we are better off
treating that relationship as the first-class ob-
ject.

The challenge, of course, is to provide coherent
semantics for such propagation and implement
it efficiently.

2.1 Definitions

Throughout the rest of the paper we will refer to
operations modifying the mount trees as mount
events or propagation events, whether they are
made by mount(2) or by umount(2).

To describe mount event propagation we need
to introduce several new notions:

1. mounts are divided into shared and soli-
tary.

2. shared mounts are partitioned into peer
groups.1 That controls the symmetric part
of propagation.

3. The propagation graph controls the asym-
metric part of propagation. It is a tree with
peer groups and solitary mounts as nodes.
All internal nodes are peer groups; only
leaves may be solitary mounts.

4. In addition to that, some of the solitary
mounts may be marked as unbindable.

We will refer to connected components of the
propagation graph as propagation trees.

With respect to event propagation, there are
four types of mounts:

1. shared mount

2. slave mount

3. private mount

4. unbindable mount
1Single-element peer groups are possible and do, in

fact, play an important role. Their elements should not
be confused with solitary mounts.



204 • Shared-Subtree Concept, Implementation, and Applications in Linux

Figure 1: shared-mount

2.2 Shared-mount

As noted earlier, the current mount infras-
tructure lacks the ability to propagate mount
events. Shared mounts provide the ability to
keep several subtrees in sync; all events on a
shared mount propagate to all its peers and new
mounts created by such events will, in turn, be-
come peers among themselves.

The new mount created from the shared-mount
becomes a shared-mount too. And they to-
gether form members of the same peer group.
A shared mount by itself is a sole member of its
peer group. New clones of the shared-mount,
inherit membership to the same peer group.

Figure 1 illustrates an example of shared
mounts belonging to the same peer group. The
mounts at mnt and tmp are shared, and belong
to the same peer group peer group1. When a
new filesystem a is mounted under mnt, the
same filesystem automatically is mounted un-
der tmp and these two mounts become mem-
bers of a new peer group peer group 2.

The idea behind shared-mounts is being able to
mount or unmount on any one of these mounts,
and to have the action atomically propagated to
all peers. The nice property of shared-mounts is
that they allow mount-trees to remain identical
across future mount and unmount.

Figure 2: slave-mount

2.3 Slave-mount

A slave-mount receives mount events from its
master, but does not forward it back to its
master. The master in this case is a peer
group. Mounts of this type are preferred in
cases where one would like to receive mounts
in other namespaces, but would not like to share
any mounts within its own namespace.

Figure 2 illustrates an example of a slave-
mount. Note that tmp1 and tmp2 are slave
mounts. When a new filesystem a is mounted
under mnt, the same filesystem automatically
is mounted under tmp, and also propagates to
the slave mounts tmp1 and tmp2. Whereas a
mount of filesystem b on mount tmp2 does not
propagate anywhere.

2.4 Shared-and-slave-mount

A mount can be shared and slave at the same
time. It would receive mount events from its
master, share them with its peers, and possibly
forward them to its slaves.

Note that all intermediate nodes in propaga-
tion trees would be peer groups consisting of
mounts that are both shared and slaves; it is not
something unusual.



2006 Linux Symposium, Volume Two • 205

2.5 Private-mount

A private-mount, as the name implies, does
not carry any propagation semantics. It neither
receives nor forwards any propagation events.
Had there been no shared-subtree semantics,
we would have only seen private-mounts.

2.6 Unbindable-mount

An unbindable-mount carries the same seman-
tics as that of a private-mount. In addition,
it disallows any of its contents including sub-
mounts from being mounted anywhere else.

3 Operational semantics of shared-
subtree

In this section we define the interactions of var-
ious mount-related operations on the different
flavors of mounts.

3.1 Mount operation

When a filesystem is mounted at a mountpoint,
the behavior depends on the type of mount the
mountpoint resides in.

If that mount is solitary, the filesystem is
mounted at the mountpoint and created mount
becomes private.

If the mount is a shared-mount, the filesystem
is mounted at the mountpoint within the shared-
mount, as well as at the corresponding locations
in the peer-mounts and slave-mounts down the
propagation-tree. Event propagation among the
created mounts duplicates that among their par-
ents.

3.2 Bind operation

The bind operation mounts a subtree of a
filesystem directory tree on a mountpoint. The
new mount inherits the properties of its source
mount and as well as the properties of the des-
tination mount on which it is mounted. The
source mount is the mount containing the di-
rectory tree of the filesystem.

