
The State of Linux Power Management 2006

Patrick Mochel
Intel Corporation

mochel@linux.intel.com

Abstract

Power Management, as it relates to Operat-
ing Systems, is the process of regulating the
amount of power consumed by a computer. It is
a feature that is available in every type of com-
puter that Linux runs, though the expectations
and the implementations of power management
vary greatly depending the makeup of the plat-
form and the type of software running on it.

This paper provides an analysis of power man-
agement and how it relates to the Linux kernel.
It provides a complete (though not comprehen-
sive) survey of power management features, the
policy to control those features, and user con-
straints of the policy.

1 Power Management Introduction

Power management is the effort to minimize
the amount of power used over time, as mea-
sured in watts (or fraction thereof).

Technically, a watt is defined as one joule of
energy per second, but it is often used in refer-
ence to the amount of power consumed in one
hour of time. For example, the statement “This
computer has a 300W power supply” refers to
the maximum amount of power consumed over
the course of an hour. [watt]

The total power consumption of a computer
that we work with in this paper is measured
simply by the power consumption of each of
its components. (The amount of additional
power needed to compensate for inefficiencies
of power supplies and dissipation is not cov-
ered.) In a computer in which the power con-
sumption of each device remains constant over
time, then total power consumption can be
measured like this:

Cp = D1p + D2p + D3p + ...

However, hardware features cause the amount
of power consumed by a device to fluctuate
over time. So, the amount of power consumed
by a device over a set amount of time (e.g. one
hour) can be measured as the sum of power
consumed by the device at each interval (e.g.
one millisecond) during that time. So, the equa-
tion becomes a bit more involved for each de-
vice:

D1p = (D1p0 + D1p1 + D1p2 ... D1pn) / n

The rates of power consumption for a device
are expressed in watts/hour, so the amount of
power consumed per interval must be divided
by the number of intervals sampled.



152 • The State of Linux Power Management 2006

2 Device Power Management

Each device in a computer has the potential to
perform a certain of work over time:

Work = w0 + w1 + w2 + ... + wn

If the power consumption of a device is con-
stant, then it consumes the same amount of
power at each interval, regardless of whether
or not it is actually performing its potential
maximum amount of work possible. Hardware
power management features provide the abil-
ity to adjust the amount of power that a de-
vice consumes based on the amount of work
that the device needs to perform. The concept
is based the basic observation that devices are
often underutilized—the amount of work de-
manded from them may be less than the sup-
ply that their potential offers. That general ob-
servation provides two more specific theories
about work load and power consumption.

• A device may operate at a slower rate or
experience longer periods of idleness in
order to perform the work demanded of it.
Please see Section 2.1.

• Part or all of a device may be disabled if
there is no work for it to do. Please see
section 2.5.

2.1 Operable States

Approaches to reduce power consumption of
a device, yet all the device to continuously
perform work are commonly implemented by
CPUs, which have a near-constant demand for
their resources. They accomplish this by doing
one or both of the following:

• Frequency modulation.

• Low-power idle states.

2.2 Frequency modulation

The frequency is a function of the voltage com-
ing into the device and a set of multipliers
(among other things). In some cases, the mul-
tipliers can be adjusted to simply affect the
speed of the device, though that doesn’t offer
great savings in power because the device is
still drawing the same amount of current from
the power source. But, by adjusting the volt-
age, the actual power draw changes, allowing
for better power savings.

Technically speaking, the device will have a
range of frequencies that it can operate at
for each voltage supplied. By adjusting the
voltage, what is really being adjusted is the
min/max range of frequencies, given the multi-
pliers available. Within each voltage level, the
multipliers can then be adjusted to achieve the
desired frequency [Pentium M].

The caveat of changing voltage levels as op-
posed simply changing frequency levels is that
the voltage may also effect the multipliers that
are used to determine the bus speed between
that device and another device (e.g. between the
CPU and RAM). There is a higher latency in-
volved in changing voltages because those val-
ues must be changed and synchronized in lock-
step.

