
X86-64 XenLinux: Architecture, Implementation, and
Optimizations

Jun Nakajima, Asit Mallick
Intel Open Source Technology Center

jun.nakajima@intel.com, asit.k.mallick@intel.com

Ian Pratt, Keir Fraser
University of Cambridge

{first.last}@cl.cam.ac.uk

Abstract

Xen 3.0 has been officially released with x86-
64 support added. In this paper, we discuss
the architecture, design decisions, and various
challenging issues we needed to solve when we
para-virtualized x86-64 Linux.

Although we reused the para-virtualization
techniques and code employed by x86(-32)
XenLinux as much as possible, there are no-
table differences between x86 XenLinux and
x86-64 XenLinux. Because of the limited seg-
mentation with x86-64, for example, we needed
to run both the guest kernel and applications in
ring 3, raising the problem of protecting one
from the other. This also complicated system
calls handling, event handling, including ex-
ceptions such as page faults and interrupts. For
example the native device drivers run in Ring 3
in x86-64 XenLinux today.

Xen itself was required to extend to support
x86-64 XenLinux. To handle transitions be-
tween kernel and user mode securely, for ex-
ample, Xen is aware of the mode of the guests
controlling the page tables used for each mode.
We also discuss other extensions to x86 Xen-

Linux, in support of x86-64, including page ta-
ble management, 4-level writable page tables,
shadow page tables for live migration, new hy-
percalls, and DMA.

We also discuss the performance optimizations
techniques used today, and also discuss how to
overcome the overheads caused by the transi-
tions between user and kernel mode.

1 Introduction

1.1 Full virtualization and para virtualiza-
tion

x84-64 XenLinux is a para-virtualized version
of x86-64 Linux ported to the x86-64 Xen. Al-
though the Linux kernel is modified, no modi-
fications are required to user space, i.e. exist-
ing binaries and operating system distributions
work without modification.

Xen 3.0 supports both para-virtualization and
hardware-based full virtualization. Para-
virtualization on Xen was designed to achieve
high performance, and it requires modifications

174 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

to the guest operating system to work with the
platform interface provided by Xen. In other
words, Xen requires the porting of guest oper-
ating systems to the Xen Interface, to exploit
para-virtualization.

The alternative, full-virtualization, on contrary
to para-virtualization, no modifications to the
guest operating systems are required, but in-
stead it requires to provide the guest operating
systems with an illusion of a complete virtual
platform seen within a virtual machine behav-
ior same as a standard PC/server platform.

1.2 Para-virtualization of Linux

Para-virtualization of Linux means a task of
modifying the Linux kernel code to run it on
the virtual platform provided by Xen. The vir-
tual platform is defined by the Xen Interface
(See [3] for the detail).

Para-virtualized Linux, i.e. XenLinux does not
need to run on a standard PC/server platform,
but on a virtual platform with virtual CPU pro-
vided by Xen. The areas of such modifications
are mostly low-level CPU-dependent code, ini-
tialization code, and platform specific code.

1.3 Para-virtualization using VMI

Compared to Xen Interface, VMware’s
VMI [1] is closer to the instruction level. The
idea is “the closer the API resembles a native
platform which the OS supports, the lower the
cost of porting.” However, this layer can be
legacy when hardware-based virtualization is
broadly available in the near future.

In addition, the current VMI does not
have high-level interface API for the other
virtualization-related resources, such as inter-
rupt controllers (which Xen obviates), time,
virtual block, network devices, and virtual
TPM.

2 Xen Interface for x86-64

Xen Interface for x86-64 is mostly common
with x86-32. In this section, we briefly ex-
plain the abstraction provided by Xen 3.0 to de-
scribe the scope of the modifications required
for Linux.

Part of Xen Interface is provided by hypercalls.
The hypercall interface allows domains to per-
form executive procedures in Xen running at
privilege level 0. The other part is provided via
the data structures available to domains.