Table 1 indicates the semantics of the bind op-
eration from a source mount, mounted on a des-
tination mount.

The bind operation is invalid if the source
mount is an unbindable mount.

The mount type is inherited from the source. If
the source is shared, the new mount becomes
its peer. If the source is a slave, the new mount
becomes a slave of the same master.

If the mountpoint lies within a shared mount—
i.e., the destination is a shared mount—the new
mount becomes shared. Additional mounts are
created at the corresponding locations in the
peer mounts and slave mounts down the propa-
gation tree. As in previous section, event prop-
agation among the created mounts duplicates
that among their parents.

3.3 Rbind operation

The rbind operation mounts a directory tree
to a mountpoint. Unlike the bind operation,
in the case of rbind, the source directory tree
spans across mountpoints. The rbind opera-
tion behaves similar to bind operation, but if
the source consists of more than one mount, the
same actions apply to all of them.

If the source mount-tree contains any unbind-
able mounts, the rbind operation prunes off
copies of the mount trees below such mounts
before mounting them at new mountpoints.



206 • Shared-Subtree Concept, Implementation, and Applications in Linux

source(A) ⇒ shared private slave unbindable
destination(B)

⇓
shared shared shared shared and slave invalid

non-shared shared private slave invalid

Table 1: The type of the new mount created when a source-mount A is bind mounted to a mountpoint
residing in the destination mount B.

3.4 Move operation

The move operation allows a mount tree to
be moved to new mountpoint. Unlike bind or
rbind operations, the source of the move oper-
ation must be a mountpoint. The operation is
similar to the rbind operation.

If the destination mount containing the mount-
point is shared, the source mount becomes
shared, too. Again, if the source mount was
a slave, it becomes both shared and a slave.
However, if the destination mount is solitary,
the source-mount destination-mount is a non-
shared mount; the source mount remains un-
changed.

Note that a mount residing in a shared mount is
not allowed to be moved.2 Also, a mount tree
containing an unbindable mount is disallowed
from moving to a shared mount.3

Table 2 indicates the move semantics on a
source mount to a mountpoint residing in a des-
tination mount.

2If allowed, the move operation generates an un-
mount event. This unmounts all the mounts residing in
other peer and slave mounts.

3If allowed, this operation will involve cloning un-
bindable mounts, which is disallowed. The author re-
alizes that the mount tree could have been pruned be-
low the unbindable mounts, while creating copies of the
moved tree. This would provide semantics consistent
with semantics of rbind.

3.5 Clone namespace operation

The clone namespace operation clones the en-
tire mount tree of a namespace. All the mounts
in the source namespace are cloned, and the re-
sulting mount tree is associated with the new
namespace. A copy of a shared mount becomes
its peer, a copy of a slave becomes a slave of
the same master. Note that this operation does
clone the unbindable mounts.

3.6 Unmount operation

The unmount operation has subtle issues. Un-
mounting something mounted on a solitary
mount is just a matter of removing the mount,
provided that it is not being actively used and
nothing is mounted on it.

Unmounting a mount X residing on a shared-
mount P generates a propagation event. The
mounts corresponding to X on all the mounts
down the propagation tree of P are unmounted,
unless there is something mounted on them. If
some of these mounts are actively in use, the
unmount fails.

Consider the mount tree shown in Figure 3:
the mounts A, B, and C are all peers of each
other. At the same time A, B, and C share a
grandparent-parent-child relation. If unmount
of C is attempted, since B is the parent of
C, B generates an unmount propagation event



2006 Linux Symposium, Volume Two • 207

source(A) ⇒ shared private slave unbindable
destination(B)

⇓
shared shared shared shared and slave invalid

non-shared shared private slave unbindable

Table 2: The type of source-mount A when it is moved to a mountpoint residing in the destination
mount B.

Figure 3: A mount tree where the mounts in
the same peer group also share a grandparent-
parent-child relationship.

that propagates to A and C. Since B is the
child of A mounted at the same mountpoint as
C, it has to be unmounted, too. But B can-
not be unmounted because it has a sub-mount
C. Hence the entire operation fails. This ef-
fectively makes the entire subtree under A un-
mountable.

To mitigate this problem we relaxed the un-
mount rule, by allowing unmount to succeed
even if some of the mounts other than the one
in question have sub-mounts.