By being able to operate at different frequen-
cies at the same voltage level, and often the
same frequency at different voltage levels, the
power consumed can be minimized, but still
allow for low-latency transitions between fre-
quencies.

2.3 Linux support for frequency modula-
tion

Many modern CPUs support frequency modu-
lation, and the Linux cpufreq subsystem has de-
veloped intelligent support for predicting and



2006 Linux Symposium, Volume Two • 153

Architecture CPUs
x86/x86-64 Generic ACPI

AMD PowerNow
Intel SpeedStep
Transmeta Crusoe
NatSemi Geode / Cyrix MediaGX
VIA Longhaul

ARM Integrator
SA1100
SA1110

PowerPC Various G3s & G3s
Sparc64 UltraSPARC IIe & III
SuperH SH-3, SH-4

Table 1: Architectures Supported by cpufreq

adjusting CPU load. cpufreq has support for
many CPUs across several architectures, as
seen in Table 1. Support for a specific CPU
requires a driver that understands the model-
specific interface for determining and entering
the supported states [cpufreq].

Other devices that experience continuous de-
mand for resources could benefit from being
able to modulate their frequency depending on
the amount of demand. In particular, mem-
ory and I/O buses are both large consumers
of power that could frequently experience un-
der utilization of their resources. However, no
known hardware features (let along Linux sup-
port) exist for these items. This is not surpris-
ing, as their software control would most likely
involve platform-specific commands and coor-
dination that is currently performed only by the
firmware (and beyond the knowledge and inter-
est of the kernel).

2.4 Low-power idle states

A period of idleness is a small, sometimes
fixed, amount of time that a device is not be-
ing used. Some devices may be able to trans-
parently enter a special low-power state during
this period. This state effectively disables the

device, but ensures that it will automatically
transition out of the low-power state when it re-
ceives a request for work. This feature is most
famously implemented by x86 CPUs and speci-
fied by ACPI as the Processor C states: C0, C1,
C2 . . . Cn [ACPI].

Low-power CPU idle states are designed for
use during the idle thread. How they imple-
mented, and how they are used, is dependent
on the platform. C1 on x86 CPUs may entered
by simply executing the ’hlt’ instruction. Us-
ing any low-power states beyond that requires
very specific manipulation of the hardware.
ACPI provides an abstract interface for doing
this on supported platforms, which is imple-
mented in the ACPI idle thread [ACPI Docs],
though other platforms must do it manually
[DPM WP].

Each C state has a tradeoff between the power
it consumes and the latency for returning to C0.
Depending on the demand for the CPU (as mea-
sured by the amount of time spent idle), a lower
or higher C state may entered, since a lightly-
loaded system can safely endure slightly higher
latencies.

Low-power idle states are starting to be im-
plemented by other devices that are under fre-
quent demand, but also experiences frequent
periods of idleness. In particular, some PCI
Express chipsets have implemented low-power
idle states for its device links (connections be-
tween the PCIe controller and downstream de-
vices). These states are called L States, and
may be used in two cases: when the down-
stream device is active but idle (called Active
State Power Management); or when the down-
stream device is in a low-power state (called
Link Power States). This feature is not yet
supported by Linux. More information can be
found in the References [PCIe PM].



154 • The State of Linux Power Management 2006

2.5 Inoperable States

Devices that are not needed for long periods of
time may be put into an inoperable power state
in which power to some or all of the device is
removed. These states are typically used for pe-
ripheral devices that experience long periods of
idleness or are known to be unneeded for a sig-
nificant period of time (in a magnitude of sec-
onds and higher). There are two basic classes of
inoperable power states: where part of the de-
vice is inoperable, and where the entire device
is inoperable.

Many devices have more than one usable com-
ponent on them that is not strictly necessary for
basic operation of the device. For instance:

• CPU with more than one core

• A graphics device with a 2d acceleration
engine and a 3d acceleration engine.