2.1 Virtual CPU Architecture

• CPU state – The critical difference at ini-
tialization time between the native x86-64
Linux and x86-64 XenLinux is that the lat-
ter is set to run in the 64-bit mode (with
paging enabled) at initialization when the
virtual machine, i.e. domain in Xen is
built. The CPU in guests run at priv-
ilege level 3. The virtual address pre-
established for the guest kernel at initial-
ization time is minimum, and guests need
to extend or create new translation as nec-
essary.

• Floating point registers – Xen al-
lows guests to use the lazy save and
restore techinique. The operation
clear, set CR0.TS are simply re-
placed with fpu_taskswitch(0),
fpu_taskswitch(1), respectively.

• Exceptions – The IDT is virtualized as a
simple trap table, and the hypercall set_
trap_table is used to register the set
of the handlers with Xen upon exceptions,
such as #PF (page fault).

• Interrupts and events – External inter-
rupts are virtualized by mapping them

2006 Linux Symposium, Volume Two • 175

to event channels, which are delivered
asynchronously to the target domain us-
ing a callback supplied via the set_
callbacks hypercall.

2.1.1 Tickless in idle

Xen allows guests to implement ’tickless mode’
on idle CPU. The hypercall set_timer_op
is used to request that they receive a timer event
sent at a specified system time.

2.2 Memory

Xen is responsible for managing the allocation
of physical memory to domains, and the guest
physical memory is virtualized as “pseudo-
physical memory”.

On a real system, E820 BIOS call typically
reports the memory map, but the equivalent
information is provided simply by “start info
page” (start_info.nr_pages) on guests
on Xen. The pointer to start info page is set by
Xen (for domain 0) or the domain builder (oth-
erwise) to the register %rsi. See Figure 1 for
the fields in details.

The memory given to a domain is a sin-
gle contiguous region of pseudo-physical
memory. Each domain is supplied
with a physical-to-machine table, and
start_info.mfn_list points to the
physical page number.

2.3 Writable Page Tables

In the default mode of operation, Xen provides
“writable page tables”, in which guests have
the illusion that their page tables are directly
writable.

At this point, the lowest level, i.e. page tables
(L1) are handled this way. The higher levels,
including PML4, page directory pointers, page
directories are updated by the hyercall mmu_
update. Updates to those entries are much
less frequent compared to page tables.

3 The x86-64 XenLinux Architec-
ture

The architecture of the x86-64 XenLinux
should be same as the x86-32 XenLinux in gen-
eral. See [2] for an overview of the Xen 3.0 ar-
chitecture. In this section, we discuss x86-64
specific requirements and extensions.

3.1 x86-64 specific requirements

As described in Section 2.1, on x86-64 systems
it is not architecturally possible to protect Xen
from untrusted guest code running in privilege
levels 1 and 2. Guests are therefore restricted
to run in privilege level 3 only. The guest ker-
nel is protected from its applications by context
switching between the kernel and currently run-
ning application.

The other issue is the SWAPGS instruction.
SWAPGS is intended for use with fast system
calls when in 64-bit mode to allow immediate
access to kernel structures on transition to ker-
nel mode. The native x86-64 Linux uses PDA
(Per processor data structure) to maintain criti-
cal data such as the pointer to the current pro-
cess, the top of kernel stack for the current pro-
cess, and user %rsp for system call, TLB state,
and etc. The register %gs points to the area in
the kernel mode, and the instruction SWAPGS
is executed when the processor enters or exits
from the kernel mode.

176 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

typedef struct start_info {
char magic[32]; /* "xen-<version>-<platform>". */
unsigned long nr_pages; /* Total pages allocated to this domain */
...
unsigned long pt_base; /* VIRTUAL address of page directory. */
unsigned long nr_pt_frames;/* Number of bootstrap p.t. frames. */
unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
unsigned long mod_start; /* VIRTUAL address of pre-loaded module */
unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
int8_t cmd_line[MAX_GUEST_CMDLINE];

} start_info_t;

Figure 1: start info page

The SWAPGS is only accessible at privilege
level 0. Therefore it cannot be executed even in
privilege level 1 or 2. Although we need to re-
move the instruction when para-vitalizing, we
want to avoid to change the way the kernel uses
PDA for no good reasons. This also justified
the design to have the guest kernel run at privi-
lege level 3.