3.7 Mount type transitions

A mount can transition through different types
during its lifetime. During creation it acquires a
state, depending on where it is created and from
where it is cloned.

A user can explicitly transition the mount from
any one type to any other according the shared-
subtree semantics. Also the mount can change
types implicitly when the mount is moved from
one location to another as indicated in Table 2.
Table 3 describes the type transition rules for a
mount.

Note that an attempt to turn a shared mount that
has no peers into a slave will make it private
since there is no master to which it could be
slaved to.

A solitary mount cannot be slaved.

3.8 Use of Unbindable-mount

The unbindable mounts are particularly useful
to set up multiple identical mount trees within
the same mount tree.

Figure 4 illustrates how the mount tree expands
at each step as we create new copies of the
mount tree. The unbindable mount contains the
expansion by pruning off the subtree, thus cre-
ating exact copies of the mount tree at those lo-
cations.



208 • Shared-Subtree Concept, Implementation, and Applications in Linux

make-shared make-slave make-private make-unbindable
shared shared shared/private private unbindable
slave shared and slave slave private unbindable

shared and slave shared and slave slave private unbindable
private shared private private unbindable

unbindable shared unbindable private unbindable

Table 3: mount state transition

3.9 Side-mounts

Shared subtree semantics can lead to peculiar
situations. Suppose a mount A is the master
of mount B. Mount B has a mount C on di-
rectory b. Suppose we mount D on directory
b of mount A. The propagation event propa-
gates to mount B. Should the new mount—
let’s say E, on mount B at directory b—be vis-
ible, or should it be obscured by the mount C?
What happens when mount D is unmounted?
Should mount C be unmounted or mount E be
unmounted?

We define side-mounts as the sub-mounts on a
given mount that are mounted on the same di-
rectory.

New mounts on the same directory of a mount
are placed in a stack order, with the oldest
mount always visible. An unmount request
for a particular mount always unmounts the re-
quested mount. However, unmounts triggered
due to propagation always pop the most recent
mount on the directory.

So in the example above, if an unmount of C is
attempted, mount C is unmounted. However,
if an unmount of D is attempted, D will be
unmounted anyway, but the propagation event
will unmount E, too (and not C).

4 Implementation Details

This section describes the changes made to data
structures and the logic used to implement the
shared-subtree feature in the Linux

TM
kernel.

4.1 Data Structure

The following four new fields were added to the
struct vfsmount data structure to support
the shared-subtree semantics.

1. mnt_share

2. mnt_slave_list

3. mnt_slave

4. mnt_master

mnt_share is a circular list of all the shared
mounts that are peers of the given mount.
mnt_slave_list is a circular list of all the
slave mounts of the given mount. Mounts in
all slave peer groups and slave mounts of a
given mount are linked together in the mount’s
mnt_share circular list. mnt_slave runs
through the circular list of all the slaves of the
mount’s master. mnt_master points to the
master of the mount.

Figure 5 illustrates a data-structural representa-
tion of the shared-subtree.



2006 Linux Symposium, Volume Two • 209

Figure 4:
Application of unbindable-mount

In the example we have the peer group P1, con-
sisting of shared-mounts G1, G2, and G3. Peer-
group P1 has three slave peer-groups: P2, P3,
and P4. P2 consists of shared-mounts R1, R2,
R3, and R4. Peer group P3 has M1 and M2.
And peer-group P4 has Y1, Y2, Y3, and Y4 as
its members. Peer group P1 has B2 as it slave-
mount. And finally, peer-group P2 has O1 as its
slave.

In our implementation we do not have an ex-
plicit data structure to represent a peer group.
The peer group is implicitly managed by the
circular list mnt_share. By walking the
mnt_share circular list of a given mount, we
find all the members of the peer group.

To find all the slaves of a peer group, we walk
the circular lists represented by mnt_slave_

list of all the mounts in the peer group. Note
this circular list run through the mnt_slave
field of the slave mounts.

The mnt_master field of a given mount
points to the master mount of the slave-mount.

We introduced two new flags in the mnt_
flags field of struct vfsmount to track
the type of a given mount, namely MNT_
SHARE and MNT_UNBINDABLE. These flags
tell us if the mount is of type shared or unbind-
able. A non-NULL mnt_master indicates
that the mount is of type slave. If the mount
is not shared or slave or unbindable, then it is a
private mount.