• A NIC with a TCP Offload Engine

In theory, these extra components could be
turned off independent of other hardware com-
ponents. In some cases, like the 3d acceleration
engine, this could result in significant power
savings. However, the description of these fea-
tures and how they controlled is device specific,
and usually kept proprietary. And, with basic
device power management support still incom-
plete, these features are not supported under
Linux.

When an entire device is not being used, it can
be put into a low-power and inoperable power
state. The PCI Power Management Specifica-
tion defines a set of 4 states that PCI devices
may support: D0 (Fully On), D1, D2, and D3
(Off).

A range was specified to allow hardware de-
signers the ability to choose alternative imple-
mentations in which more components of the
device lost power as a deeper power state was
entered. This would allow a lower transition la-
tency from the low-power state to the D0 state
because an entire device reset would not be nec-
essary. However, few hardware designers have
found that tradeoff worthwhile as very devices
support D1 and D2.

An exception are graphics controllers, which
are the biggest users of the intermediate power
states. Unfortunately, the software steps nec-
essary to reprogram a graphics controller after
it has returned to D0 from any low-power state
are complicated and kept very secret.

Linux provides an interface for using low-
power device states via sysfs. Each device’s
sysfs directory has a sub-directory named
power, which in it has an attribute file named
state. Reading this file returns the current
low-power state of the device (0 for on, non-
zero otherwise). Writing to this file places the
devices into a different power state.

This sysfs interface is provided regardless of
the bus that the device resides on, but is a bit
unintuitive for some power management imple-
mentions: it only supports turning the device on
and off, and the mechanism for doing so is by
writing the ASCII characters “0” and “2” re-
spectively, which do not map to any known bus
states.

3 System Power Management

Under normal, unoptimized circumstances a
computer will consume as much power as it
possibly can as it performs work. However,
power management can be implemented for an
entire system in a manner analogous to power



2006 Linux Symposium, Volume Two • 155

management of a single device: it may enter
a different operable state that conserves power
but preserves the ability to perform work; or it
may enter an inoperable low-power state that
performs no work, but offers a relatively low-
latency to return to an operable state. The
unique attribute of system power management
is that it requires little or no hardware support
beyond what is already implemented in device
power management.

3.1 Operable States

An arbitrary operable system state can be de-
fined as a set of minimum and maximum states
(operable or inoperable) for each device in
that particular system. By default, the system
is in an operable state in which every device
has their default minimum and maximum state
ranges (usually Fully On and Fully Off). How-
ever, new low-power states can be defined for
the system that allow work to be performed but
minimize the power usage of one or more de-
vices.

To illustrate this, consider a user who has
boarded plane with his laptop. By default, the
system is Fully Operable—every device is ex-
ecuting at its maximum speed, though some
devices may be automatically transitioned to a
low-power state because they are idle. Without
an explicit state to enter, the user will have to
manually adjust the power state of the devices
affected by the change to the plane locale: turn
the wireless off, turn the sound on, and keep the
CPU at a speed adequate for listening to mu-
sic and editing a document. However, by defin-
ing a new operable low-power state, these items
can be performed automatically by simply en-
tering the “airplane” state. Any other system
optimizations that have been defined by the dis-
tributor or the OEM may also be performed by
that state transparently to the user, saving them

from the burden of remembering far more de-
tails about their system than they need to.

There is little support for operable system states
in Linux today. The closest thing is the Dy-
namic Power Management (DPM) project that
defines “operating points” for a system. How-
ever, the operating points so far are more con-
cerned with the low-level power parameters of
core system components like CPUs and RAM.
The origins of DPM are in the manipulation of
CPU power states without a firmware abstrac-
tion layer like ACPI to mask the implemen-
tation details, so its primary goal is well un-
derstood. And, without alternatives, it is the
best candidate for extension to a broader system
state definition mechanism. [DPM Project]

3.2 Inoperable States

Inoperable low-power system states are also
known as “suspend states,” the most well-
known form of power management. The con-
cept is simple: when the system is not being
used, everything is stopped and the system it-
self is put into a low-power state. The sys-
tem will automatically return to a working state
when it receives some sort of request, and will
do so in a very short amount of time compared
to what it would take to boot the system.