We have two options for to protect the guest
kernel from its applications:

1. Have two separate PML4 pages for the
kernel and a user process. The one for the
kernel has translation for the kernel and
user, and the user one has just for the user.

2. Have a single PML4 page for both the ker-
nel and a user process. When we switch to
the user mode, we remove the translations
for the kernel. When we switch back to
the kernel mode, restore the kernel trans-
lations.

Since Xen must be OS agnostic and the kernel
translations can be required for user processes
(such as vsyscall), the first option is a cleaner
option.

The current implementation uses the first one.

3.1.1 x86-64 Xen Address Space

Figure 2 shows the address map of the x86-64
Xen. As it shows, the kernel and user address
spaced is separated by Xen. This is similar to
the native x86-64 Linux, but the page offset
of the native is 0xffff810000000000, and it is
below the first address available for the guest,
which is 0xffff880000000000. Thus, the page
offset of x86-64 is set to 0xffff880000000000.

3.1.2 Unified system call and hypercall
handling

Xen needs to intercept system calls and bounce
them back to the guest kernel. The SYSCALL
and SYSRET instructions are designed for op-
erating systems that use a flat memory model
(segmentation is not used), and x86-64 Linux
uses these. SYSCALL is, however, intended
for use by user code running at privilege level
3 to access operating system or executive pro-
cedures running at privilege level 0. This im-
plies that x86-64 XenLinux cannot directly re-
ceive system calls from user processes. Despite
such extra overheads, however, this framework
allows to handle Xen hypercalls in the same
fashion, and the hypercalls from the kernel are
handled in the optimal fashion.

2006 Linux Symposium, Volume Two • 177

Xen (Ring0)

Kernel (Ring3)

264

264 – 247

Reserved

247

0

User (Ring3)

0xffff880000000000

Guest-defined Use
128TB, PLM4:0-255

Guest-defined Use
120TB, PML4:272-511

Figure 2: x86-64 Xen Address Space

• Xen must be aware in which mode the
guest is running, kernel or user,

• SWAPGS is done by Xen so that the guest
kernel can access PDA correctly without
major modifications,

• the guest requsts Xen to switch to the user
mode via a hypercall,

• The guests can modify the GS.base via a
hypercall. The generic MSR handling is
covered in Section 4.3.4 below.

4 Implementation

4.1 Memory Management

4.1.1 Memory Map

The memory given to a domain is a single con-
tiguous region of pseudo-physical memory, and

the total pages allocated is reported by “start
info page” as described by Xen Interface above.
This is handled as a very simple case of the
E820 memory map, which is used by the native
Linux.

4.1.2 2MB page and 1:1 Direct mapping

The native x86-64 Linux uses 2MB pages for
the kernel and direct mapping for the physical
memory, both of which are required for x86-64
XenLinux as well. At this point, Xen 3.0 does
not support such super pages, and we needed to
modify the initialization code to add one more
paging level. Since this requires changes to
the logic (e.g. extra page allocation for pte
pages), a future version of Xen should support
2MB pages to minimize the changes to x86-64
Linux. In addition, the TLB efficiency can go
down as we need to access more physical mem-
ory from the kernel.

178 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

4.2 Page Table Management

One of the notable changes required for Xen is
to change the way the kernel allocate/deallocate
the page table pages, including pgd, pmd, pud,
and pte because those pages need to read-only.

The changes required are based on the well-
established routines or the architecture-specific
hooks, and thus they are cleanly replaced for
x86-64 XenLinux.

4.2.1 pgd_alloc and pgd_populate

The pgd_alloc routine allocates to two
back-to-back pgd pages for the kernel and user
translations, and pgd_populate duplicates
the modification to the kernel pgd into the user
pgd.