210 • Shared-Subtree Concept, Implementation, and Applications in Linux

Figure 5: Data-structure layout

4.2 Description of mount, bind, move oper-
ations

The mount, unmount, bind, and move oper-
ations on shared mounts walk the propaga-
tion tree to collect all the affected mounts.
Hence we have designed an efficient iterator
propagation_next() that walks the prop-
agation tree and returns the next mount in the
propagation-tree. propagation_next()
implements a depth-first walk returning the
slave-mount first, followed by the peer mounts.
As the tree is walked, new mounts can get
linked into the propagation-tree.4 This can hap-
pen during bind, move, or rbind operations.
The iterator has enough information to skip
these new mounts as it walks the propagation
tree.

4If the new mountpoint is on a mount which already
resides in the same propagation-tree.

A mount, bind, rbind, or move operation un-
der a shared-mount typically involves creation
of a number of copies of the mount tree that
are to be mounted at the mountpoints where the
mount operation propagates. propagate_
mnt() walks the propagation tree of the desti-
nation mount, creating the necessary number of
new mount trees. It returns a list of these mount
trees. Also it ensures that all the mounts in each
of the newly created mount trees are associated
with their corresponding propagation trees. If
creation of some mount tree fails, all the newly
created copies are destroyed, in turn delet-
ing them from their corresponding propagation
trees. Note that the newly created mounts are
attached to the propagation trees, but are not
attached to the corresponding mount points.
The caller of propagate_mnt() is respon-
sible for attaching the created mount trees to
their corresponding mountpoint atomically. We
hold the namespace_sem semaphore during



2006 Linux Symposium, Volume Two • 211

the entire operation. That allows us to put
the newly created mounts into the propagation
trees immediately. propagation_next()
skips these new mounts, and nobody else can
walk the propagation trees until the semaphore
is released.

The mountpoint may not exist in some of the
mounts in a propagation tree.5 This is typically
the case when a subdirectory within a mount
is bind-mounted. In cases where the mount-
point does not exist, our implementation still
makes a copy of the mount tree, to be deleted
later. One could implement an efficient way to
avoid creation of this copy. Our implementa-
tion relies on the copy being around, because
we use it to clone newer copies of the mount
tree, these cloned copies being mounted on the
slaves of the mount in question. The function
get_source() tracks the copy of the mount
tree to be used while cloning a new copy of the
mount tree. propagate_mnt() keeps track
of these extra copies of the mount tree. Once all
the necessary mount trees are created, it deletes
these defunct copies.

attach_recursive_mnt() takes the
source mount tree and attaches it to the spec-
ified mountpoint in the destination mount.
It uses propagate_mnt() to ensure that
all the necessary mount trees are created
successfully. On success, it atomically attaches
all these mount trees at their corresponding
destinations. In the case of a move operation,
it also detaches the source mount tree from its
parent before attaching to the new mountpoint.

5Consider a shared mount A having subdirectory a
and b. When the subdirectory a is bind-mounted, a new
shared mount B is created. If a new mount is attempted
on directory b of mount A, the mount event though prop-
agates to B will not have a mountpoint to mount.

4.3 namespace clone operation

All the mounts in the original namespace, in-
cluding unbindable mounts, are cloned. The
new mounts are attached to their corresponding
propagation tree. If some allocations fail, the
newly created mounts are detached from their
propagation-tree and deleted.

4.4 Description of umount operation

The core of an unmount opera-
tion is in umount_tree() and
propagate_umount(). All the mounts
in the mount tree are first unhashed6 and
collected in a list. For each element in the
list we run through its parent’s propagation
tree, to collect the corresponding child mounts.
As explained in Section 3.6, we ignore the
child mounts that contain submounts. Note
that these mounts cannot be detached from
the propagation tree while we are walking on
it. Hence we detach them after we have com-
pletely collected all the mounts. At the same
time, they are detached from their filesystem-
namespaces. All these operations are done
under the vfsmount_lock spinlock as
well as the namespace_sem semaphore.
The spinlock guards against races with other
mount lookup routines. The semaphore
guards against races with other mount and
unmount operations. After all the mounts are
unhashed, we release the spinlock. And after
the semaphore is released, all the mounts are
detached from their parent and are destroyed
through release_mounts().

6Unhashing a mount makes the mount inaccessible to
any new lookups.



212 • Shared-Subtree Concept, Implementation, and Applications in Linux

5 Applications of shared subtree

As noted in Section 1, the isolation property of
filesystem namespace and the static nature of
bind mounts restricts their usage in various ap-
plications.