In each of the suspend states, the system stops
performing all work and is either placed into
either a special low-power state supported by
the platform, or it is completely shut off. These
special low-power platform states keep power
supplied to some components, allowing certain
events (a key press or lid open) to generate
a hardware interrupt and cause the system to
power on. Most of the inoperable system states
require hardware support, because they also de-
pend on power being supplied to memory, but
there is at least one that doesn’t require hard-
ware support.



156 • The State of Linux Power Management 2006

Common Name ACPI Name
Fully On S0
Standby S1
Unused S2
Suspend-to-RAM S3
Suspend-to-Disk S4

Table 2: ACPI System Power States

Regardless, the exact state of the CPU and ev-
ery device in the system is saved when the sys-
tem is suspended and later restored when it re-
gains power. This allows the system to continue
on from exactly the point at which it left off.

ACPI enumerates the different system sus-
pend states for supported platforms, though the
names are not meaningful for any other plat-
form. It also provides an abstract interface for
entering and leaving the suspend states, which
provides a similar level of ease as its interface
for entering CPU idle states. As is the case with
those, platforms that do not implement ACPI
require that that coordination be done manu-
ally. A list of ACPI system states are defined
in Table 2.

The most common suspend state is suspend-to-
disk. With this state, the contents of memory
will be written to unused disk space before the
system is powered down. When the system re-
gains power, the contents of memory are read
from the disk and restored. This is the one sus-
pend state that does not require hardware sup-
port, though it can leverage it for generating
wakeup events.

When the system is powered on, the kernel be-
gins a normal boot sequence before it detects
whether or not there is a saved memory image
on the disk. If it discovers an image, it reads
and reloads it into memory. This happens re-
gardless of whether the physical state the hard-
ware was in was a special low-power state.

Linux supports suspend-to-disk with the

swsusp (swap suspend) implementation. With
this code, the saved memory image is written
to unused swap space. It has matured rapidly
in the recent past and is currently supported on
x86, x86-64, and PowerPC platforms [swsusp].

There are two alternative efforts that im-
prove upon swsusp. Suspend2 includes sev-
eral rewritten components of swsusp, several
fixes to improve stability, and a few user-
friendly features, like a graphical progress
screen. This implementation exists as an ex-
ternal patch, though it is still actively main-
tained [Suspend 2]. swsusp3 is an implemen-
tation that moves the components to save and
restore memory on disk to userspace. This re-
duces the amount of kernel code significantly
and allows for easy integration of manipulative
tasks to the saved memory image (e.g. com-
pression and encryption). swsusp3 is currently
in an alpha state, though it is likely to evolve
quickly [swsusp3].

Beyond suspend-to-disk, there is one other
state that is commonly found on many plat-
forms: suspend-to-RAM. This is a special hard-
ware state in which most or all of the compo-
nents in a computer are powered off, except for
RAM, which is put into a self-refresh state to
preserve its contents. Before entering this state,
the kernel saves the state of every device in the
system, including the CPU, by copying it into
memory. When the system regains power, each
device is reinitialized and the state is restored.

Suspend-to-RAM provides an additional chal-
lenge in its handling of devices. On suspend-
to-disk, the system goes through a boot se-
quence that will initialize devices to a usable
state. On x86 platforms, this means that the
BIOS will setup any devices that it is respon-
sible for (video). This is not the case dur-
ing suspend-to-RAM. Control is transferred to
the kernel before any reinitialization is done,
leaving the burden solely on the shoulders of



2006 Linux Symposium, Volume Two • 157

the kernel. In order to provide correct opera-
tion, every device driver that can be used on a
system that supports suspend-to-RAM must be
modified (which turns out to be an overwhelm-
ing majority of drivers). On top of that, some
drivers do not have the ability to reprogram
the devices that they normally support because
the initialization sequences are kept proprietary
(e.g. video devices again).