Note that the pgd_alloc, for example, in the
native x86-64 simply allocates a single page.

4.2.2 pmd_alloc, pud_alloc, pte_
alloc

Since we pin the whole page tables at once
when the pgd is pinned, we don’t need to write-
protect those pages at allocation time. How-
ever, we need to change the free routines. See
Section 5.1.1 for “pinning”.

4.2.3 pmd_free, pud_free, pte_free

When the page table pages we need to make
sure that we remove write-protection from
those pages. To that end, we use update_va_
mapping to revert the page attribute (back to
PAGE_KERNEL).

4.3 Process Management

4.3.1 Kernel and User Mode Transition in
Xen

For each virtual CPU, Xen maintains a flag that
indicates the guest kernel or user mode, and
the x86-64 specific routine toggle_guest_
mode(structvcpu*v) in Xen that toggles
the kernel or user mode for the guest, switching
the page tables accordingly.

4.3.2 Transition from the kernel to user
mode by guest

When it needs to return to the user mode (af-
ter performing service for a system call, for
example), x86-64 XenLinux needs to explic-
itly perform a hypercall iret, resulting in
toggle_guest_mode from the kernel to the
user mode in Xen.

The routine toggle_guest_mode is also
called when switching from the user mode to
the kernel, for example, upon exception or ex-
ternal interrupt in the user mode so that the ker-
nel can handle the event notified by Xen.

4.3.3 Context Switching

The context code, especially, switch_mm
(used for switching the address space) is sim-
ple and efficiently done by a multicall as shown
in Figure 4.

The Figure 4 shows:

• Call mm_pin() if the next mm is not
pinned. See Section 5.1.1 for this.

• Switch the kernel PML4 page,

2006 Linux Symposium, Volume Two • 179

static inline void pud_free(pud_t *pud)
{
pte_t *ptep = virt_to_ptep(pud);

if (!pte_write(*ptep)) {
BUG_ON(HYPERVISOR_update_va_mapping(

(unsigned long)pud,
pfn_pte(virt_to_phys(pud) >> PAGE_SHIFT, PAGE_KERNEL),
0));

}
free_page((unsigned long)pud);

}

Figure 3: pud_free

• Switch the user PML4 page,

• Switch LDT if needed, and

• Perform the three operations aboved by a
single multicall hypercall.

4.3.4 MSR Handling

x86-64 Linux needs to access several MSRs at
initialization and runtime as well.

• STAR, LSTAR, CSTAR, and SF-
MASK – These must be set to handle
SYSCALL/SYSRET. As described in
Section 3.1.2, they are initialized by Xen,
not by guests on x86-64 XenLinux.

• EFER – This is read by Linux to check if
NX is available at initialization time.

• GS.base, KernelGSbase, and FS.base –
Access to GS.base is not frequent, but ac-
cess to KernelGSbase and FS.base can be
frequent.

To minimize changes to the original Linux, we
emulate MSR access if rare. For example, ac-
cess to EFER is emulated upon #GP in Xen,

and the code in Figure 5 does not need any
modification in x86-64 XenLinux.

However, FS.base is for the base address of
TLS (Thread Local Storage), and thus can
be modified frequently at context witch time.
We use the set_segment_base hypercall if
frequent.

4.4 DMA

Since the memory allocated to guests is
“pseudo-physical” and can be anywhere in the
system, e.g. >4GB or not physically con-
tiguous, we need to convert guest physical to
machine physical when specifying address for
DMA. We reuse the swiotlb code in Linux,
which was originally developed for IA-64. The
code is shared by x86-32 and x86-64 Xen-
Linux.