The shared-subtree semantics solve these is-
sues, and hence opens up the use of filesystem
namespace and bind mounts to various applica-
tions which include SELinux’s LSPP, MVFS,
Virtualization, and FUSE, among others.

6 Future Work

The shared subtree semantics provide power-
ful constructs. These constructs help to solve
problems faced by SELinux LSPP systems, the
MVFS filesystem, and other projects.

Though this feature is efficiently supported by
the kernel, currently the mount command7 is
unaware of shared-subtree semantics. As of
this writing, a patch has been submitted.

It is easy to set up propagation trees and mod-
ify them. But no interface exists to display the
setup of the propagation trees. It’s impossi-
ble for a normal user to identify the type of
a given mount without poking into the kernel
data structures. A procfs- or sysfs-based
interface that displays the propagation trees in
some sane format is needed.

In many setups /etc/mtab is not guaranteed
to match reality, which leads to enough con-
fusion. Introduction of shared-subtree seman-
tics aggravates the problem. It is very easy
to contaminate /etc/mtab with non-existent
mount entries. The mount command can never
be aware of the new mounts created by the ker-
nel due to propagation semantics. Although the

7Packaged in util-linux.

/proc/mounts interface captures these new
mounts, it ends up creating many identical en-
tries. Also it does not capture all of the mount
options. This entire mess warrants a clean and
sane interface that would capture all the mount
details.

Another problem is the lack of vfsmount ac-
counting; if we are going to allow non-root
mount, we will have to introduce some limits.
Otherwise it’s too easy to cause a DoS. It is
not as simple as “who had called mount(2),”
since we have to deal with extra slaves created
by user rbind with the master being created
by root and later mounted upon by root.

It is easy to create setups allowing, e.g., pass-
ing mounts between login sessions of a given
user while allowing him to have private names-
paces. That in itself does not require any ker-
nel modifications—it’s a matter of policy and
can be easily arranged by userland. Moreover,
it’s easy to arrange for user-controlled export of
parts of its namespace to other (willing) users,
with no action required by sysadmin. E.g., it
can be achieved by having /share shared in
the first namespace and sshd doing the follow-
ing:

1. create a new namespace

2. bind /share/$USER to ~/share

3. for each pair ($who, $what) such that
/share/$USER/$who/$what exists,
look in /share/$who/allowed
for peer $what $USER or
slave $what $USER. If the former
is found, rbind /share/$who/$what

on /share/$USER/$who/$what; if
the latter is found, do the same and
follow with marking the subtree under
/share/$USER/$who/$what as slave.

4. rbind /share/$USER to ~/share



2006 Linux Symposium, Volume Two • 213

5. mark subtree under /share as private.

6. umount -l /share

That provides ~/share as shared between all
sessions and allows exporting its parts to other
users. All control over such exports and im-
ports is done by users themselves: no sysadmin
intervention is required. libpam is the obvi-
ous place for such functionality.

Unfortunately, this and similar schemes exacer-
bate the need of non-root bindings. With those
we are firmly in the territory where modifying
namespace becomes a useful operation outside
of system setup context. In other words, that’s
where we run into the need of properly done
mount accounting. Implementation should be
relatively straightforward, but we need to get
the semantics right and verify that it takes care
of all corner cases.

7 Acknowledgement

We would like to thank the following people
for their help with this paper. Serge Hallyn
and Dave Hansen for providing input to this pa-
per. Nishanth Aravamudhan and Balbir Singh
for helping with the figures. We would also
like to thank Mike Waychison, Miklos Szeredi,
and Bruce J. Fields for their feedback and in-
put during implementation of Shared-Subtree.
To Avantika Mathur for providing the shared-
subtree test suite. It is very likely that there are
others who we have inadvertently failed to ac-
knowledge; for you, we apologize for the omis-
sion and thank you for you efforts.

8 Legal Statement

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM, IBM (logo), e-business (logo), pSeries, e
(logo) server, and xSeries are trademarks or reg-
istered trademarks of International Business Ma-
chines Corporation in the United States and/or other
countries.

Red Hat, the Red Hat “Shadow Man” logo, and all
Red Hat-based trademarks and logos are trademarks
or registered trademarks of Red Hat, Inc., in the
United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.



214 • Shared-Subtree Concept, Implementation, and Applications in Linux



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