There is one more relatively well-known sus-
pend state called “standby” in some literature
that deserves an honorable mention. It has
the ability to put the system into an inopera-
ble low-power state, but retain the context of
all devices if necessary. (Other states often re-
move power from the buses, implicitly remov-
ing power from downstream devices and caus-
ing their state to be lost.) However, standby
is seldom used in that form, and though it is
technically supported by Linux, its implemen-
tation offers no latency benefits over suspend-
to-RAM.

All power states can be entered by using the
sysfs PM interface. The state file returns
the system states that are supported by the plat-
form. Writing one of those state names to the
file will cause the system to transition to that
state.

4 Platform Power Management

The maturity and flexibility of Linux make it
possible to port the kernel to nearly any imagin-
able computer. (Sometimes it seems like it has
already been done [linuxdevices.com].) Each
of those computers has the potential to conserve
power in some way using the hardware fea-
tures described above, though the combination
of features used and the policy to guide them
depends on several platform-specific character-
istics, such as:

• What the device is used for, e.g. commu-
nications, engineering, gaming, etc.

• What the end goal of increased efficiency
is, e.g. longer battery life, quieter opera-
tion, etc.

• How much tolerance there is for perfor-
mance and latency, and how it is mea-
sured.

• What the physical constraints of the
comptuer are, and what the risks are of
having a thermal failure are, besides sim-
ply damaging the components.

In reality, there can be could any arbitrary num-
ber of conflicting design goals and require-
ments, spanning a nearly infinite range of com-
puters running Linux. However, for the sake
of discussion, the design goals have been nar-
rowed to those above, and the range of com-
puters has been narrowed to 4 broad classes of
devices and 8 categories within each. Table 3
describes these categories, along with exam-
ples from each. The following sections provide
an analysis of each category with the criteria
above to illustrate the power management po-
tential in Linux.

4.1 Embedded Devices

The term “embedded” has become a catch-all
phrase meaning roughly any computer that is
built with the intent of running a single work-
load and usually not very configurable or ex-
tensible. Definitions may vary, and exceptions
are rampant, but here it has been narrowed to
three categories of systems: handhelds, con-
sumer electronics, and embedded controllers.

In a basic sense, each is considered an appli-
ance by most of its consumers. They may not
know or care that it is running Linux, and have



158 • The State of Linux Power Management 2006

Comptuer Class Common CPUs Category Products Example
Embedded arm Handheld Mobile Phone Motorola

omap PDA Nokia 770
xscale Media Player iRiver h320

mips Consumer Electronics LCD Television Dell LCD
x86 Game console Sony PlayStation 3
ppc PVR Tivo
arm Wireless router LinkSys WRT54GL

Commodity x86 Laptop Ultra Mobile
General Purpose ppc Mobile

Portable Desktop
Desktop Gaming

Surfing
Publishing

Professional x86 Workstation Engineering
General Purpose ppc Graphics

Small Server File server
Web server
Mail Server

Enterprise x86 High Availability Infrastructure
ia64 Telecom
ppc

sparc Collaborative Distributed Application
mips Database

Table 3: Classes and Categories of systems supported by Linux

no intent to make a general-purpose computer
or run their own custom kernel on it. As such,
these platforms must behave like other appli-
ances in that category by being as easy-to-use
and causing as few problems as is commonly
expected by comparable alternatives.

4.2 Handhelds

Handheld devices are portable devices that can
easily fit into a person’s hand or pocket, such as
mobile phones, PDAs, and media players. The
primary power management goal is to maxi-
mize the amount of battery life of these devices,
though a number of constraints prevent that.

These devices are evolving rapidly as the CPUs
that are being used (arm, omap, xscale) are ex-
periencing rapid advances in performance ca-
pabilities. To gain competitive advantage over

their competitors, OEMs are adding more fea-
tures, which imposes greater constraints on the
battery life and the ability to manage it. Mobile
phones are getting media players and higher
quality cameras. PDAs are getting more appli-
cations and more wireless technologies. Media
players are getting higher in quality and also
obtaining new wireless technologies.