4.5 ACPI

The ACPI (Advanced Configuration and Power
Interface) driver is a critical and complex com-
ponent when configuring the I/O devices as
well, and it is configured for x86-64 Linux dis-
tributions by default. The domain 0 has the

180 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

static inline void switch_mm(struct mm_struct *prev,
struct mm_struct *next,
struct task_struct *tsk)

{
unsigned cpu = smp_processor_id();
struct mmuext_op _op[3], *op = _op;

if (likely(prev != next)) {
if (!next->context.pinned)
mm_pin(next);

/* stop flush ipis for the previous mm */
clear_bit(cpu, &prev->cpu_vm_mask);

set_bit(cpu, &next->cpu_vm_mask);

/* load_cr3(next->pgd) */
op->cmd = MMUEXT_NEW_BASEPTR;
op->arg1.mfn = pfn_to_mfn(__pa(next->pgd) >> PAGE_SHIFT);
op++;

/* xen_new_user_pt(__pa(__user_pgd(next->pgd))) */
op->cmd = MMUEXT_NEW_USER_BASEPTR;
op->arg1.mfn =

pfn_to_mfn(__pa(__user_pgd(next->pgd)) >> PAGE_SHIFT);
op++;

if (unlikely(next->context.ldt != prev->context.ldt)) {
/* load_LDT_nolock(&next->context, cpu) */
op->cmd = MMUEXT_SET_LDT;
op->arg1.linear_addr = (unsigned long)next->context.ldt;
op->arg2.nr_ents = next->context.size;
op++;

}

BUG_ON(HYPERVISOR_mmuext_op(_op, op-_op, NULL, DOMID_SELF));
}

Figure 4: switch_mm

2006 Linux Symposium, Volume Two • 181

arch/x86_64/kernel/setup64.c:

void __cpuinit check_efer(void)
{

unsigned long efer;

rdmsrl(MSR_EFER, efer);
if (!(efer & EFER_NX) || do_not_nx) {

__supported_pte_mask &= ~_PAGE_NX;
}

}

Figure 5: check_efer in x86-64 XenLinux – unmodified

identical ACPI driver except a one-line change
required to point to the RSDP because the phys-
ical address in the ACPI table needs to be com-
prehended as “machine physical” as opposed to
“guest physical”.

4.6 Local/IO APIC

The virtual CPU abstracted by Xen does not
need to access the local APIC. IPI (Inter-
Processor Interrupt), for example, is handled by
local APIC on the native, but it is done simply
by event_channel_op with EVTCHNOP_
send on XenLinux.

The ACPI tables, such as MADT, is parsed
by Xen, and the interrupt controllers, such as
I/O APIC(s) is owned by Xen. However, the
PCI interrupt routing information is provided
by ACPI, and thus, the domain 0 needs to com-
municate the information to Xen. The fol-
lowing operations were added for the para-
virtualization purpose, and they are handled by
the hypercall physdev_op.

1. PHYSDEVOP_APIC_READ – Used to
read an APIC register

2. PHYSDEVOP_APIC_WRITE – Used to
write an APIC register

3. PHYSDEVOP_ASSIGN_VECTOR –
This is used to for the domain 0 to com-
municate the interrupt routing information
to Xen as mentioned above.

4.7 PCI

The PCI driver is also identical to the native
except two lines, both of which are related to
converting physical address to virtual address
as the case with the ACPI driver.

4.8 Shadow Page Table for Live Migration

We extended the shadow code to support x86-
64 XenLinux. A shadow page table is the effec-
tive page table fully controlled by Xen, whereas
the guest page table is not active in terms of ad-
dress translations but is managed and updated
by the guest as the page table were effective.
The page frame numbers in the guest page ta-
bles specify in “guest physical”, thus they can
continue to be same even if the underlying map-
ping from “guest physical” to “machine phys-
ical” is changed. This attribute is required
for live migration, thus the shadow page sup-
port is required for XenLinux as well as HVM
(Hardware-based Virtual Machine) guests.

182 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

The challenge with supporting XenLinux was
to switch from the writable page table to
shadow log-dirty mode at runtime. Since there
are still some PTEs with write-protected, the
shadow page needs to comprehend such special
conditions. The “Log-dirty mode” is used to
identify the pages modified in the guest mem-
ory to minimize the amount of the pages to
transfer for live migration.

5 Optimizations

Performance of x86-64 XenLinux has been im-
proved by various optimizations so far, leverag-
ing the same techniques used for x86-32 Xen-
Linux. In this section, we describe the most
effective ones for x86-64 XenLinux.

5.1 Optimizations Techniques Used Today

In this section we discuss the performance op-
timizations techniques used today.

5.1.1 Pinning and Unpinning Page Tables

The most effective ones was “late pin, early un-
pin” because of the deeper levels of page ta-
bles for x86-64. Xen needs to check the page
tables provided by guests to insure secure iso-
lation, and Xen performs such checking once
upon a request “pinning” from the guest. The
page tables populated later are not pinned, and
are modified by update_va_mapping.

mm_pin

At context switch time, especially in switch_
mm, the new routine mm_pin(structmm_

struct*next) is called if the page table for
next is not pinned. A new field pinned was
added to indicate the status.

The mm_pin(next) performs the following:

1. Change the page attribute to read-only by
walking through the page table for next.

2. Change the page attribute of the kernel pgd

3. Change the page attribute of the user pgd

4. Set next->context.pinned

arch_exit_mmap and mm_unpin

XenLinux uses the standard hook arch_
exit_mmap in exit_map() to unpin the
defunct page table aggressively. The mm_
unpin(mm) basically performs the reverse
operation of mm_pin() above.

5.1.2 Writable Page Table

We extended the writable page table support
for x86-64 in Xen. The writable page ta-
ble requires fewer changes to guests and it is
no slower for the batched interface that was
used by the old version of Xen. In addition,
the batched interface has problems with SMP
guests, as the updates may be expected to be
individually atomic.

5.2 Experiment

We made some experiment to overcome the
overheads caused by the transitions between
user and kernel mode.

2006 Linux Symposium, Volume Two • 183

Minimizing TLB Flush using a single PML4
page

As we discussed, today we flush TLB every
time the guest switches between the kernel and
user mode. The following steps basically re-
duces TLB flush at toggle_guest_mode.

1. When switching from the user to the ken-
nel, just add the kernel translations, and
don’t flush TLBs. Since the number of
PML4 entries used for the kernel is typ-
ically very small (typically only 3 on
Linux), the cost is low.

2. When switching from the kernel to the
user, remove the kernel translations from
the PML4 page, and flush TLB.

Our experiment showed overall improvements
with lmbench relative to the current Xen 3.0
(x86-64 XenLinux is based on 2.6.16). How-
ever, that did not improve other benchmarks,
such as kernel build. Since this method still
flushes the TLBs for the user process and more
TLBs are used for the user mode in general, it
may not make visible performance differences.
We continue to investigate how we can improve
performance in this area.

6 Conclusion

In this paper, we have presented a brief
overview of Xen interface, the issues/areas re-
quired to be resolved when para-virtualizing
x86-64 Linux, and the areas modified in that
process, and the techniques used for perfor-
mance optimizations.

Acknowledgment

A lot of developers in the Xen community
contributed to x86-64 XenLinux in various
areas, including stability, performance, bug
fixes, SMP support, cleanups, and upgrades.
We would like to thank especially the follow-
ing people for their contributions: Christian
Limpach, Chris Wright, Jan Beulich, and Li
Xin.

References

[1] Virtual machine interface (vmi)
specifications.
http://www.vmware.com/
interfaces/vmi_specs.html.

[2] Ian Pratt, Keir Fraser, Steven Hand,
Christian Limpach, Andrew Warfield, Dan
Magenheirmer, Jun Nakajima, and Asit
Mallick. Xen 3.0 and the art of
virtualization. In Preedings of the Linux
Symposium, July 2005.

[3] University of Cambridge. Interface
Manual Xen v3.0 x86. http:
//www.cl.cam.ac.uk/Research/
SRG/netos/xen/readmes/
interface/interface.html.

184 • X86-64 XenLinux: Architecture, Implementation, and Optimizations

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