In order to maximize battery life, an aggressive
power management scheme must be employed.
Devices that are not being used must be transi-
tioned to a low-power state as soon as possible
(e.g., when a device stops playing video/audio).
The increase in latency to get the device back to
a usable state is tolerable, as it is common for
extended features of these platforms.

These devices may always be “on” or in a state
ready to respond to user input or an incoming
call, so they can not use any type of inoperable



2006 Linux Symposium, Volume Two • 159

system state. However, they are ideal candi-
dates for operable system states, and the con-
cept of operating points (as defined by DPM)
is typically used. A CPU in one of these sys-
tems can be scaled to a fraction of its peak volt-
age while leaving other devices active and wait-
ing for input. On receiving input, the system is
transitioned to a higher power state, allowing it
to perform the necessary work reasonably fast.

4.3 Consumer Electronics

Though handhelds could easily fit into this cat-
egory, this division is made to isolate devices
that are used within the home, perform a spe-
cific appliance-like function, and can assume
a steady current from a wall outlet. These
devices include things LCD televisions, other
media consoles (video games, personal video
recorders), and wireless routers. Competition is
fierce for these devices, and is typically waged
around aesthetics and value (number of features
for the price), so power consumption is not a
primary concern in implementing them.

However, that does not obviate the need for
it. The impetus for power management in con-
sumer electronics is to reduce the power bill
of the consumer, since a savvy consumer may
easily have a half-dozen such devices; and to
reduce thermal output, since a thermal over-
load could result in serious damage to the con-
sumer’s residence or self.

These devices are expected to perform consis-
tently fast whenever they are on. A slow re-
sponse time or a fluctuation in response time
will annoy the consumer and discourage them
from purchasing that brand in the future. When
these devices are not being used, they can be
completely turned off.

By using sufficiently low-power devices, little
power management is necessary. But the mar-
ket demands that more features be added, so the

components are getting richer and faster, mean-
ing that the power consumption will continue to
increase.

Operable low-power system states can be used
in the future to manage power, but with the
caveat that the system can never run in a state
lower than one which reasonably guarantees a
satisfactory response time. This should not be
a challenge, since current systems perform the
basic functions at a reasonable rate with little or
no power management. As features are added
and device speeds increase (as well as their
efficiency), the devices required to use those
features should remain at their lowest possi-
ble state until the feature is used by the con-
sumer. The features should require a known
amount of performance, so the device perfor-
mance needed for them should be adjusted up
to perform the work reasonably well.

4.4 Commodity General Purpose Comput-
ers

Commodity general-purpose computers pro-
vide the pathology to power management. Con-
sumers of these systems want the best of both
worlds—the most performance and the least
power consumption. This would not be an out-
rageous goal if the working set of platforms and
devices needing support was a reasonable size
(or at least bounded). There is no such luck in
the universe and therefore we have a very large
set of variables in the power management for-
mulas for commodity systems.

Fortunately, by being the mainstream, these
systems and their power management features
have enjoyed the most collective exposure by
developers, so the problems are at least under-
stood, even if the solutions are not. Most of the
Linux power management code is designed for
systems of this nature, so progress is well under
way in this area.



160 • The State of Linux Power Management 2006

Even though laptops and desktops can be used
for nearly any task, they are typically used
for doing only one subset of things at a time.
Even if every possible application is executing
at once, the user only has the ability to do a few
things simultaneously (e.g. write a document,
listen to music, and chat over an instant mes-
saging client).

Based on what is being done, intelligent deci-
sions can be made about how to regulate the
power consumed. First and foremost, opera-
ble system states can be implemented to define
boundaries on the power states of device com-
ponents. By specifying which state, or “pro-
file” to be used, the user can dictate how ag-
gressively the power should be managed. Ob-
served behavior has shown that the difference
between each operable state is likely to be that
some devices will be on, others will be off, and
the performance of the CPU will vary based on
an algorithm specific for that state. Depending
on what the primary objective of a state is, the
frequency modulation should exhibit different
behavior when scaling the frequency down (ag-
gressively or conservatively) and when scaling
the frequency (aggressively or conservatively).
An aggressive downward algorithm combined
with a conservative upward algorithm will pro-
vide a system that stays at a low-power state
unless absolutely necessary. This would bene-
fit a lightly loaded system, as in one that was
only editing documents and listening to music.

The inverse (conservatively downward and ag-
gressively upward) will produce a system that
is operating at or near its peak at all times. This
will benefit systems running resource-intensive
applications, like games.

Regardless of the operable state specified by the
user, the system must always be able to apply
the proper power management policy. The av-
erage person will not remember to always set
the ideal operable state for the program they

are running, so the system must either compen-
sate with flexibility in policy or enter the proper
state for the application running.

System suspend states can be used aggressively
when these devices are not being used. If the
system falls idle, then the user is typically not
in front of it, and if they are not in front of it,
they typically don’t expect to use it until they
sit back down, in which case they can expect
a reasonable latency to return the system to a
working state.

4.5 Professional General Purpose Systems

Professional general purpose systems are not a
far derivation from commodity general purpose
systems, but they are distinguished here to il-
lustrate the difference in workloads and expec-
tations. They are divided into two categories:
workstations, on which people typically per-
form some type of engineering work; and small
servers, on which departments and small com-
panies run their infrastructure.

Workstations are high performance machines
that are expected to operate at their maximum
potential when they are being used, which is
usually only when a user is at the keyboard in
front of it. Even if there is not an application
currently executing, it can be assumed that their
will be one soon. And, when they do execute,
they must complete the task as soon as pos-
sible. It is possible to leverage some amount
of operable state system power management,
though probably only with very conservative
downward algorithms and very aggressive up-
ward algorithms.

When a workstation is not directly being used,
it may still be expected to be usable (i.e. by re-
mote login), so even though it may experience
long periods of idleness, it may never be able
to enter an inoperable suspend state. Instead,



2006 Linux Symposium, Volume Two • 161

the operable performance can be scaled down
very aggressively so that it consumes a min-
imum amount of power while it is ready and
waiting.

Small servers typically start out as general pur-
pose computers, but then become dedicated to
running one task all the time, like a database
server, a web server, or a file server. In many
cases, there is no type of power management
that is feasible for a single server—they must
always be responsive to external requests, and
they must provide a low-latency response to
those requests.

Depending on the usage and the actual demand
for the system’s resources, some power can be
managed with operable system power states. A
system must be able to execute and respond at
a rate that is acceptable to its users. If the com-
ponents are much faster than is needed or ex-
pected, the speed of some of the components
may be scaled down without sacrificing the user
expectations. Additionally, depending on the
usage, a server may experience very different
usage models during different parts of the day.
By analyzing the usage over time, different op-
erable states can be used during different hours
to conserve power but still provide the neces-
sary availability.

4.6 Enterprise Computing

The ‘enterprise’ is a place where big comput-
ers live on a pathological scale. Its relation-
ship to power management is no different. Be-
sides the workstations, departmental servers,
laptops, and handheld communication equip-
ment, it also contains a set of servers in a class
of their own. These systems, multi-machine
versions of each “small server,” as well as
network infrastructure servers (dhcp, dns, au-
thentication), communication servers, and dis-
tributed applications.

The performance of these systems is expected
to be consistently good. They can not endure
any amount of inoperability, and any increase
in latency is usually unacceptable, even the rel-
atively small latency of transitioning a CPU
from a low-power C state to the C0 state (~1
ms).

However, these systems provide great opportu-
nities for power management. These systems
are large and there may be dozens or hundreds
of nodes on the same problem. They require
a lot of power to operate, which means they
need a lot of space and a lot of cooling. If a
computer runs at its maximum speed for an ex-
pected lifespan of three years, the cost to supply
power to the computer will equal the initial cost
of the computer. By conserving a fraction of
the power consumed, an organization may save
a significant amount of money in doing so.

Implementing power management on a cluster
of systems is largely outside the scope of this
paper. However, there is a simple analogue be-
tween operable system power states and “op-
erable cluster power states” where the cluster
performs at a rate less than its peak, but still
does an acceptable amount of work in a rea-
sonable amount of time. Under periods of de-
creased load, individual computers can be pow-
ered down, or they can be put into a lower-
power operable state. The states to use, when
to use them, and how to measure their success
is a function of the application and the usage of
it and is left as an exercise to the reader.

Conclusion

The concept of regulating power consumption
has existed for decades in popular rhetoric
about conserving natural resources. Given their
finite nature, the current usage models, and
shortage of mitigation techniques, most studies



162 • The State of Linux Power Management 2006

suggest that current resources will inevitably
depleted. Many people agree that it’s important
to be conscious of this.

Power management has proliferated in the
computer industries over the last decade be-
cause of the economic potentials that it offers.
By making devices more efficient, a company
can gain a market advantage over its competi-
tors. By using more efficient computers, a
company can reduce its operational overhead.
And, by applying more efficient manufacturing
processes over time, higher-performance com-
ponents can be used under tighter power con-
straints, opening up new usages and new mar-
kets for the company. Consumers realize many
benefits from power management. They get
longer battery life, lower power bills, and con-
tinuously increasing performance of their com-
puters.

In fact, the only downside to power manage-
ment is that the rapid parallel evolution of hard-
ware intelligence, power management features,
and user expectations imposes a stiff require-
ment on the software management of each.
This is especially true in Linux—the kernel
supports many different architectures, several
of those architectures can be used in many
types of computers, and many devices can be
used on any platform.

This paper has provided a survey of power
management concepts, how those concepts are
supported by Linux, and how they are—or
could be—applied to all of the different cate-
gories of machines that Linux supports. The
goal of this paper was to provide insight about
power management and its manifestations in
the hope that it will help someone implement-
ing some type power management support in
the future understand it better.

References

[watt] W. Thomas Griffith The Physics of
Everyday Phenomena, Second Edition,
1998

[Pentium M] Intel Corporation Intel Pentium
M Processor on 90 nm Process with
2-MB L2 Cache Datasheet, January 2006
http://download.intel.com/
design/mobile/datashts/
30218908.pdf

[cpufreq] The Linux cpufreq subsystem and
documentation http://www.
kernel.org/pub/linux/utils/
kernel/cpufreq/cpufreq.html

[ACPI] HP, Intel, Microsoft, Phoenix,
Toshiba, Advanced Configuration and
Power Interface Specification, Revision
3.0a, December 30, 2005
http://acpi.info/DOWNLOADS/
ACPIspec30.pdf

[DPM WP] IBM and MontaVista Software
Dynamic Power for Embedded Systems,
Version 1.1, November 19, 2002
http://www.research.ibm.
com/arl/projects/papers/
DPM_V1.1.pdf

[DPM Project] Dynamic Power Management
Project http://dynamicpower.
sourceforge.net/

[PCIe PM] Intel Corporation The Emergence
of PCI Express in the Next Generation of
Mobile Platforms, Second-Generation
Intel Centrino Mobile Technology,
Volume 09, Issue 01, February 17, 2005
http:
//www.intel.com/technology/
itj/2005/volume09issue01/
art02_pcix_mobile/p04_
power_management.htm



2006 Linux Symposium, Volume Two • 163

[linuxdevices.com] The Linux Devices
Showcase,
http://linuxdevices.com/
articles/AT4936596231.html

[ACPI Docs] Len Brown, et al. ACPI4Linux
Documentation Overview, http:
//acpi.sourceforge.net/
documentation/index.html

[swsusp] Pavel Machek, et al. Linux Swap
Suspend Implementation, Linux kernel
v2.6.16, kernel/power/swsusp.c

[Suspend 2] Nigel Cunningham, et al.
Suspend 2 for Linux
http://www.suspend2.net

[swsusp3] Rafael J. Wysocki, et al. Linux
Swap Suspend Implementation, Linux
kernel v2.6.16,
http://lists.osdl.org/
pipermail/linux-pm/
2006-January/001770.html



164 • The State of Linux Power Management 2006



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


